rusefi/firmware/controllers/algo/fuel_math.cpp

474 lines
17 KiB
C++

/**
* @file fuel_math.cpp
* @brief Fuel amount calculation logic
*
*
* @date May 27, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "global.h"
#include "fuel_math.h"
#include "interpolation.h"
#include "engine_configuration.h"
#include "allsensors.h"
#include "engine_math.h"
#include "rpm_calculator.h"
#include "speed_density.h"
#include "perf_trace.h"
#include "sensor.h"
EXTERN_ENGINE;
fuel_Map3D_t fuelMap("fuel");
static fuel_Map3D_t fuelPhaseMap("fl ph");
extern fuel_Map3D_t veMap;
extern afr_Map3D_t afrMap;
extern baroCorr_Map3D_t baroCorrMap;
#if EFI_ENGINE_CONTROL
DISPLAY_STATE(Engine)
DISPLAY(DISPLAY_FIELD(sparkDwell))
DISPLAY(DISPLAY_FIELD(dwellAngle))
DISPLAY(DISPLAY_FIELD(cltTimingCorrection))
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_IF(isCrankingState)) floatms_t getCrankingFuel3(float coolantTemperature,
uint32_t revolutionCounterSinceStart DECLARE_ENGINE_PARAMETER_SUFFIX) {
// these magic constants are in Celsius
float baseCrankingFuel;
if (engineConfiguration->useRunningMathForCranking) {
baseCrankingFuel = engine->engineState.running.baseFuel;
} else {
baseCrankingFuel = engineConfiguration->cranking.baseFuel;
}
/**
* Cranking fuel changes over time
*/
DISPLAY_TEXT(Duration_coef);
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(durationCoefficient) = interpolate2d("crank", revolutionCounterSinceStart, config->crankingCycleBins,
config->crankingCycleCoef);
DISPLAY_TEXT(eol);
/**
* Cranking fuel is different depending on engine coolant temperature
*/
DISPLAY_TEXT(Coolant_coef);
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(coolantTemperatureCoefficient) = cisnan(coolantTemperature) ? 1 : interpolate2d("crank", coolantTemperature, config->crankingFuelBins,
config->crankingFuelCoef);
DISPLAY_SENSOR(CLT);
DISPLAY_TEXT(eol);
auto tps = Sensor::get(SensorType::DriverThrottleIntent);
DISPLAY_TEXT(TPS_coef);
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? 1 : interpolate2d("crankTps", tps.Value, engineConfiguration->crankingTpsBins,
engineConfiguration->crankingTpsCoef);
DISPLAY_SENSOR(TPS);
DISPLAY_TEXT(eol);
floatms_t crankingFuel = baseCrankingFuel
* engine->engineState.cranking.durationCoefficient
* engine->engineState.cranking.coolantTemperatureCoefficient
* engine->engineState.cranking.tpsCoefficient;
DISPLAY_TEXT(Cranking_fuel);
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(fuel) = crankingFuel;
if (crankingFuel <= 0) {
warning(CUSTOM_ERR_ZERO_CRANKING_FUEL, "Cranking fuel value %f", crankingFuel);
}
return crankingFuel;
}
/* DISPLAY_ELSE */
floatms_t getRunningFuel(floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) {
ScopePerf perf(PE::GetRunningFuel);
DISPLAY_TEXT(Base_fuel);
ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(baseFuel)) = baseFuel;
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Intake_coef);
float iatCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(intakeTemperatureCoefficient));
DISPLAY_SENSOR(IAT);
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Coolant_coef);
float cltCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(coolantTemperatureCoefficient));
DISPLAY_SENSOR(CLT);
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Post_cranking_coef);
float postCrankingFuelCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(postCrankingFuelCorrection));
DISPLAY_TEXT(eol);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(iatCorrection), "NaN iatCorrection", 0);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(cltCorrection), "NaN cltCorrection", 0);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(postCrankingFuelCorrection), "NaN postCrankingFuelCorrection", 0);
floatms_t runningFuel = baseFuel * iatCorrection * cltCorrection * postCrankingFuelCorrection + ENGINE(engineState.running.pidCorrection);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(runningFuel), "NaN runningFuel", 0);
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Running_fuel);
ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(fuel)) = runningFuel;
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Injector_lag);
DISPLAY(DISPLAY_PREFIX(running).DISPLAY_FIELD(injectorLag));
DISPLAY_SENSOR(VBATT);
return runningFuel;
}
/* DISPLAY_ENDIF */
/**
* Function block now works to create a standardised load from the cylinder filling as well as tune fuel via VE table.
* @return total duration of fuel injection per engine cycle, in milliseconds
*/
float getRealMafFuel(float airSpeed, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
// If the engine is stopped, MAF is meaningless
if (rpm == 0) {
return 0;
}
// kg/hr -> g/s
float gramPerSecond = airSpeed * 1000 / 3600;
// 1/min -> 1/s
float revsPerSecond = rpm / 60.0f;
float airPerRevolution = gramPerSecond / revsPerSecond;
// Now we have to divide among cylinders - on a 4 stroke, half of the cylinders happen every rev
// This math is floating point to work properly on engines with odd cyl count
float halfCylCount = CONFIG(specs.cylindersCount) / 2.0f;
float cylinderAirmass = airPerRevolution / halfCylCount;
//Create % load for fuel table using relative naturally aspiratedcylinder filling
float airChargeLoad = 100 * cylinderAirmass / ENGINE(standardAirCharge);
//Correct air mass by VE table
float corrCylAirmass = cylinderAirmass * veMap.getValue(rpm, airChargeLoad) / 100;
float fuelMassGram = corrCylAirmass / afrMap.getValue(rpm, airSpeed);
float pulseWidthSeconds = fuelMassGram / cc_minute_to_gramm_second(engineConfiguration->injector.flow);
// Convert to ms
return 1000 * pulseWidthSeconds;
}
/**
* per-cylinder fuel amount
* todo: rename this method since it's now base+TPSaccel
*/
floatms_t getBaseFuel(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
ScopePerf perf(PE::GetBaseFuel);
floatms_t tpsAccelEnrich = ENGINE(tpsAccelEnrichment.getTpsEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE));
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(tpsAccelEnrich), "NaN tpsAccelEnrich", 0);
ENGINE(engineState.tpsAccelEnrich) = tpsAccelEnrich;
floatms_t baseFuel;
if (CONFIG(fuelAlgorithm) == LM_SPEED_DENSITY) {
baseFuel = getSpeedDensityFuel(getMap(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN sd baseFuel", 0);
} else if (engineConfiguration->fuelAlgorithm == LM_REAL_MAF) {
float maf = getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE) + engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE);
baseFuel = getRealMafFuel(maf, rpm PASS_ENGINE_PARAMETER_SUFFIX);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN rm baseFuel", 0);
} else {
baseFuel = engine->engineState.baseTableFuel;
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN bt baseFuel", 0);
}
engine->engineState.baseFuel = baseFuel;
return tpsAccelEnrich + baseFuel;
}
angle_t getInjectionOffset(float rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (cisnan(rpm)) {
return 0; // error already reported
}
float engineLoad = getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE);
if (cisnan(engineLoad)) {
return 0; // error already reported
}
angle_t value = fuelPhaseMap.getValue(rpm, engineLoad);
if (cisnan(value)) {
// we could be here while resetting configuration for example
warning(CUSTOM_ERR_6569, "phase map not ready");
return 0;
}
angle_t result = value + CONFIG(extraInjectionOffset);
fixAngle(result, "inj offset#2", CUSTOM_ERR_6553);
return result;
}
/**
* Number of injections using each injector per engine cycle
* @see getNumberOfSparks
*/
int getNumberOfInjections(injection_mode_e mode DECLARE_ENGINE_PARAMETER_SUFFIX) {
switch (mode) {
case IM_SIMULTANEOUS:
case IM_SINGLE_POINT:
return engineConfiguration->specs.cylindersCount;
case IM_BATCH:
return 2;
case IM_SEQUENTIAL:
return 1;
default:
firmwareError(CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode);
return 1;
}
}
/**
* This is more like MOSFET duty cycle since durations include injector lag
* @see getCoilDutyCycle
*/
percent_t getInjectorDutyCycle(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
floatms_t totalInjectiorAmountPerCycle = ENGINE(injectionDuration) * getNumberOfInjections(engineConfiguration->injectionMode PASS_ENGINE_PARAMETER_SUFFIX);
floatms_t engineCycleDuration = getEngineCycleDuration(rpm PASS_ENGINE_PARAMETER_SUFFIX);
return 100 * totalInjectiorAmountPerCycle / engineCycleDuration;
}
/**
* @returns Length of each individual fuel injection, in milliseconds
* in case of single point injection mode the amount of fuel into all cylinders, otherwise the amount for one cylinder
*/
floatms_t getInjectionDuration(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
ScopePerf perf(PE::GetInjectionDuration);
#if EFI_SHAFT_POSITION_INPUT
bool isCranking = ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE);
injection_mode_e mode = isCranking ?
engineConfiguration->crankingInjectionMode :
engineConfiguration->injectionMode;
int numberOfInjections = getNumberOfInjections(mode PASS_ENGINE_PARAMETER_SUFFIX);
if (numberOfInjections == 0) {
warning(CUSTOM_CONFIG_NOT_READY, "config not ready");
return 0; // we can end up here during configuration reset
}
floatms_t fuelPerCycle;
if (isCranking) {
fuelPerCycle = getCrankingFuel(PASS_ENGINE_PARAMETER_SIGNATURE);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(fuelPerCycle), "NaN cranking fuelPerCycle", 0);
} else {
floatms_t baseFuel = getBaseFuel(rpm PASS_ENGINE_PARAMETER_SUFFIX);
fuelPerCycle = getRunningFuel(baseFuel PASS_ENGINE_PARAMETER_SUFFIX);
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(fuelPerCycle), "NaN fuelPerCycle", 0);
#if EFI_PRINTF_FUEL_DETAILS
printf("baseFuel=%.2f fuelPerCycle=%.2f \t\n",
baseFuel, fuelPerCycle);
#endif /*EFI_PRINTF_FUEL_DETAILS */
}
if (mode == IM_SINGLE_POINT) {
// here we convert per-cylinder fuel amount into total engine amount since the single injector serves all cylinders
fuelPerCycle *= engineConfiguration->specs.cylindersCount;
}
// Fuel cut-off isn't just 0 or 1, it can be tapered
fuelPerCycle *= ENGINE(engineState.fuelCutoffCorrection);
// If no fuel, don't add injector lag
if (fuelPerCycle == 0.0f)
return 0;
floatms_t theoreticalInjectionLength = fuelPerCycle / numberOfInjections;
floatms_t injectorLag = ENGINE(engineState.running.injectorLag);
if (cisnan(injectorLag)) {
warning(CUSTOM_ERR_INJECTOR_LAG, "injectorLag not ready");
return 0; // we can end up here during configuration reset
}
return theoreticalInjectionLength * engineConfiguration->globalFuelCorrection + injectorLag;
#else
return 0;
#endif
}
/**
* @brief Injector lag correction
* @param vBatt Battery voltage.
* @return Time in ms for injection opening time based on current battery voltage
*/
floatms_t getInjectorLag(float vBatt DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (cisnan(vBatt)) {
warning(OBD_System_Voltage_Malfunction, "vBatt=%.2f", vBatt);
return 0;
}
return interpolate2d("lag", vBatt, engineConfiguration->injector.battLagCorrBins, engineConfiguration->injector.battLagCorr);
}
/**
* @brief Initialize fuel map data structure
* @note this method has nothing to do with fuel map VALUES - it's job
* is to prepare the fuel map data structure for 3d interpolation
*/
void initFuelMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
fuelMap.init(config->fuelTable, config->fuelLoadBins, config->fuelRpmBins);
#if (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT)
fuelPhaseMap.init(config->injectionPhase, config->injPhaseLoadBins, config->injPhaseRpmBins);
#endif /* (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) */
}
/**
* @brief Engine warm-up fuel correction.
*/
float getCltFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
const auto [valid, clt] = Sensor::get(SensorType::Clt);
if (!valid)
return 1; // this error should be already reported somewhere else, let's just handle it
return interpolate2d("cltf", clt, config->cltFuelCorrBins, config->cltFuelCorr);
}
angle_t getCltTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
const auto [valid, clt] = Sensor::get(SensorType::Clt);
if (!valid)
return 0; // this error should be already reported somewhere else, let's just handle it
return interpolate2d("timc", clt, engineConfiguration->cltTimingBins, engineConfiguration->cltTimingExtra);
}
float getIatFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
const auto [valid, iat] = Sensor::get(SensorType::Iat);
if (!valid)
return 1; // this error should be already reported somewhere else, let's just handle it
return interpolate2d("iatc", iat, config->iatFuelCorrBins, config->iatFuelCorr);
}
/**
* @brief Called from EngineState::periodicFastCallback to update the state.
* @note The returned value is float, not boolean - to implement taper (smoothed correction).
* @return Fuel duration correction for fuel cut-off control (ex. if coasting). No correction if 1.0
*/
float getFuelCutOffCorrection(efitick_t nowNt, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
// no corrections by default
float fuelCorr = 1.0f;
// coasting fuel cut-off correction
if (CONFIG(coastingFuelCutEnabled)) {
auto [tpsValid, tpsPos] = Sensor::get(SensorType::Tps1);
if (!tpsValid) {
return 1.0f;
}
const auto [cltValid, clt] = Sensor::get(SensorType::Clt);
if (!cltValid) {
return 1.0f;
}
float map = getMap(PASS_ENGINE_PARAMETER_SIGNATURE);
// gather events
bool mapDeactivate = (map >= CONFIG(coastingFuelCutMap));
bool tpsDeactivate = (tpsPos >= CONFIG(coastingFuelCutTps));
// If no CLT sensor (or broken), don't allow DFCO
bool cltDeactivate = clt < (float)CONFIG(coastingFuelCutClt);
bool rpmDeactivate = (rpm < CONFIG(coastingFuelCutRpmLow));
bool rpmActivate = (rpm > CONFIG(coastingFuelCutRpmHigh));
// state machine (coastingFuelCutStartTime is also used as a flag)
if (!mapDeactivate && !tpsDeactivate && !cltDeactivate && rpmActivate) {
ENGINE(engineState.coastingFuelCutStartTime) = nowNt;
} else if (mapDeactivate || tpsDeactivate || rpmDeactivate || cltDeactivate) {
ENGINE(engineState.coastingFuelCutStartTime) = 0;
}
// enable fuelcut?
if (ENGINE(engineState.coastingFuelCutStartTime) != 0) {
// todo: add taper - interpolate using (nowNt - coastingFuelCutStartTime)?
fuelCorr = 0.0f;
}
}
// todo: add other fuel cut-off checks here (possibly cutFuelOnHardLimit?)
return fuelCorr;
}
/**
* @return Fuel injection duration injection as specified in the fuel map, in milliseconds
*/
floatms_t getBaseTableFuel(int rpm, float engineLoad) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
if (cisnan(engineLoad)) {
warning(CUSTOM_NAN_ENGINE_LOAD_2, "NaN engine load");
return 0;
}
floatms_t result = fuelMap.getValue(rpm, engineLoad);
if (cisnan(result)) {
// result could be NaN in case of invalid table, like during initialization
result = 0;
warning(CUSTOM_ERR_FUEL_TABLE_NOT_READY, "baseFuel table not ready");
}
return result;
#else
return 0;
#endif
}
float getBaroCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (hasBaroSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) {
float correction = baroCorrMap.getValue(GET_RPM(), getBaroPressure(PASS_ENGINE_PARAMETER_SIGNATURE));
if (cisnan(correction) || correction < 0.01) {
warning(OBD_Barometric_Press_Circ_Range_Perf, "Invalid baro correction %f", correction);
return 1;
}
return correction;
} else {
return 1;
}
}
#if EFI_ENGINE_CONTROL
/**
* @return Duration of fuel injection while craning
*/
floatms_t getCrankingFuel(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return getCrankingFuel3(Sensor::get(SensorType::Clt).value_or(20),
engine->rpmCalculator.getRevolutionCounterSinceStart() PASS_ENGINE_PARAMETER_SUFFIX);
}
float getStandardAirCharge(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
float totalDisplacement = CONFIG(specs.displacement);
float cylDisplacement = totalDisplacement / CONFIG(specs.cylindersCount);
// Calculation of 100% VE air mass in g/cyl - 1 cylinder filling at 1.204/L - air density at 20C
return cylDisplacement * 1.204f;
}
#endif
float getFuelRate(floatms_t totalInjDuration, efitick_t timePeriod DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (timePeriod <= 0.0f)
return 0.0f;
float timePeriodMs = (float)NT2US(timePeriod) / 1000.0f;
float fuelRate = totalInjDuration / timePeriodMs;
const float cc_min_to_L_h = 60.0f / 1000.0f;
return fuelRate * CONFIG(injector.flow) * cc_min_to_L_h;
}
#endif