rusefi/firmware/controllers/system/efi_gpio.cpp

529 lines
16 KiB
C++

/**
* @file efi_gpio.cpp
* @brief EFI-related GPIO code
*
* @date Sep 26, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#include "engine.h"
#include "efi_gpio.h"
#include "drivers/gpio/gpio_ext.h"
#include "perf_trace.h"
#if EFI_GPIO_HARDWARE
#include "pin_repository.h"
#include "io_pins.h"
#endif /* EFI_GPIO_HARDWARE */
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle.h"
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
EXTERN_ENGINE;
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
extern WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
// todo: clean this mess, this should become 'static'/private
EnginePins enginePins;
static Logging* logger;
pin_output_mode_e DEFAULT_OUTPUT = OM_DEFAULT;
static const char *sparkNames[] = { "coil1", "coil2", "coil3", "coil4", "coil5", "coil6", "coil7", "coil8",
"coil9", "coil10", "coil11", "coil12"};
// these short names are part of engine sniffer protocol
static const char *sparkShortNames[] = { PROTOCOL_COIL1_SHORT_NAME, "c2", "c3", "c4", "c5", "c6", "c7", "c8",
"c9", "cA", "cB", "cD"};
static const char *injectorNames[] = { "injector1", "injector2", "injector3", "injector4", "injector5", "injector6",
"injector7", "injector8", "injector9", "injector10", "injector11", "injector12"};
static const char *injectorShortNames[] = { PROTOCOL_INJ1_SHORT_NAME, "i2", "i3", "i4", "i5", "i6", "i7", "i8",
"j9", "iA", "iB", "iC"};
static const char *auxValveShortNames[] = { "a1", "a2"};
EnginePins::EnginePins() {
dizzyOutput.name = PROTOCOL_DIZZY_NAME;
tachOut.name = PROTOCOL_TACH_NAME;
static_assert(efi::size(sparkNames) >= IGNITION_PIN_COUNT, "Too many ignition pins");
for (int i = 0; i < IGNITION_PIN_COUNT;i++) {
enginePins.coils[i].name = sparkNames[i];
enginePins.coils[i].shortName = sparkShortNames[i];
}
static_assert(efi::size(injectorNames) >= INJECTION_PIN_COUNT, "Too many injection pins");
for (int i = 0; i < INJECTION_PIN_COUNT;i++) {
enginePins.injectors[i].injectorIndex = i;
enginePins.injectors[i].name = injectorNames[i];
enginePins.injectors[i].shortName = injectorShortNames[i];
}
static_assert(efi::size(auxValveShortNames) >= AUX_DIGITAL_VALVE_COUNT, "Too many aux valve pins");
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) {
enginePins.auxValve[i].name = auxValveShortNames[i];
}
}
/**
* Sets the value of the pin. On this layer the value is assigned as is, without any conversion.
*/
#if EFI_PROD_CODE
#define setPinValue(outputPin, electricalValue, logicValue) \
{ \
if ((outputPin)->currentLogicValue != (logicValue)) { \
palWritePad((outputPin)->port, (outputPin)->pin, (electricalValue)); \
(outputPin)->currentLogicValue = (logicValue); \
} \
}
#define unregisterOutputIfPinChanged(output, pin) { \
if (isConfigurationChanged(pin)) { \
(output).unregisterOutput(activeConfiguration.pin); \
} \
}
#define unregisterOutputIfPinOrModeChanged(output, pin, mode) { \
if (isPinOrModeChanged(pin, mode)) { \
(output).unregisterOutput(activeConfiguration.pin); \
} \
}
#else /* EFI_PROD_CODE */
#define setPinValue(outputPin, electricalValue, logicValue) \
{ \
if ((outputPin)->currentLogicValue != (logicValue)) { \
(outputPin)->currentLogicValue = (logicValue); \
} \
}
#endif /* EFI_PROD_CODE */
bool EnginePins::stopPins() {
bool result = false;
for (int i = 0; i < IGNITION_PIN_COUNT; i++) {
result |= coils[i].stop();
}
for (int i = 0; i < INJECTION_PIN_COUNT; i++) {
result |= injectors[i].stop();
}
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) {
result |= auxValve[i].stop();
}
return result;
}
void EnginePins::unregisterPins() {
#if EFI_ELECTRONIC_THROTTLE_BODY
unregisterEtbPins();
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_PROD_CODE
unregisterOutputIfPinOrModeChanged(fuelPumpRelay, fuelPumpPin, fuelPumpPinMode);
unregisterOutputIfPinOrModeChanged(fanRelay, fanPin, fanPinMode);
unregisterOutputIfPinOrModeChanged(acRelay, acRelayPin, acRelayPinMode);
unregisterOutputIfPinOrModeChanged(hipCs, hip9011CsPin, hip9011CsPinMode);
unregisterOutputIfPinOrModeChanged(triggerDecoderErrorPin, triggerErrorPin, triggerErrorPinMode);
unregisterOutputIfPinOrModeChanged(checkEnginePin, malfunctionIndicatorPin, malfunctionIndicatorPinMode);
unregisterOutputIfPinOrModeChanged(dizzyOutput, dizzySparkOutputPin, dizzySparkOutputPinMode);
unregisterOutputIfPinOrModeChanged(tachOut, tachOutputPin, tachOutputPinMode);
unregisterOutputIfPinOrModeChanged(idleSolenoidPin, idle.solenoidPin, idle.solenoidPinMode);
unregisterOutputIfPinOrModeChanged(secondIdleSolenoidPin, secondSolenoidPin, idle.solenoidPinMode);
unregisterOutputIfPinChanged(sdCsPin, sdCardCsPin);
unregisterOutputIfPinChanged(accelerometerCs, LIS302DLCsPin);
for (int i = 0;i < FSIO_COMMAND_COUNT;i++) {
unregisterOutputIfPinChanged(fsioOutputs[i], fsioOutputPins[i]);
}
unregisterOutputIfPinOrModeChanged(boostPin, boostControlPin, boostControlPinMode);
unregisterOutputIfPinOrModeChanged(alternatorPin, alternatorControlPin, alternatorControlPinMode);
unregisterOutputIfPinOrModeChanged(mainRelay, mainRelayPin, mainRelayPinMode);
unregisterOutputIfPinOrModeChanged(starterRelayDisable, starterRelayDisablePin, starterRelayDisableMode);
unregisterOutputIfPinChanged(starterControl, starterControlPin);
#endif /* EFI_PROD_CODE */
}
void EnginePins::startPins() {
startInjectionPins();
startIgnitionPins();
startAuxValves();
}
void EnginePins::reset() {
for (int i = 0; i < INJECTION_PIN_COUNT;i++) {
injectors[i].reset();
}
for (int i = 0; i < IGNITION_PIN_COUNT;i++) {
coils[i].reset();
}
}
void EnginePins::stopIgnitionPins(void) {
#if EFI_PROD_CODE
for (int i = 0; i < IGNITION_PIN_COUNT; i++) {
unregisterOutputIfPinOrModeChanged(enginePins.coils[i], ignitionPins[i], ignitionPinMode);
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::stopInjectionPins(void) {
#if EFI_PROD_CODE
for (int i = 0; i < INJECTION_PIN_COUNT; i++) {
unregisterOutputIfPinOrModeChanged(enginePins.injectors[i], injectionPins[i], injectionPinMode);
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::startAuxValves(void) {
#if EFI_PROD_CODE
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) {
NamedOutputPin *output = &enginePins.auxValve[i];
output->initPin(output->name, engineConfiguration->auxValves[i]);
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::startIgnitionPins(void) {
#if EFI_PROD_CODE
for (int i = 0; i < engineConfiguration->specs.cylindersCount; i++) {
NamedOutputPin *output = &enginePins.coils[i];
if (isPinOrModeChanged(ignitionPins[i], ignitionPinMode)) {
output->initPin(output->name, CONFIG(ignitionPins)[i], &CONFIG(ignitionPinMode));
}
}
if (isPinOrModeChanged(dizzySparkOutputPin, dizzySparkOutputPinMode)) {
enginePins.dizzyOutput.initPin("dizzy tach", engineConfiguration->dizzySparkOutputPin,
&engineConfiguration->dizzySparkOutputPinMode);
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::startInjectionPins(void) {
#if EFI_PROD_CODE
// todo: should we move this code closer to the injection logic?
for (int i = 0; i < engineConfiguration->specs.cylindersCount; i++) {
NamedOutputPin *output = &enginePins.injectors[i];
if (isPinOrModeChanged(injectionPins[i], injectionPinMode)) {
output->initPin(output->name, CONFIG(injectionPins)[i],
&CONFIG(injectionPinMode));
}
}
#endif /* EFI_PROD_CODE */
}
NamedOutputPin::NamedOutputPin() : OutputPin() {
name = NULL;
}
const char *NamedOutputPin::getName() const {
return name;
}
const char *NamedOutputPin::getShortName() const {
return shortName == NULL ? name : shortName;
}
NamedOutputPin::NamedOutputPin(const char *name) : OutputPin() {
this->name = name;
}
void NamedOutputPin::setHigh() {
#if EFI_DEFAILED_LOGGING
// signal->hi_time = hTimeNow();
#endif /* EFI_DEFAILED_LOGGING */
// turn the output level ACTIVE
setValue(true);
#if EFI_ENGINE_SNIFFER
addEngineSnifferEvent(getShortName(), PROTOCOL_ES_UP);
#endif /* EFI_ENGINE_SNIFFER */
}
void NamedOutputPin::setLow() {
// turn off the output
setValue(false);
#if EFI_DEFAILED_LOGGING
// systime_t after = getTimeNowUs();
// debugInt(&signal->logging, "a_time", after - signal->hi_time);
// scheduleLogging(&signal->logging);
#endif /* EFI_DEFAILED_LOGGING */
#if EFI_ENGINE_SNIFFER
addEngineSnifferEvent(getShortName(), PROTOCOL_ES_DOWN);
#endif /* EFI_ENGINE_SNIFFER */
}
InjectorOutputPin::InjectorOutputPin() : NamedOutputPin() {
reset();
injectorIndex = -1;
}
bool NamedOutputPin::stop() {
#if EFI_GPIO_HARDWARE
if (isInitialized() && getLogicValue()) {
setValue(false);
scheduleMsg(logger, "turning off %s", name);
return true;
}
#endif /* EFI_GPIO_HARDWARE */
return false;
}
void InjectorOutputPin::reset() {
overlappingCounter = 0;
// todo: this could be refactored by calling some super-reset method
currentLogicValue = INITIAL_PIN_STATE;
}
IgnitionOutputPin::IgnitionOutputPin() {
reset();
}
void IgnitionOutputPin::reset() {
outOfOrder = false;
signalFallSparkId = 0;
}
OutputPin::OutputPin() {
modePtr = &DEFAULT_OUTPUT;
#if EFI_GPIO_HARDWARE
port = NULL;
pin = 0;
#endif /* EFI_GPIO_HARDWARE */
currentLogicValue = INITIAL_PIN_STATE;
}
bool OutputPin::isInitialized() {
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
#if (BOARD_EXT_GPIOCHIPS > 0)
if (ext)
return true;
#endif /* (BOARD_EXT_GPIOCHIPS > 0) */
return port != NULL;
#else /* EFI_GPIO_HARDWARE */
return true;
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::toggle() {
setValue(!getLogicValue());
}
void OutputPin::setValue(int logicValue) {
ScopePerf perf(PE::OutputPinSetValue);
#if EFI_PROD_CODE
efiAssertVoid(CUSTOM_ERR_6621, modePtr!=NULL, "pin mode not initialized");
pin_output_mode_e mode = *modePtr;
efiAssertVoid(CUSTOM_ERR_6622, mode <= OM_OPENDRAIN_INVERTED, "invalid pin_output_mode_e");
int eValue = getElectricalValue(logicValue, mode);
#if (BOARD_EXT_GPIOCHIPS > 0)
if (!this->ext) {
/* onchip pin */
if (port != GPIO_NULL) {
setPinValue(this, eValue, logicValue);
}
} else {
/* external pin */
gpiochips_writePad(this->brainPin, logicValue);
/* TODO: check return value */
currentLogicValue = logicValue;
}
#else
if (port != GPIO_NULL) {
setPinValue(this, eValue, logicValue);
}
#endif
#else /* EFI_PROD_CODE */
setPinValue(this, eValue, logicValue);
#endif /* EFI_PROD_CODE */
}
bool OutputPin::getLogicValue() const {
return currentLogicValue;
}
void OutputPin::setDefaultPinState(const pin_output_mode_e *outputMode) {
pin_output_mode_e mode = *outputMode;
/* may be*/UNUSED(mode);
assertOMode(mode);
this->modePtr = outputMode;
setValue(false); // initial state
}
void initOutputPins(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_GPIO_HARDWARE
/**
* want to make sure it's all zeros so that we can compare in initOutputPinExt() method
*/
// todo: it's too late to clear now? this breaks default status LEDs
// todo: fix this?
// memset(&outputs, 0, sizeof(outputs));
#if HAL_USE_SPI
enginePins.sdCsPin.initPin("spi CS5", CONFIG(sdCardCsPin));
#endif /* HAL_USE_SPI */
// todo: should we move this code closer to the fuel pump logic?
enginePins.fuelPumpRelay.initPin("fuel pump relay", CONFIG(fuelPumpPin), &CONFIG(fuelPumpPinMode));
enginePins.mainRelay.initPin("main relay", CONFIG(mainRelayPin), &CONFIG(mainRelayPinMode));
enginePins.starterRelayDisable.initPin("starter disable", CONFIG(starterRelayDisablePin), &CONFIG(starterRelayDisableMode));
enginePins.starterControl.initPin("starter control", CONFIG(starterControlPin));
enginePins.fanRelay.initPin("fan relay", CONFIG(fanPin), &CONFIG(fanPinMode));
enginePins.o2heater.initPin("o2 heater", CONFIG(o2heaterPin));
enginePins.acRelay.initPin("A/C relay", CONFIG(acRelayPin), &CONFIG(acRelayPinMode));
// digit 1
/*
ledRegister(LED_HUGE_0, GPIOB, 2);
ledRegister(LED_HUGE_1, GPIOE, 7);
ledRegister(LED_HUGE_2, GPIOE, 8);
ledRegister(LED_HUGE_3, GPIOE, 9);
ledRegister(LED_HUGE_4, GPIOE, 10);
ledRegister(LED_HUGE_5, GPIOE, 11);
ledRegister(LED_HUGE_6, GPIOE, 12);
// digit 2
ledRegister(LED_HUGE_7, GPIOE, 13);
ledRegister(LED_HUGE_8, GPIOE, 14);
ledRegister(LED_HUGE_9, GPIOE, 15);
ledRegister(LED_HUGE_10, GPIOB, 10);
ledRegister(LED_HUGE_11, GPIOB, 11);
ledRegister(LED_HUGE_12, GPIOB, 12);
ledRegister(LED_HUGE_13, GPIOB, 13);
// digit 3
ledRegister(LED_HUGE_14, GPIOE, 0);
ledRegister(LED_HUGE_15, GPIOE, 2);
ledRegister(LED_HUGE_16, GPIOE, 4);
ledRegister(LED_HUGE_17, GPIOE, 6);
ledRegister(LED_HUGE_18, GPIOE, 5);
ledRegister(LED_HUGE_19, GPIOE, 3);
ledRegister(LED_HUGE_20, GPIOE, 1);
*/
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::initPin(const char *msg, brain_pin_e brainPin) {
initPin(msg, brainPin, &DEFAULT_OUTPUT);
}
void OutputPin::initPin(const char *msg, brain_pin_e brainPin, const pin_output_mode_e *outputMode) {
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
if (brainPin == GPIO_UNASSIGNED)
return;
if (*outputMode > OM_OPENDRAIN_INVERTED) {
firmwareError(CUSTOM_INVALID_MODE_SETTING, "%s invalid pin_output_mode_e", msg);
return;
}
iomode_t mode = (*outputMode == OM_DEFAULT || *outputMode == OM_INVERTED) ?
PAL_MODE_OUTPUT_PUSHPULL : PAL_MODE_OUTPUT_OPENDRAIN;
#if (BOARD_EXT_GPIOCHIPS > 0)
this->ext = false;
#endif
if (brain_pin_is_onchip(brainPin)) {
ioportid_t port = getHwPort(msg, brainPin);
int pin = getHwPin(msg, brainPin);
/**
* This method is used for digital GPIO pins only, for peripheral pins see mySetPadMode
*/
if (port == GPIO_NULL) {
// that's for GRIO_NONE
this->port = port;
return;
}
/**
* @brief Initialize the hardware output pin while also assigning it a logical name
*/
if (this->port != NULL && (this->port != port || this->pin != pin)) {
/**
* here we check if another physical pin is already assigned to this logical output
*/
// todo: need to clear '&outputs' in io_pins.c
warning(CUSTOM_OBD_PIN_CONFLICT, "outputPin [%s] already assigned to %x%d", msg, this->port, this->pin);
engine->withError = true;
return;
}
this->port = port;
this->pin = pin;
}
#if (BOARD_EXT_GPIOCHIPS > 0)
else {
this->ext = true;
this->brainPin = brainPin;
}
#endif
this->currentLogicValue = INITIAL_PIN_STATE;
// The order of the next two calls may look strange, which is a good observation.
// We call them in this order so that the pin is set to a known state BEFORE
// it's enabled. Enabling the pin then setting it could result in a (brief)
// mystery state being driven on the pin (potentially dangerous).
setDefaultPinState(outputMode);
efiSetPadMode(msg, brainPin, mode);
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::unregisterOutput(brain_pin_e oldPin) {
if (oldPin != GPIO_UNASSIGNED) {
scheduleMsg(logger, "unregistering %s", hwPortname(oldPin));
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
brain_pin_markUnused(oldPin);
port = nullptr;
#endif /* EFI_GPIO_HARDWARE */
}
}
#if EFI_GPIO_HARDWARE
// questionable trick: we avoid using 'getHwPort' and 'getHwPin' in case of errors in order to increase the changes of turning the LED
// by reducing stack requirement
ioportid_t errorLedPort;
ioportmask_t errorLedPin;
void initPrimaryPins(Logging *sharedLogger) {
logger = sharedLogger;
#if EFI_PROD_CODE
enginePins.errorLedPin.initPin("led: ERROR status", LED_ERROR_BRAIN_PIN);
errorLedPort = getHwPort("primary", LED_ERROR_BRAIN_PIN);
errorLedPin = getHwPin("primary", LED_ERROR_BRAIN_PIN);
#endif /* EFI_PROD_CODE */
}
/**
* This method is part of fatal error handling.
* Please note that worst case scenario the pins might get re-enabled by some other code :(
* The whole method is pretty naive, but that's at least something.
*/
void turnAllPinsOff(void) {
for (int i = 0; i < INJECTION_PIN_COUNT; i++) {
enginePins.injectors[i].setValue(false);
}
for (int i = 0; i < IGNITION_PIN_COUNT; i++) {
enginePins.coils[i].setValue(false);
}
}
#endif /* EFI_GPIO_HARDWARE */