628 lines
22 KiB
C++
628 lines
22 KiB
C++
/*
|
|
* @file spark_logic.cpp
|
|
*
|
|
* @date Sep 15, 2016
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "spark_logic.h"
|
|
|
|
#include "utlist.h"
|
|
#include "event_queue.h"
|
|
|
|
#include "knock_logic.h"
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
|
|
#if EFI_UNIT_TEST
|
|
extern bool verboseMode;
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
#if EFI_PRINTF_FUEL_DETAILS || FUEL_MATH_EXTREME_LOGGING
|
|
extern bool printFuelDebug;
|
|
#endif // EFI_PRINTF_FUEL_DETAILS
|
|
|
|
static const char *prevSparkName = nullptr;
|
|
|
|
static void fireSparkBySettingPinLow(IgnitionEvent *event, IgnitionOutputPin *output) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("spark goes low revolution=%d [%s] %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->getName(), (int)getTimeNowUs(),
|
|
output->currentLogicValue, output->outOfOrder, event->sparkCounter);
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
/**
|
|
* there are two kinds of 'out-of-order'
|
|
* 1) low goes before high, everything is fine afterwards
|
|
*
|
|
* 2) we have an un-matched low followed by legit pairs
|
|
*/
|
|
|
|
output->signalFallSparkId = event->sparkCounter;
|
|
|
|
if (!output->currentLogicValue && !event->wasSparkLimited) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
printf("out-of-order coil off %s", output->getName());
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
warning(ObdCode::CUSTOM_OUT_OF_ORDER_COIL, "out-of-order coil off %s", output->getName());
|
|
// todo: drop this year 2016 outOfOrder in favor of 2024 [tag] #6349 handling?
|
|
output->outOfOrder = true;
|
|
}
|
|
output->setLow();
|
|
}
|
|
|
|
static void assertPinAssigned(IgnitionOutputPin* output) {
|
|
if (!output->isInitialized()) {
|
|
warning(ObdCode::CUSTOM_OBD_COIL_PIN_NOT_ASSIGNED, "Pin Not Assigned check configuration #%s", output->getName()); \
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param cylinderIndex from 0 to cylinderCount, not cylinder number
|
|
*/
|
|
static int getIgnitionPinForIndex(int cylinderIndex, ignition_mode_e ignitionMode) {
|
|
switch (ignitionMode) {
|
|
case IM_ONE_COIL:
|
|
return 0;
|
|
case IM_WASTED_SPARK: {
|
|
if (engineConfiguration->cylindersCount == 1) {
|
|
// we do not want to divide by zero
|
|
return 0;
|
|
}
|
|
return cylinderIndex % (engineConfiguration->cylindersCount / 2);
|
|
}
|
|
case IM_INDIVIDUAL_COILS:
|
|
return cylinderIndex;
|
|
case IM_TWO_COILS:
|
|
return cylinderIndex % 2;
|
|
|
|
default:
|
|
firmwareError(ObdCode::CUSTOM_OBD_IGNITION_MODE, "Invalid ignition mode getIgnitionPinForIndex(): %d", engineConfiguration->ignitionMode);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void prepareCylinderIgnitionSchedule(angle_t dwellAngleDuration, floatms_t sparkDwell, IgnitionEvent *event) {
|
|
// todo: clean up this implementation? does not look too nice as is.
|
|
|
|
// let's save planned duration so that we can later compare it with reality
|
|
event->sparkDwell = sparkDwell;
|
|
|
|
auto ignitionMode = getCurrentIgnitionMode();
|
|
const int index = getIgnitionPinForIndex(event->cylinderIndex, ignitionMode);
|
|
const int coilIndex = ID2INDEX(getFiringOrderCylinderId(index));
|
|
angle_t finalIgnitionTiming = getEngineState()->timingAdvance[coilIndex];
|
|
// Stash which cylinder we're scheduling so that knock sensing knows which
|
|
// cylinder just fired
|
|
event->coilIndex = coilIndex;
|
|
|
|
// 10 ATDC ends up as 710, convert it to -10 so we can log and clamp correctly
|
|
if (finalIgnitionTiming > 360) {
|
|
finalIgnitionTiming -= 720;
|
|
}
|
|
|
|
// Clamp the final ignition timing to the configured limits
|
|
// finalIgnitionTiming is deg BTDC
|
|
// minimumIgnitionTiming limits maximum retard
|
|
// maximumIgnitionTiming limits maximum advance
|
|
/*
|
|
https://github.com/rusefi/rusefi/issues/5894 disabling feature for now
|
|
finalIgnitionTiming = clampF(engineConfiguration->minimumIgnitionTiming, finalIgnitionTiming, engineConfiguration->maximumIgnitionTiming);
|
|
*/
|
|
|
|
engine->outputChannels.ignitionAdvanceCyl[event->cylinderIndex] = finalIgnitionTiming;
|
|
|
|
angle_t sparkAngle =
|
|
// Negate because timing *before* TDC, and we schedule *after* TDC
|
|
- finalIgnitionTiming
|
|
// Offset by this cylinder's position in the cycle
|
|
+ getPerCylinderFiringOrderOffset(event->cylinderIndex, coilIndex);
|
|
|
|
efiAssertVoid(ObdCode::CUSTOM_SPARK_ANGLE_1, !cisnan(sparkAngle), "sparkAngle#1");
|
|
wrapAngle(sparkAngle, "findAngle#2", ObdCode::CUSTOM_ERR_6550);
|
|
event->sparkAngle = sparkAngle;
|
|
|
|
engine->outputChannels.currentIgnitionMode = static_cast<uint8_t>(ignitionMode);
|
|
|
|
IgnitionOutputPin *output = &enginePins.coils[coilIndex];
|
|
event->outputs[0] = output;
|
|
IgnitionOutputPin *secondOutput;
|
|
|
|
// We need two outputs if:
|
|
// - we are running wasted spark, and have "two wire" mode enabled
|
|
// - We are running sequential mode, but we're cranking, so we should run in two wire wasted mode (not one wire wasted)
|
|
bool isTwoWireWasted = engineConfiguration->twoWireBatchIgnition || (engineConfiguration->ignitionMode == IM_INDIVIDUAL_COILS);
|
|
if (ignitionMode == IM_WASTED_SPARK && isTwoWireWasted) {
|
|
int secondIndex = index + engineConfiguration->cylindersCount / 2;
|
|
int secondCoilIndex = ID2INDEX(getFiringOrderCylinderId(secondIndex));
|
|
secondOutput = &enginePins.coils[secondCoilIndex];
|
|
assertPinAssigned(secondOutput);
|
|
} else {
|
|
secondOutput = nullptr;
|
|
}
|
|
|
|
assertPinAssigned(output);
|
|
|
|
event->outputs[1] = secondOutput;
|
|
|
|
|
|
angle_t dwellStartAngle = sparkAngle - dwellAngleDuration;
|
|
efiAssertVoid(ObdCode::CUSTOM_ERR_6590, !cisnan(dwellStartAngle), "findAngle#5");
|
|
|
|
assertAngleRange(dwellStartAngle, "findAngle dwellStartAngle", ObdCode::CUSTOM_ERR_6550);
|
|
wrapAngle(dwellStartAngle, "findAngle#7", ObdCode::CUSTOM_ERR_6550);
|
|
event->dwellAngle = dwellStartAngle;
|
|
|
|
#if FUEL_MATH_EXTREME_LOGGING
|
|
if (printFuelDebug) {
|
|
printf("addIgnitionEvent %s angle=%.1f\n", output->getName(), dwellStartAngle);
|
|
}
|
|
// efiPrintf("addIgnitionEvent %s ind=%d", output->name, event->dwellPosition->eventIndex);
|
|
#endif /* FUEL_MATH_EXTREME_LOGGING */
|
|
}
|
|
|
|
static void chargeTrailingSpark(IgnitionOutputPin* pin) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("chargeTrailingSpark %s", pin->getName());
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
pin->setHigh();
|
|
}
|
|
|
|
static void fireTrailingSpark(IgnitionOutputPin* pin) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("fireTrailingSpark %s", pin->getName());
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
pin->setLow();
|
|
}
|
|
|
|
static void overFireSparkAndPrepareNextSchedule(IgnitionEvent *event) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("overFireSparkAndPrepareNextSchedule %s", event->outputs[0]->getName());
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
engine->engineState.overDwellCounter++;
|
|
fireSparkAndPrepareNextSchedule(event);
|
|
}
|
|
|
|
void fireSparkAndPrepareNextSchedule(IgnitionEvent *event) {
|
|
#if EFI_UNIT_TEST
|
|
if (engine->onIgnitionEvent) {
|
|
engine->onIgnitionEvent(event, false);
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) {
|
|
IgnitionOutputPin *output = event->outputs[i];
|
|
|
|
if (output) {
|
|
fireSparkBySettingPinLow(event, output);
|
|
}
|
|
}
|
|
|
|
efitick_t nowNt = getTimeNowNt();
|
|
|
|
#if EFI_TOOTH_LOGGER
|
|
LogTriggerCoilState(nowNt, false);
|
|
#endif // EFI_TOOTH_LOGGER
|
|
|
|
#if !EFI_UNIT_TEST
|
|
if (engineConfiguration->debugMode == DBG_DWELL_METRIC) {
|
|
#if EFI_TUNER_STUDIO
|
|
uint32_t actualDwellDurationNt = getTimeNowLowerNt() - event->actualStartOfDwellNt;
|
|
/**
|
|
* ratio of desired dwell duration to actual dwell duration gives us some idea of how good is input trigger jitter
|
|
*/
|
|
float ratio = NT2US(actualDwellDurationNt) / 1000.0 / event->sparkDwell;
|
|
|
|
// todo: smarted solution for index to field mapping
|
|
switch (event->cylinderIndex) {
|
|
case 0:
|
|
engine->outputChannels.debugFloatField1 = ratio;
|
|
break;
|
|
case 1:
|
|
engine->outputChannels.debugFloatField2 = ratio;
|
|
break;
|
|
case 2:
|
|
engine->outputChannels.debugFloatField3 = ratio;
|
|
break;
|
|
case 3:
|
|
engine->outputChannels.debugFloatField4 = ratio;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
// now that we've just fired a coil let's prepare the new schedule for the next engine revolution
|
|
|
|
angle_t dwellAngleDuration = engine->ignitionState.dwellDurationAngle;
|
|
floatms_t sparkDwell = engine->ignitionState.sparkDwell;
|
|
if (cisnan(dwellAngleDuration) || cisnan(sparkDwell)) {
|
|
// we are here if engine has just stopped
|
|
return;
|
|
}
|
|
|
|
// If there are more sparks to fire, schedule them
|
|
if (event->sparksRemaining > 0) {
|
|
event->sparksRemaining--;
|
|
|
|
efitick_t nextDwellStart = nowNt + engine->engineState.multispark.delay;
|
|
efitick_t nextFiring = nextDwellStart + engine->engineState.multispark.dwell;
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("schedule multispark");
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
// We can schedule both of these right away, since we're going for "asap" not "particular angle"
|
|
engine->executor.scheduleByTimestampNt("dwell", &event->dwellStartTimer, nextDwellStart, { &turnSparkPinHighStartCharging, event });
|
|
engine->executor.scheduleByTimestampNt("firing", &event->sparkEvent.scheduling, nextFiring, { fireSparkAndPrepareNextSchedule, event });
|
|
} else {
|
|
if (engineConfiguration->enableTrailingSparks) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("scheduleByAngle TrailingSparks");
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
// Trailing sparks are enabled - schedule an event for the corresponding trailing coil
|
|
scheduleByAngle(
|
|
&event->trailingSparkFire, nowNt, engine->engineState.trailingSparkAngle,
|
|
{ &fireTrailingSpark, &enginePins.trailingCoils[event->coilIndex] }
|
|
);
|
|
}
|
|
|
|
// If all events have been scheduled, prepare for next time.
|
|
prepareCylinderIgnitionSchedule(dwellAngleDuration, sparkDwell, event);
|
|
}
|
|
|
|
engine->onSparkFireKnockSense(event->coilIndex, nowNt);
|
|
}
|
|
|
|
static bool startDwellByTurningSparkPinHigh(IgnitionEvent *event, IgnitionOutputPin *output) {
|
|
// todo: no reason for this to be disabled in unit_test mode?!
|
|
#if ! EFI_UNIT_TEST
|
|
|
|
if (Sensor::getOrZero(SensorType::Rpm) > 2 * engineConfiguration->cranking.rpm) {
|
|
const char *outputName = output->getName();
|
|
if (prevSparkName == outputName && getCurrentIgnitionMode() != IM_ONE_COIL) {
|
|
warning(ObdCode::CUSTOM_OBD_SKIPPED_SPARK, "looks like skipped spark event revolution=%d [%s]", getRevolutionCounter(), outputName);
|
|
}
|
|
prevSparkName = outputName;
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("spark goes high revolution=%d [%s] %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->getName(), (int)getTimeNowUs(),
|
|
output->currentLogicValue, output->outOfOrder, event->sparkCounter);
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
if (output->signalFallSparkId >= event->sparkCounter) {
|
|
/**
|
|
* fact: we schedule both start of dwell and spark firing using a combination of time and trigger event domain
|
|
* in case of bad/noisy signal we can get unexpected trigger events and a small time delay for spark firing before
|
|
* we even start dwell if it scheduled with a longer time-only delay with fewer trigger events
|
|
*
|
|
* here we are detecting such out-of-order processing and choose the safer route of not even starting dwell
|
|
* [tag] #6349
|
|
*/
|
|
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("[%s] bail spark dwell\n", output->getName());
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
// let's save this coil if things do not look right
|
|
engine->engineState.sparkOutOfOrderCounter++;
|
|
return true;
|
|
}
|
|
|
|
if (output->outOfOrder) {
|
|
output->outOfOrder = false;
|
|
if (output->signalFallSparkId == event->sparkCounter) {
|
|
// let's save this coil if things do not look right
|
|
engine->engineState.sparkOutOfOrderCounter++;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
output->setHigh();
|
|
return false;
|
|
}
|
|
|
|
void turnSparkPinHighStartCharging(IgnitionEvent *event) {
|
|
event->actualStartOfDwellNt = getTimeNowLowerNt();
|
|
|
|
efitick_t nowNt = getTimeNowNt();
|
|
|
|
bool skippedDwellDueToTriggerNoised = false;
|
|
for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) {
|
|
IgnitionOutputPin *output = event->outputs[i];
|
|
if (output != NULL) {
|
|
skippedDwellDueToTriggerNoised |= startDwellByTurningSparkPinHigh(event, output);
|
|
}
|
|
}
|
|
|
|
#if EFI_UNIT_TEST
|
|
event->bailedOnDwell = skippedDwellDueToTriggerNoised;
|
|
#endif
|
|
|
|
|
|
if (!skippedDwellDueToTriggerNoised) {
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (engine->onIgnitionEvent) {
|
|
engine->onIgnitionEvent(event, true);
|
|
}
|
|
#endif
|
|
|
|
#if EFI_TOOTH_LOGGER
|
|
LogTriggerCoilState(nowNt, true);
|
|
#endif // EFI_TOOTH_LOGGER
|
|
}
|
|
|
|
|
|
if (engineConfiguration->enableTrailingSparks) {
|
|
IgnitionOutputPin *output = &enginePins.trailingCoils[event->coilIndex];
|
|
// Trailing sparks are enabled - schedule an event for the corresponding trailing coil
|
|
scheduleByAngle(
|
|
&event->trailingSparkCharge, nowNt, engine->engineState.trailingSparkAngle,
|
|
{ &chargeTrailingSpark, output }
|
|
);
|
|
}
|
|
}
|
|
|
|
#if EFI_PROD_CODE
|
|
#define ENABLE_OVERDWELL_PROTECTION (true)
|
|
#else
|
|
#define ENABLE_OVERDWELL_PROTECTION (engine->enableOverdwellProtection)
|
|
#endif
|
|
|
|
static void scheduleSparkEvent(bool limitedSpark, IgnitionEvent *event,
|
|
int rpm, efitick_t edgeTimestamp, float currentPhase, float nextPhase) {
|
|
|
|
angle_t sparkAngle = event->sparkAngle;
|
|
const floatms_t dwellMs = engine->ignitionState.sparkDwell;
|
|
if (cisnan(dwellMs) || dwellMs <= 0) {
|
|
warning(ObdCode::CUSTOM_DWELL, "invalid dwell to handle: %.2f at %d", dwellMs, rpm);
|
|
return;
|
|
}
|
|
if (cisnan(sparkAngle)) {
|
|
warning(ObdCode::CUSTOM_ADVANCE_SPARK, "NaN advance");
|
|
return;
|
|
}
|
|
|
|
float angleOffset = event->dwellAngle - currentPhase;
|
|
if (angleOffset < 0) {
|
|
angleOffset += engine->engineState.engineCycle;
|
|
}
|
|
|
|
/**
|
|
* By the way 32-bit value should hold at least 400 hours of events at 6K RPM x 12 events per revolution
|
|
*/
|
|
event->sparkCounter = engine->engineState.globalSparkCounter++;
|
|
event->wasSparkLimited = limitedSpark;
|
|
|
|
efitick_t chargeTime = 0;
|
|
|
|
/**
|
|
* The start of charge is always within the current trigger event range, so just plain time-based scheduling
|
|
*/
|
|
if (!limitedSpark) {
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("scheduling sparkUp revolution=%d [%s] now=%d %d later id=%d", getRevolutionCounter(), event->getOutputForLoggins()->getName(), (int)getTimeNowUs(), (int)angleOffset,
|
|
event->sparkCounter);
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
|
|
/**
|
|
* Note how we do not check if spark is limited or not while scheduling 'spark down'
|
|
* This way we make sure that coil dwell started while spark was enabled would fire and not burn
|
|
* the coil.
|
|
*/
|
|
chargeTime = scheduleByAngle(&event->dwellStartTimer, edgeTimestamp, angleOffset, { &turnSparkPinHighStartCharging, event });
|
|
|
|
event->sparksRemaining = engine->engineState.multispark.count;
|
|
} else {
|
|
// don't fire multispark if spark is cut completely!
|
|
event->sparksRemaining = 0;
|
|
}
|
|
|
|
/**
|
|
* Spark event is often happening during a later trigger event timeframe
|
|
*/
|
|
|
|
efiAssertVoid(ObdCode::CUSTOM_ERR_6591, !cisnan(sparkAngle), "findAngle#4");
|
|
assertAngleRange(sparkAngle, "findAngle#a5", ObdCode::CUSTOM_ERR_6549);
|
|
|
|
bool isTimeScheduled = engine->module<TriggerScheduler>()->scheduleOrQueue(
|
|
"spark",
|
|
&event->sparkEvent, edgeTimestamp, sparkAngle,
|
|
{ fireSparkAndPrepareNextSchedule, event },
|
|
currentPhase, nextPhase);
|
|
|
|
if (isTimeScheduled) {
|
|
// event was scheduled by time, we expect it to happen reliably
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("scheduling sparkDown revolution=%d [%s] now=%d later id=%d", getRevolutionCounter(), event->getOutputForLoggins()->getName(), (int)getTimeNowUs(), event->sparkCounter);
|
|
#endif /* FUEL_MATH_EXTREME_LOGGING */
|
|
} else {
|
|
// event was queued in relation to some expected tooth event in the future which might just never come so we shall protect from over-dwell
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("to queue sparkDown revolution=%d [%s] now=%d for id=%d angle=%.1f", getRevolutionCounter(), event->getOutputForLoggins()->getName(), (int)getTimeNowUs(), event->sparkCounter, sparkAngle);
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
if (!limitedSpark && ENABLE_OVERDWELL_PROTECTION) {
|
|
// auto fire spark at 1.5x nominal dwell
|
|
efitick_t fireTime = chargeTime + MSF2NT(1.5f * dwellMs);
|
|
|
|
#if SPARK_EXTREME_LOGGING
|
|
efiPrintf("scheduling overdwell sparkDown revolution=%d [%s] for %d", getRevolutionCounter(), event->getOutputForLoggins()->getName(), fireTime);
|
|
#endif /* SPARK_EXTREME_LOGGING */
|
|
|
|
/**
|
|
* todo one: explicit unit test for this mechanism see https://github.com/rusefi/rusefi/issues/6373
|
|
* todo two: can we please comprehend/document how this even works? we seem to be reusing 'sparkEvent.scheduling' instance
|
|
* and it looks like current (smart?) re-queuing is effectively cancelling out the overdwell? is that the way this was intended to work?
|
|
*/
|
|
engine->executor.scheduleByTimestampNt("overdwell", &event->sparkEvent.scheduling, fireTime, { overFireSparkAndPrepareNextSchedule, event });
|
|
} else {
|
|
engine->engineState.overDwellNotScheduledCounter++;
|
|
}
|
|
}
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (verboseMode) {
|
|
printf("spark dwell@ %.1f spark@ %.2f id=%d sparkCounter=%d\r\n", event->dwellAngle,
|
|
event->sparkEvent.getAngle(),
|
|
event->coilIndex,
|
|
event->sparkCounter);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void initializeIgnitionActions() {
|
|
IgnitionEventList *list = &engine->ignitionEvents;
|
|
angle_t dwellAngle = engine->ignitionState.dwellDurationAngle;
|
|
floatms_t sparkDwell = engine->ignitionState.sparkDwell;
|
|
if (cisnan(engine->engineState.timingAdvance[0]) || cisnan(dwellAngle)) {
|
|
// error should already be reported
|
|
// need to invalidate previous ignition schedule
|
|
list->isReady = false;
|
|
return;
|
|
}
|
|
efiAssertVoid(ObdCode::CUSTOM_ERR_6592, engineConfiguration->cylindersCount > 0, "cylindersCount");
|
|
|
|
for (size_t cylinderIndex = 0; cylinderIndex < engineConfiguration->cylindersCount; cylinderIndex++) {
|
|
list->elements[cylinderIndex].cylinderIndex = cylinderIndex;
|
|
prepareCylinderIgnitionSchedule(dwellAngle, sparkDwell, &list->elements[cylinderIndex]);
|
|
}
|
|
list->isReady = true;
|
|
}
|
|
|
|
static void prepareIgnitionSchedule() {
|
|
ScopePerf perf(PE::PrepareIgnitionSchedule);
|
|
|
|
/**
|
|
* TODO: warning. there is a bit of a hack here, todo: improve.
|
|
* currently output signals/times dwellStartTimer from the previous revolutions could be
|
|
* still used because they have crossed the revolution boundary
|
|
* but we are already re-purposing the output signals, but everything works because we
|
|
* are not affecting that space in memory. todo: use two instances of 'ignitionSignals'
|
|
*/
|
|
operation_mode_e operationMode = getEngineRotationState()->getOperationMode();
|
|
float maxAllowedDwellAngle = (int) (getEngineCycle(operationMode) / 2); // the cast is about making Coverity happy
|
|
|
|
if (getCurrentIgnitionMode() == IM_ONE_COIL) {
|
|
maxAllowedDwellAngle = getEngineCycle(operationMode) / engineConfiguration->cylindersCount / 1.1;
|
|
}
|
|
|
|
if (engine->ignitionState.dwellDurationAngle == 0) {
|
|
warning(ObdCode::CUSTOM_ZERO_DWELL, "dwell is zero?");
|
|
}
|
|
if (engine->ignitionState.dwellDurationAngle > maxAllowedDwellAngle) {
|
|
warning(ObdCode::CUSTOM_DWELL_TOO_LONG, "dwell angle too long: %.2f", engine->ignitionState.dwellDurationAngle);
|
|
}
|
|
|
|
// todo: add some check for dwell overflow? like 4 times 6 ms while engine cycle is less then that
|
|
|
|
initializeIgnitionActions();
|
|
}
|
|
|
|
void onTriggerEventSparkLogic(int rpm, efitick_t edgeTimestamp, float currentPhase, float nextPhase) {
|
|
ScopePerf perf(PE::OnTriggerEventSparkLogic);
|
|
|
|
if (!isValidRpm(rpm) || !engineConfiguration->isIgnitionEnabled) {
|
|
// this might happen for instance in case of a single trigger event after a pause
|
|
return;
|
|
}
|
|
|
|
LimpState limitedSparkState = getLimpManager()->allowIgnition();
|
|
|
|
// todo: eliminate state copy logic by giving limpManager it's owm limp_manager.txt and leveraging LiveData
|
|
engine->outputChannels.sparkCutReason = (int8_t)limitedSparkState.reason;
|
|
bool limitedSpark = !limitedSparkState.value;
|
|
|
|
if (!engine->ignitionEvents.isReady) {
|
|
prepareIgnitionSchedule();
|
|
}
|
|
|
|
|
|
/**
|
|
* Ignition schedule is defined once per revolution
|
|
* See initializeIgnitionActions()
|
|
*/
|
|
|
|
|
|
// scheduleSimpleMsg(&logger, "eventId spark ", eventIndex);
|
|
if (engine->ignitionEvents.isReady) {
|
|
for (size_t i = 0; i < engineConfiguration->cylindersCount; i++) {
|
|
IgnitionEvent *event = &engine->ignitionEvents.elements[i];
|
|
|
|
if (!isPhaseInRange(event->dwellAngle, currentPhase, nextPhase)) {
|
|
continue;
|
|
}
|
|
|
|
if (i == 0 && engineConfiguration->artificialTestMisfire && (getRevolutionCounter() % ((int)engineConfiguration->scriptSetting[5]) == 0)) {
|
|
// artificial misfire on cylinder #1 for testing purposes
|
|
// enable artificialMisfire
|
|
// set_fsio_setting 6 20
|
|
warning(ObdCode::CUSTOM_ARTIFICIAL_MISFIRE, "artificial misfire on cylinder #1 for testing purposes %d", engine->engineState.globalSparkCounter);
|
|
continue;
|
|
}
|
|
#if EFI_LAUNCH_CONTROL
|
|
bool sparkLimited = engine->softSparkLimiter.shouldSkip() || engine->hardSparkLimiter.shouldSkip();
|
|
engine->ignitionState.luaIgnitionSkip = sparkLimited;
|
|
if (sparkLimited) {
|
|
continue;
|
|
}
|
|
#endif // EFI_LAUNCH_CONTROL
|
|
|
|
#if EFI_ANTILAG_SYSTEM && EFI_LAUNCH_CONTROL
|
|
if (engine->antilagController.isAntilagCondition) {
|
|
if (engine->ALSsoftSparkLimiter.shouldSkip()) {
|
|
continue;
|
|
}
|
|
}
|
|
float throttleIntent = Sensor::getOrZero(SensorType::DriverThrottleIntent);
|
|
engine->antilagController.timingALSSkip = interpolate3d(
|
|
config->ALSIgnSkipTable,
|
|
config->alsIgnSkipLoadBins, throttleIntent,
|
|
config->alsIgnSkiprpmBins, rpm
|
|
);
|
|
|
|
auto ALSSkipRatio = engine->antilagController.timingALSSkip;
|
|
engine->ALSsoftSparkLimiter.setTargetSkipRatio(ALSSkipRatio/100);
|
|
#endif // EFI_ANTILAG_SYSTEM
|
|
|
|
scheduleSparkEvent(limitedSpark, event, rpm, edgeTimestamp, currentPhase, nextPhase);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Number of sparks per physical coil
|
|
* @see getNumberOfInjections
|
|
*/
|
|
int getNumberOfSparks(ignition_mode_e mode) {
|
|
switch (mode) {
|
|
case IM_ONE_COIL:
|
|
return engineConfiguration->cylindersCount;
|
|
case IM_TWO_COILS:
|
|
return engineConfiguration->cylindersCount / 2;
|
|
case IM_INDIVIDUAL_COILS:
|
|
return 1;
|
|
case IM_WASTED_SPARK:
|
|
return 2;
|
|
default:
|
|
firmwareError(ObdCode::CUSTOM_ERR_IGNITION_MODE, "Unexpected ignition_mode_e %d", mode);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @see getInjectorDutyCycle
|
|
*/
|
|
percent_t getCoilDutyCycle(int rpm) {
|
|
floatms_t totalPerCycle = engine->ignitionState.sparkDwell * getNumberOfSparks(getCurrentIgnitionMode());
|
|
floatms_t engineCycleDuration = getCrankshaftRevolutionTimeMs(rpm) * (getEngineRotationState()->getOperationMode() == TWO_STROKE ? 1 : 2);
|
|
return 100 * totalPerCycle / engineCycleDuration;
|
|
}
|
|
|
|
#endif // EFI_ENGINE_CONTROL
|