rusefi/firmware/controllers/scheduling/single_timer_executor.cpp

182 lines
5.4 KiB
C++

/**
* @file SingleTimerExecutor.cpp
*
* This class combines the powers of a 1MHz hardware timer from microsecond_timer.cpp
* and pending events queue event_queue.cpp
*
* As of version 2.6.x, ChibiOS tick-based kernel is not capable of scheduling events
* with the level of precision we need, and realistically it should not.
*
* Update: actually newer ChibiOS has tickless mode and what we have here is pretty much the same thing :)
* open question if rusEfi should simply migrate to ChibiOS tickless scheduling (which would increase coupling with ChibiOS)
*
* See https://rusefi.com/forum/viewtopic.php?f=5&t=373&start=360#p30895
* for some performance data: with 'debug' firmware we spend about 5% of CPU in TIM5 handler which seem to be executed
* about 1500 times a second
*
* http://sourceforge.net/p/rusefi/tickets/24/
*
* @date: Apr 18, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*/
#include "global.h"
#include "os_access.h"
#include "single_timer_executor.h"
#include "efitime.h"
#if EFI_SIGNAL_EXECUTOR_ONE_TIMER
#include "microsecond_timer.h"
#include "tunerstudio_configuration.h"
#include "os_util.h"
#include "engine.h"
EXTERN_ENGINE;
extern schfunc_t globalTimerCallback;
//static int timerIsLate = 0;
//static efitime_t callbackTime = 0;
/**
* these fields are global in order to facilitate debugging
*/
static efitime_t nextEventTimeNt = 0;
uint32_t hwSetTimerDuration;
uint32_t lastExecutionCount;
static void executorCallback(void *arg) {
(void)arg;
efiAssertVoid(CUSTOM_ERR_6624, getCurrentRemainingStack() > 256, "lowstck#2y");
// callbackTime = getTimeNowNt();
// if((callbackTime > nextEventTimeNt) && (callbackTime - nextEventTimeNt > US2NT(5000))) {
// timerIsLate++;
// }
___engine.executor.onTimerCallback();
}
SingleTimerExecutor::SingleTimerExecutor() {
reentrantFlag = false;
doExecuteCounter = scheduleCounter = timerCallbackCounter = 0;
/**
* todo: a good comment
*/
queue.setLateDelay(US2NT(100));
}
void SingleTimerExecutor::scheduleForLater(scheduling_s *scheduling, int delayUs, schfunc_t callback, void *param) {
scheduleByTimestamp(scheduling, getTimeNowUs() + delayUs, callback, param);
}
/**
* @brief Schedule an event at specific delay after now
*
* Invokes event callback after the specified amount of time.
* callback would be executed either on ISR thread or current thread if we would need to execute right away
*
* @param [in, out] scheduling Data structure to keep this event in the collection.
* @param [in] delayUs the number of microseconds before the output signal immediate output if delay is zero.
* @param [in] dwell the number of ticks of output duration.
*/
void SingleTimerExecutor::scheduleByTimestamp(scheduling_s *scheduling, efitimeus_t timeUs, schfunc_t callback,
void *param) {
scheduleCounter++;
bool alreadyLocked = true;
if (!reentrantFlag) {
// this would guard the queue and disable interrupts
alreadyLocked = lockAnyContext();
}
bool needToResetTimer = queue.insertTask(scheduling, US2NT(timeUs), callback, param);
if (!reentrantFlag) {
doExecute();
if (needToResetTimer) {
scheduleTimerCallback();
}
if (!alreadyLocked)
unlockAnyContext();
}
}
void SingleTimerExecutor::onTimerCallback() {
timerCallbackCounter++;
bool alreadyLocked = lockAnyContext();
doExecute();
scheduleTimerCallback();
if (!alreadyLocked)
unlockAnyContext();
}
/*
* this private method is executed under lock
*/
void SingleTimerExecutor::doExecute() {
doExecuteCounter++;
/**
* Let's execute actions we should execute at this point.
* reentrantFlag takes care of the use case where the actions we are executing are scheduling
* further invocations
*/
reentrantFlag = true;
int shouldExecute = 1;
/**
* in real life it could be that while we executing listeners time passes and it's already time to execute
* next listeners.
* TODO: add a counter & figure out a limit of iterations?
*/
int totalExecuted = 0;
while (shouldExecute > 0) {
/**
* It's worth noting that that the actions might be adding new actions into the queue
*/
efitick_t nowNt = getTimeNowNt();
shouldExecute = queue.executeAll(nowNt);
totalExecuted += shouldExecute;
}
lastExecutionCount = totalExecuted;
if (!isLocked()) {
firmwareError(CUSTOM_ERR_LOCK_ISSUE, "Someone has stolen my lock");
return;
}
reentrantFlag = false;
}
/**
* This method is always invoked under a lock
*/
void SingleTimerExecutor::scheduleTimerCallback() {
/**
* Let's grab fresh time value
*/
efitick_t nowNt = getTimeNowNt();
nextEventTimeNt = queue.getNextEventTime(nowNt);
efiAssertVoid(CUSTOM_ERR_6625, nextEventTimeNt > nowNt, "setTimer constraint");
if (nextEventTimeNt == EMPTY_QUEUE)
return; // no pending events in the queue
int32_t hwAlarmTime = NT2US((int32_t)nextEventTimeNt - (int32_t)nowNt);
uint32_t beforeHwSetTimer = getTimeNowLowerNt();
setHardwareUsTimer(hwAlarmTime == 0 ? 1 : hwAlarmTime);
hwSetTimerDuration = getTimeNowLowerNt() - beforeHwSetTimer;
}
void initSingleTimerExecutorHardware(void) {
globalTimerCallback = executorCallback;
initMicrosecondTimer();
}
void executorStatistics() {
if (engineConfiguration->debugMode == DBG_EXECUTOR) {
#if EFI_TUNER_STUDIO && EFI_SIGNAL_EXECUTOR_ONE_TIMER
tsOutputChannels.debugIntField1 = ___engine.executor.timerCallbackCounter;
tsOutputChannels.debugIntField2 = ___engine.executor.doExecuteCounter;
tsOutputChannels.debugIntField3 = ___engine.executor.scheduleCounter;
#endif /* EFI_TUNER_STUDIO */
}
}
#endif /* EFI_SIGNAL_EXECUTOR_ONE_TIMER */