rusefi/firmware/hw_layer/trigger_input_adc.cpp

431 lines
14 KiB
C++

/**
* @file trigger_input_adc.cpp
* @brief Position sensor hardware layer, Using ADC and software comparator
*
* @date Jan 27, 2020
* @author andreika <prometheus.pcb@gmail.com>
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#if (EFI_SHAFT_POSITION_INPUT && HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || defined(__DOXYGEN__)
#include "trigger_input.h"
#include "digital_input_exti.h"
#include "adc_inputs.h"
//!!!!!!!!!!!!!!!
extern "C" void toggleLed(int led, int mode);
#define BOARD_MOD1_PORT GPIOD
#define BOARD_MOD1_PIN 5
#if 0
static volatile int centeredDacValue = 127;
static volatile int toothCnt = 0;
static volatile int dacHysteresisMin = 1; // = 5V * 1/256 (8-bit DAC) = ~20mV
static volatile int dacHysteresisMax = 15; // = ~300mV
static volatile int dacHysteresisDelta = dacHysteresisMin;
static volatile int hystUpdatePeriodNumEvents = 116; // every ~1 turn of 60-2 wheel
static volatile efitick_t prevNt = 0;
// VR-sensor saturation stuff
static volatile float curVrFreqNt = 0, saturatedVrFreqNt = 0;
#endif
static const adcsample_t adcDefaultThreshold = (ADC_MAX_VALUE / 2);
static const adcsample_t adcMinThreshold = adcDefaultThreshold - 200;
static const adcsample_t adcMaxThreshold = adcDefaultThreshold + 200;
static float triggerAdcITermCoef = 1600.0f;
static float triggerAdcITermMin = 3.125e-8f; // corresponds to rpm=25
static int transitionCooldown = 5;
#define DELTA_THRESHOLD_CNT_LOW (GPT_FREQ_FAST / GPT_PERIOD_FAST / 32) // ~1/32 second?
#define DELTA_THRESHOLD_CNT_HIGH (GPT_FREQ_FAST / GPT_PERIOD_FAST / 4) // ~1/4 second?
/*static */triggerAdcMode_t curAdcMode = TRIGGER_NONE;
/*static*/ float adcThreshold = adcDefaultThreshold;
static float triggerAdcITerm = triggerAdcITermMin;
// these thresholds allow to switch from ADC mode (low-rpm) to EXTI mode (fast-rpm), indicating the clamping of the signal
static adcsample_t switchingThresholdLow = 0, switchingThresholdHigh = 0;
static efitick_t minDeltaTimeForStableAdcDetectionNt = 0;
static efitick_t stampCorrectionForAdc = 0;
static int switchingCnt = 0, switchingTeethCnt = 0;
static int prevValue = 0; // not set
static efitick_t prevStamp = 0;
// we need to distinguish between weak and strong signals because of different SNR and thresholds.
static bool isSignalWeak = true;
static int zeroThreshold = 0;
// the 'center' of the signal is variable, so we need to adjust the thresholds.
static int minDeltaThresholdWeakSignal = 0, minDeltaThresholdStrongSignal = 0;
// this is the number of measurements while we store the counter before we reset to 'isSignalWeak'
static int minDeltaThresholdCntPos = 0, minDeltaThresholdCntNeg = 0;
static int integralSum = 0;
static int transitionCooldownCnt = 0;
// used for fast pin mode switching between ADC and EXTINT
static ioportid_t triggerInputPort;
static ioportmask_t triggerInputPin;
#if 0
// We want to interpolate between min and max depending on the signal level (adaptive hysteresis).
// But we don't want to measure the signal amplitude directly, so we estimate it by measuring the signal frequency:
// for VR sensors, the amplitude is inversely proportional to the tooth's 'time-width'.
// We find it by dividing the total time by the teeth count, and use the reciprocal value as signal frequency!
static void setHysteresis(int sign) {
// update the hysteresis threshold, but not for every tooth
#ifdef EFI_TRIGGER_COMP_ADAPTIVE_HYSTERESIS
if (toothCnt++ > hystUpdatePeriodNumEvents) {
efitick_t nowNt = getTimeNowNt();
curVrFreqNt = (float)toothCnt / (float)(nowNt - prevNt);
dacHysteresisDelta = (int)efiRound(interpolateClamped(0.0f, dacHysteresisMin, saturatedVrFreqNt, dacHysteresisMax, curVrFreqNt), 1.0f);
toothCnt = 0;
prevNt = nowNt;
#ifdef TRIGGER_COMP_EXTREME_LOGGING
efiPrintf("* f=%f d=%d", curVrFreqNt * 1000.0f, dacHysteresisDelta);
#endif /* TRIGGER_COMP_EXTREME_LOGGING */
}
#endif /* EFI_TRIGGER_COMP_ADAPTIVE_HYSTERESIS */
//comp_lld_set_dac_value(comp, centeredDacValue + dacHysteresisDelta * sign);
}
#endif
static void setTriggerAdcMode(triggerAdcMode_t adcMode) {
palSetPadMode(triggerInputPort, triggerInputPin,
(adcMode == TRIGGER_ADC) ? PAL_MODE_INPUT_ANALOG : PAL_MODE_ALTERNATE(PAL_MODE_ALTERNATIVE_EXTINT));
curAdcMode = adcMode;
}
static void onTriggerChanged(efitick_t stamp, bool isPrimary, bool isRising) {
//!!!!!!!!!
palWritePad(BOARD_MOD1_PORT, BOARD_MOD1_PIN, isRising ? 1 : 0);
//toggleLed(2, (curAdcMode == TRIGGER_ADC) ? 0 : -1);
//toggleLed(3, (curAdcMode == TRIGGER_EXTI) ? 0 : -1);
#if 1
// todo: support for 3rd trigger input channel
// todo: start using real event time from HW event, not just software timer?
// call the main trigger handler
hwHandleShaftSignal(isPrimary ? 0 : 1, isRising, stamp);
#endif
}
static void shaft_callback(void *arg) {
if (curAdcMode != TRIGGER_EXTI) {
return;
}
// do the time sensitive things as early as possible!
efitick_t stamp = getTimeNowNt();
ioline_t pal_line = (ioline_t)arg;
bool rise = (palReadLine(pal_line) == PAL_HIGH);
onTriggerChanged(stamp, true, rise);
if ((stamp - prevStamp) > minDeltaTimeForStableAdcDetectionNt) {
switchingCnt++;
} else {
switchingCnt = 0;
switchingTeethCnt = 0;
}
if (switchingCnt > 4) {
switchingCnt = 0;
// we need at least 3 wide teeth to be certain!
// we don't want to confuse them with a sync.gap
if (switchingTeethCnt++ > 3) {
switchingTeethCnt = 0;
prevValue = rise ? 1: -1;
setTriggerAdcMode(TRIGGER_ADC);
}
}
prevStamp = stamp;
}
static void cam_callback(void *) {
}
// todo: add cam support?
#if 0
static void comp_cam_callback(COMPDriver *comp) {
efitick_t stamp = getTimeNowNt();
if (isRising) {
hwHandleVvtCamSignal(TV_RISE, stamp);
} else {
hwHandleVvtCamSignal(TV_FALL, stamp);
}
}
#endif
void turnOnTriggerInputPins() {
applyNewTriggerInputPins();
}
#if 0
static int getDacValue(uint8_t voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
constexpr float maxDacValue = 255.0f; // 8-bit DAC
return (int)efiRound(maxDacValue * (float)voltage * VOLTAGE_1_BYTE_PACKING_DIV / CONFIG(adcVcc), 1.0f);
}
#endif
static void resetTriggerDetector() {
// todo: move some of these to config
// we need to make at least minNumAdcMeasurementsPerTooth for 1 tooth (i.e. between two consequent events)
const int minNumAdcMeasurementsPerTooth = 20;
minDeltaTimeForStableAdcDetectionNt = US2NT(US_PER_SECOND_LL * minNumAdcMeasurementsPerTooth * GPT_PERIOD_FAST / GPT_FREQ_FAST);
// we assume that the transition occurs somewhere in the middle of the measurement period, so we take the half of it
stampCorrectionForAdc = US2NT(US_PER_SECOND_LL * GPT_PERIOD_FAST / GPT_FREQ_FAST / 2);
// these thresholds allow to switch from ADC mode to EXTI mode, indicating the clamping of the signal
switchingThresholdLow = voltsToAdc(1.0f);
switchingThresholdHigh = voltsToAdc(4.0f);
switchingCnt = 0;
switchingTeethCnt = 0;
// used to filter out low signals
minDeltaThresholdWeakSignal = voltsToAdc(0.05f); // 50mV
// we need to shift the default threshold even for strong signals because of the possible loss of the first tooth (after the sync)
minDeltaThresholdStrongSignal = voltsToAdc(0.04f); // 5mV
// when the strong signal becomes weak, we want to ignore the increased noise
// so we create a dead-zone between the pos. and neg. thresholds
zeroThreshold = minDeltaThresholdWeakSignal / 2;
triggerAdcITerm = triggerAdcITermMin;
adcThreshold = adcDefaultThreshold;
isSignalWeak = true;
integralSum = 0;
transitionCooldownCnt = 0;
prevValue = 0; // not set
prevStamp = 0;
minDeltaThresholdCntPos = 0;
minDeltaThresholdCntNeg = 0;
}
static int turnOnTriggerInputPin(const char *msg, int index, bool isTriggerShaft) {
brain_pin_e brainPin = isTriggerShaft ?
CONFIG(triggerInputPins)[index] : engineConfiguration->camInputs[index];
if (!isBrainPinValid(brainPin))
return 0;
#if 0
centeredDacValue = getDacValue(CONFIG(triggerCompCenterVolt) PASS_ENGINE_PARAMETER_SUFFIX); // usually 2.5V resistor divider
dacHysteresisMin = getDacValue(CONFIG(triggerCompHystMin) PASS_ENGINE_PARAMETER_SUFFIX); // usually ~20mV
dacHysteresisMax = getDacValue(CONFIG(triggerCompHystMax) PASS_ENGINE_PARAMETER_SUFFIX); // usually ~300mV
dacHysteresisDelta = dacHysteresisMin;
// 20 rpm (60_2) = 1000*60/((2*60)*20) = 25 ms for 1 tooth event
float satRpm = CONFIG(triggerCompSensorSatRpm) * RPM_1_BYTE_PACKING_MULT;
hystUpdatePeriodNumEvents = ENGINE(triggerCentral.triggerShape).getSize(); // = 116 for "60-2" trigger wheel
float saturatedToothDurationUs = 60.0f * US_PER_SECOND_F / satRpm / hystUpdatePeriodNumEvents;
saturatedVrFreqNt = 1.0f / US2NT(saturatedToothDurationUs);
efiPrintf("startTIPins(): cDac=%d hystMin=%d hystMax=%d satRpm=%.0f satFreq*1k=%f period=%d",
centeredDacValue, dacHysteresisMin, dacHysteresisMax, satRpm, saturatedVrFreqNt * 1000.0f, hystUpdatePeriodNumEvents);
#endif
resetTriggerDetector();
triggerInputPort = getHwPort("trg", brainPin);
triggerInputPin = getHwPin("trg", brainPin);
ioline_t pal_line = PAL_LINE(triggerInputPort, triggerInputPin);
efiPrintf("turnOnTriggerInputPin %s l=%d", hwPortname(brainPin), pal_line);
efiExtiEnablePin(msg, brainPin, PAL_EVENT_MODE_BOTH_EDGES, isTriggerShaft ? shaft_callback : cam_callback, (void *)pal_line);
// ADC mode is default, because we don't know if the wheel is already spinning
setTriggerAdcMode(TRIGGER_ADC);
return 0;
}
void startTriggerInputPins(void) {
for (int i = 0; i < TRIGGER_SUPPORTED_CHANNELS; i++) {
if (isConfigurationChanged(triggerInputPins[i])) {
const char * msg = (i == 0 ? "trigger#1" : (i == 1 ? "trigger#2" : "trigger#3"));
turnOnTriggerInputPin(msg, i, true);
}
}
}
void stopTriggerInputPins(void) {
efiPrintf("stopTIPins();");
#if 0
for (int i = 0; i < TRIGGER_SUPPORTED_CHANNELS; i++) {
if (isConfigurationChanged(bc.triggerInputPins[i])) {
turnOffTriggerInputPin(activeConfiguration.bc.triggerInputPins[i]);
}
}
if (isConfigurationChanged(camInput)) {
turnOffTriggerInputPin(activeConfiguration.camInput);
}
#endif
}
adc_channel_e getAdcChannelForTrigger(void) {
// todo: add other trigger or cam channels?
brain_pin_e brainPin = CONFIG(triggerInputPins)[0];
if (!isBrainPinValid(brainPin))
return EFI_ADC_NONE;
return getAdcChannel(brainPin);
}
void addAdcChannelForTrigger(void) {
adc_channel_e ch = getAdcChannelForTrigger();
if (isAdcChannelValid(ch)) {
addChannel("TRIG", ch, ADC_FAST);
}
}
void triggerAdcCallback(adcsample_t value) {
if (curAdcMode != TRIGGER_ADC) {
return;
}
efitick_t stamp = getTimeNowNt();
// <1V or >4V?
if (value >= switchingThresholdHigh || value <= switchingThresholdLow) {
switchingCnt++;
} else {
switchingCnt = 0;
switchingTeethCnt = 0;
}
int delta = value - adcThreshold;
int aDelta = absI(delta);
if (isSignalWeak) {
// todo: detect if the sensor is disconnected (where the signal is always near 'ADC_MAX_VALUE')
// filter out low signals (noise)
if (delta >= minDeltaThresholdWeakSignal) {
minDeltaThresholdCntPos++;
}
if (delta <= -minDeltaThresholdWeakSignal) {
minDeltaThresholdCntNeg++;
}
} else {
// we just had a strong signal, let's reset the counter
if (delta >= minDeltaThresholdWeakSignal) {
minDeltaThresholdCntPos = DELTA_THRESHOLD_CNT_HIGH;
}
if (delta <= -minDeltaThresholdWeakSignal) {
minDeltaThresholdCntNeg = DELTA_THRESHOLD_CNT_HIGH;
}
minDeltaThresholdCntPos--;
minDeltaThresholdCntNeg--;
// we haven't seen the strong signal (pos or neg) for too long, maybe it's lost or too weak?
if (minDeltaThresholdCntPos <= 0 || minDeltaThresholdCntNeg <= 0) {
// reset to the weak signal mode
resetTriggerDetector();
return;
}
}
// the threshold should always correspond to the averaged signal.
integralSum += delta;
// we need some limits for the integral sum
// we use a simple I-regulator to move the threshold
adcThreshold += (float)integralSum * triggerAdcITerm;
// limit the threshold for safety
adcThreshold = maxF(minF(adcThreshold, adcMaxThreshold), adcMinThreshold);
// now to the transition part... First, we need a cooldown to pre-filter the transition noise
if (transitionCooldownCnt-- < 0)
transitionCooldownCnt = 0;
// we need at least 2 different measurements to detect a transition
if (prevValue == 0) {
// we can take the measurement only from outside the dead-zone
if (aDelta > minDeltaThresholdWeakSignal) {
prevValue = (delta > 0) ? 1 : -1;
} else {
return;
}
}
// detect the edge
int transition = 0;
if (delta > zeroThreshold && prevValue == -1) {
// a rising transition found!
transition = 1;
}
else if (delta <= -zeroThreshold && prevValue == 1) {
// a falling transition found!
transition = -1;
}
else {
//!!!!!!!!!!
//toggleLed(2, 0);
return; // both are positive/negative/zero: not interested!
}
//!!!!!!!!!!
//toggleLed(2, -1);
//!!!!!!!!!!
//toggleLed(3, 0);
if (isSignalWeak) {
if (minDeltaThresholdCntPos >= DELTA_THRESHOLD_CNT_LOW && minDeltaThresholdCntNeg >= DELTA_THRESHOLD_CNT_LOW) {
// ok, now we have a legit strong signal, let's restore the threshold
isSignalWeak = false;
integralSum = 0;
zeroThreshold = minDeltaThresholdStrongSignal;
} else {
// we cannot trust the weak signal!
return;
}
}
if (transitionCooldownCnt <= 0) {
onTriggerChanged(stamp - stampCorrectionForAdc, true, transition == 1);
// let's skip some nearest possible measurements:
// the transition cannot be SO fast, but the jitter can!
transitionCooldownCnt = transitionCooldown;
// it should not accumulate too much
integralSum = 0;
// update triggerAdcITerm
efitime_t deltaTimeUs = NT2US(stamp - prevStamp);
if (deltaTimeUs > 200) { // 200 us = ~2500 RPM (we don't need this correction for large RPM)
triggerAdcITerm = 1.0f / (triggerAdcITermCoef * deltaTimeUs);
triggerAdcITerm = maxF(triggerAdcITerm, triggerAdcITermMin);
}
}
if (switchingCnt > 4) {
switchingCnt = 0;
// we need at least 3 high-signal teeth to be certain!
if (switchingTeethCnt++ > 3) {
switchingTeethCnt = 0;
setTriggerAdcMode(TRIGGER_EXTI);
// we don't want to loose the signal on return
minDeltaThresholdCntPos = DELTA_THRESHOLD_CNT_HIGH;
minDeltaThresholdCntNeg = DELTA_THRESHOLD_CNT_HIGH;
// we want to reset the thresholds on return
zeroThreshold = minDeltaThresholdStrongSignal;
adcThreshold = adcDefaultThreshold;
integralSum = 0;
transitionCooldownCnt = 0;
return;
}
}
prevValue = transition;
prevStamp = stamp;
}
#endif /* EFI_SHAFT_POSITION_INPUT && HAL_TRIGGER_USE_ADC && HAL_USE_ADC */