rusefi/firmware/init/sensor/init_tps.cpp

261 lines
8.3 KiB
C++

#include "pch.h"
#include "adc_subscription.h"
#include "functional_sensor.h"
#include "redundant_sensor.h"
#include "redundant_ford_tps.h"
#include "proxy_sensor.h"
#include "linear_func.h"
#include "tps.h"
#include "auto_generated_sensor.h"
#ifndef MAX_TPS_PPS_DISCREPANCY
#define MAX_TPS_PPS_DISCREPANCY 5.0f
#endif
struct TpsConfig {
adc_channel_e channel;
float closed;
float open;
float min;
float max;
};
class FuncSensPair {
public:
FuncSensPair(float divideInput, SensorType type)
: m_func(divideInput)
, m_sens(type, MS2NT(10))
{
m_sens.setFunction(m_func);
}
bool init(const TpsConfig& cfg) {
// If the configuration was invalid, don't continue to configure the sensor
if (!configure(cfg)) {
return false;
}
AdcSubscription::SubscribeSensor(m_sens, cfg.channel, 200);
return m_sens.Register();
}
void deinit() {
AdcSubscription::UnsubscribeSensor(m_sens);
}
SensorType type() const {
return m_sens.type();
}
const char* name() const {
return m_sens.getSensorName();
}
private:
bool configure(const TpsConfig& cfg) {
// Only configure if we have a channel
if (!isAdcChannelValid(cfg.channel)) {
#if EFI_UNIT_TEST
printf("Configured NO hardware %s\n", name());
#endif
return false;
}
float scaledClosed = cfg.closed / m_func.getDivideInput();
float scaledOpen = cfg.open / m_func.getDivideInput();
float split = absF(scaledOpen - scaledClosed);
// If the voltage for closed vs. open is very near, something is wrong with your calibration
if (split < 0.5f) {
firmwareError(OBD_TPS_Configuration, "\"%s\" problem: open %.2f/closed %.2f cal values are too close together. Check your calibration and wiring!", name(),
cfg.open,
cfg.closed);
return false;
}
m_func.configure(
cfg.closed, 0,
cfg.open, 100,
cfg.min, cfg.max
);
#if EFI_UNIT_TEST
printf("Configured YES %s\n", name());
#endif
return true;
}
LinearFunc m_func;
FunctionalSensor m_sens;
};
struct RedundantPair {
public:
RedundantPair(FuncSensPair& pri, FuncSensPair& sec, SensorType outputType)
: m_pri(pri)
, m_sec(sec)
, m_redund(outputType, m_pri.type(), m_sec.type())
{
}
void init(bool isFordTps, RedundantFordTps* fordTps, float secondaryMaximum, const TpsConfig& primary, const TpsConfig& secondary) {
bool hasFirst = m_pri.init(primary);
if (!hasFirst) {
// no input if we have no first channel
return;
}
{
// Check that the primary and secondary aren't too close together - if so, the user may have done
// an unsafe thing where they wired a single sensor to both inputs. Don't do that!
bool hasBothSensors = isAdcChannelValid(primary.channel) && isAdcChannelValid(secondary.channel);
bool tooCloseClosed = absF(primary.closed - secondary.closed) < 0.2f;
bool tooCloseOpen = absF(primary.open - secondary.open) < 0.2f;
if (hasBothSensors && tooCloseClosed && tooCloseOpen) {
firmwareError(OBD_TPS_Configuration, "Configuration for redundant pair %s/%s are too similar - did you wire one sensor to both inputs...?", m_pri.name(), m_sec.name());
return;
}
}
bool hasSecond = m_sec.init(secondary);
if (isFordTps && fordTps) {
// we have a secondary
fordTps->configure(MAX_TPS_PPS_DISCREPANCY, secondaryMaximum);
fordTps->Register();
} else {
// not ford TPS
m_redund.configure(MAX_TPS_PPS_DISCREPANCY, !hasSecond);
#if EFI_UNIT_TEST
printf("init m_redund.Register() %s\n", getSensorType(m_redund.type()));
#endif
m_redund.Register();
}
}
void deinit(bool isFordTps, RedundantFordTps* fordTps) {
m_pri.deinit();
m_sec.deinit();
if (isFordTps && fordTps) {
fordTps->unregister();
} else {
m_redund.unregister();
}
}
private:
FuncSensPair& m_pri;
FuncSensPair& m_sec;
RedundantSensor m_redund;
};
static FuncSensPair tps1p(TPS_TS_CONVERSION, SensorType::Tps1Primary);
static FuncSensPair tps1s(TPS_TS_CONVERSION, SensorType::Tps1Secondary);
static FuncSensPair tps2p(TPS_TS_CONVERSION, SensorType::Tps2Primary);
static FuncSensPair tps2s(TPS_TS_CONVERSION, SensorType::Tps2Secondary);
// Used in case of "normal", non-Ford ETB TPS
static RedundantPair analogTps1(tps1p, tps1s, SensorType::Tps1);
static RedundantPair tps2(tps2p, tps2s, SensorType::Tps2);
SentTps sentTps;
// Used only in case of weird Ford-style ETB TPS
static RedundantFordTps fordTps1(SensorType::Tps1, SensorType::Tps1Primary, SensorType::Tps1Secondary);
static RedundantFordTps fordTps2(SensorType::Tps2, SensorType::Tps2Primary, SensorType::Tps2Secondary);
static RedundantFordTps fordPps(SensorType::AcceleratorPedal, SensorType::AcceleratorPedalPrimary, SensorType::AcceleratorPedalSecondary);
// Pedal sensors and redundancy
static FuncSensPair pedalPrimary(1, SensorType::AcceleratorPedalPrimary);
static FuncSensPair pedalSecondary(1, SensorType::AcceleratorPedalSecondary);
static RedundantPair pedal(pedalPrimary, pedalSecondary, SensorType::AcceleratorPedal);
// This sensor indicates the driver's throttle intent - Pedal if we have one, TPS if not.
static ProxySensor driverIntent(SensorType::DriverThrottleIntent);
// These sensors are TPS-like, so handle them in here too
static FuncSensPair wastegate(PACK_MULT_VOLTAGE, SensorType::WastegatePosition);
static FuncSensPair idlePos(PACK_MULT_VOLTAGE, SensorType::IdlePosition);
bool isDigitalTps1() {
return isBrainPinValid(engineConfiguration->sentInputPins[0]) && engineConfiguration->sentEtbType != SentEtbType::NONE;
}
void initTps() {
efiAssertVoid(OBD_PCM_Processor_Fault, engineConfiguration != nullptr, "null engineConfiguration");
percent_t min = engineConfiguration->tpsErrorDetectionTooLow;
percent_t max = engineConfiguration->tpsErrorDetectionTooHigh;
if (!engineConfiguration->consumeObdSensors) {
bool isFordTps = engineConfiguration->useFordRedundantTps;
bool isFordPps = engineConfiguration->useFordRedundantPps;
float tpsSecondaryMaximum = engineConfiguration->tpsSecondaryMaximum;
if (tpsSecondaryMaximum < 20) {
// don't allow <20% split point
tpsSecondaryMaximum = 20;
}
if (isDigitalTps1()) {
sentTps.Register();
} else {
analogTps1.init(isFordTps, &fordTps1, tpsSecondaryMaximum,
{ engineConfiguration->tps1_1AdcChannel, (float)engineConfiguration->tpsMin, (float)engineConfiguration->tpsMax, min, max },
{ engineConfiguration->tps1_2AdcChannel, (float)engineConfiguration->tps1SecondaryMin, (float)engineConfiguration->tps1SecondaryMax, min, max }
);
}
tps2.init(isFordTps, &fordTps2, tpsSecondaryMaximum,
{ engineConfiguration->tps2_1AdcChannel, (float)engineConfiguration->tps2Min, (float)engineConfiguration->tps2Max, min, max },
{ engineConfiguration->tps2_2AdcChannel, (float)engineConfiguration->tps2SecondaryMin, (float)engineConfiguration->tps2SecondaryMax, min, max }
);
float ppsSecondaryMaximum = engineConfiguration->ppsSecondaryMaximum;
if (ppsSecondaryMaximum < 20) {
// don't allow <20% split point
ppsSecondaryMaximum = 20;
}
// Pedal sensors
pedal.init(isFordPps, &fordPps, ppsSecondaryMaximum,
{ engineConfiguration->throttlePedalPositionAdcChannel, engineConfiguration->throttlePedalUpVoltage, engineConfiguration->throttlePedalWOTVoltage, min, max },
{ engineConfiguration->throttlePedalPositionSecondAdcChannel, engineConfiguration->throttlePedalSecondaryUpVoltage, engineConfiguration->throttlePedalSecondaryWOTVoltage, min, max }
);
// TPS-like stuff that isn't actually a TPS
wastegate.init({ engineConfiguration->wastegatePositionSensor, (float)engineConfiguration->wastegatePositionMin, (float)engineConfiguration->wastegatePositionMax, min, max });
idlePos.init({ engineConfiguration->idlePositionSensor, (float)engineConfiguration->idlePositionMin, (float)engineConfiguration->idlePositionMax, min, max });
}
// Route the pedal or TPS to driverIntent as appropriate
if (isAdcChannelValid(engineConfiguration->throttlePedalPositionAdcChannel)) {
driverIntent.setProxiedSensor(SensorType::AcceleratorPedal);
} else {
driverIntent.setProxiedSensor(SensorType::Tps1);
}
driverIntent.Register();
}
void deinitTps() {
bool isFordTps = activeConfiguration.useFordRedundantTps;
bool isFordPps = activeConfiguration.useFordRedundantPps;
analogTps1.deinit(isFordTps, &fordTps1);
tps2.deinit(isFordTps, &fordTps2);
pedal.deinit(isFordTps, &fordPps);
sentTps.unregister();
wastegate.deinit();
idlePos.deinit();
}