rusefi/firmware/hw_layer/max31855.cpp

168 lines
3.5 KiB
C++

/**
* @file max31855.cpp
* @brief MAX31855 Thermocouple-to-Digital Converter driver
*
*
* http://datasheets.maximintegrated.com/en/ds/MAX31855.pdf
*
*
* Read-only communication over 5MHz SPI
*
* @date Sep 17, 2014
* @author Andrey Belomutskiy, (c) 2012-2015
*/
#include "main.h"
#include "max31855.h"
#include "hardware.h"
#include "mpu_util.h"
#if EFI_PROD_CODE
#include "settings.h"
#include "pin_repository.h"
#endif /* EFI_PROD_CODE */
#if EFI_MAX_31855
#define EGT_ERROR_VALUE -1000
static SPIDriver *driver;
static Logging* logger;
static SPIConfig spiConfig[MAX31855_CS_COUNT];
EXTERN_ENGINE;
static void showEgtInfo(void) {
#if EFI_PROD_CODE
printSpiState(logger, boardConfiguration);
scheduleMsg(logger, "EGT spi: %d", boardConfiguration->max31855spiDevice);
for (int i = 0; i < MAX31855_CS_COUNT; i++) {
if (boardConfiguration->max31855_cs[i] != GPIO_UNASSIGNED) {
scheduleMsg(logger, "%d ETG @ %s", i, hwPortname(boardConfiguration->max31855_cs[i]));
}
}
#endif
}
// bits D17 and D3 are always expected to be zero
#define MC_RESERVED_BITS 0x20008
#define MC_OPEN_BIT 1
#define MC_GND_BIT 2
#define MC_VCC_BIT 4
typedef enum {
MC_OK = 0, MC_INVALID = 1, MC_OPEN = 2, MC_SHORT_GND = 3, MC_SHORT_VCC = 4,
} max_32855_code;
static const char * getMcCode(max_32855_code code) {
switch (code) {
case MC_OK:
return "Ok";
case MC_OPEN:
return "Open";
case MC_SHORT_GND:
return "short gnd";
case MC_SHORT_VCC:
return "short VCC";
default:
return "invalid";
}
}
static max_32855_code getResultCode(uint32_t egtPacket) {
if ((egtPacket & MC_RESERVED_BITS) != 0) {
return MC_INVALID;
} else if ((egtPacket & MC_OPEN_BIT) != 0) {
return MC_OPEN;
} else if ((egtPacket & MC_GND_BIT) != 0) {
return MC_SHORT_GND;
} else if ((egtPacket & MC_VCC_BIT) != 0) {
return MC_SHORT_VCC;
} else {
return MC_OK;
}
}
static uint32_t readEgtPacket(int egtChannel) {
uint32_t egtPacket;
if (driver == NULL) {
return 0xFFFFFFFF;
}
spiStart(driver, &spiConfig[egtChannel]);
spiSelect(driver);
spiReceive(driver, sizeof(egtPacket), &egtPacket);
spiUnselect(driver);
spiStop(driver);
egtPacket = SWAP_UINT32(egtPacket);
return egtPacket;
}
#define GET_TEMPERATURE_C(x) (((x) >> 18) / 4)
uint16_t getEgtValue(int egtChannel) {
uint32_t packet = readEgtPacket(egtChannel);
max_32855_code code = getResultCode(packet);
if (code != MC_OK) {
return EGT_ERROR_VALUE + code;
} else {
return GET_TEMPERATURE_C(packet);
}
}
static void egtRead(void) {
if (driver == NULL) {
scheduleMsg(logger, "No SPI selected for EGT");
return;
}
scheduleMsg(logger, "Reading egt");
uint32_t egtPacket = readEgtPacket(0);
max_32855_code code = getResultCode(egtPacket);
scheduleMsg(logger, "egt %x code=%d %s", egtPacket, code, getMcCode(code));
if (code != MC_INVALID) {
int refBits = ((egtPacket & 0xFFFF) / 16); // bits 15:4
float refTemp = refBits / 16.0;
scheduleMsg(logger, "reference temperature %f", refTemp);
scheduleMsg(logger, "EGT temperature %d", GET_TEMPERATURE_C(egtPacket));
}
}
void initMax31855(Logging *sharedLogger, SPIDriver *drv, egt_cs_array_t max31855_cs) {
logger = sharedLogger;
driver = drv;
addConsoleAction("egtinfo", (Void) showEgtInfo);
addConsoleAction("egtread", (Void) egtRead);
#if EFI_PROD_CODE
turnOnSpi(SPI_DEVICE_3);
#endif /* EFI_PROD_CODE */
for (int i = 0; i < MAX31855_CS_COUNT; i++) {
if (max31855_cs[i] != GPIO_UNASSIGNED) {
initSpiCs(&spiConfig[i], max31855_cs[i]);
spiConfig[i].cr1 = SPI_BaudRatePrescaler_8;
}
}
}
#endif /* EFI_MAX_31855 */