rusefi/firmware/controllers/core/fsio_impl.cpp

800 lines
26 KiB
C++

/**
* @file fsio_impl.cpp
* @brief FSIO as it's used for GPIO
*
* set debug_mode 23
* https://rusefi.com/wiki/index.php?title=Manual:Flexible_Logic
*
* 'fsioinfo' command in console shows current state of FSIO - formulas and current value
*
* @date Oct 5, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#include "fsio_impl.h"
#include "allsensors.h"
#include "sensor.h"
EXTERN_ENGINE;
#if EFI_PROD_CODE
// todo: that's about bench test mode, wrong header for sure!
#include "bench_test.h"
#endif // EFI_PROD_CODE
#if EFI_FSIO
#include "os_access.h"
#include "settings.h"
#include "rpm_calculator.h"
#include "efi_gpio.h"
#include "pwm_generator_logic.h"
/**
* in case of zero frequency pin is operating as simple on/off. '1' for ON and '0' for OFF
*
*/
#define NO_PWM 0
fsio8_Map3D_f32t fsioTable1("fsio#1");
fsio8_Map3D_u8t fsioTable2("fsio#2");
fsio8_Map3D_u8t fsioTable3("fsio#3");
fsio8_Map3D_u8t fsioTable4("fsio#4");
/**
* Here we define all rusEfi-specific methods
*/
static LENameOrdinalPair leRpm(LE_METHOD_RPM, "rpm");
static LENameOrdinalPair leTps(LE_METHOD_TPS, "tps");
static LENameOrdinalPair lePps(LE_METHOD_PPS, "pps");
static LENameOrdinalPair leMaf(LE_METHOD_MAF, "maf");
static LENameOrdinalPair leMap(LE_METHOD_MAP, "map");
static LENameOrdinalPair leVBatt(LE_METHOD_VBATT, "vbatt");
static LENameOrdinalPair leFan(LE_METHOD_FAN, "fan");
static LENameOrdinalPair leCoolant(LE_METHOD_COOLANT, "coolant");
static LENameOrdinalPair leIntakeTemp(LE_METHOD_INTAKE_AIR, "iat");
static LENameOrdinalPair leIsCoolantBroken(LE_METHOD_IS_COOLANT_BROKEN, "is_clt_broken");
// @returns boolean state of A/C toggle switch
static LENameOrdinalPair leAcToggle(LE_METHOD_AC_TOGGLE, "ac_on_switch");
// @returns float number of seconds since last A/C toggle
static LENameOrdinalPair leTimeSinceAcToggle(LE_METHOD_TIME_SINCE_AC_TOGGLE, "time_since_ac_on_switch");
static LENameOrdinalPair leTimeSinceBoot(LE_METHOD_TIME_SINCE_BOOT, "time_since_boot");
static LENameOrdinalPair leFsioSetting(LE_METHOD_FSIO_SETTING, FSIO_METHOD_FSIO_SETTING);
static LENameOrdinalPair leFsioTable(LE_METHOD_FSIO_TABLE, FSIO_METHOD_FSIO_TABLE);
static LENameOrdinalPair leFsioAnalogInput(LE_METHOD_FSIO_ANALOG_INPUT, FSIO_METHOD_FSIO_ANALOG_INPUT);
static LENameOrdinalPair leFsioDigitalInput(LE_METHOD_FSIO_DIGITAL_INPUT, FSIO_METHOD_FSIO_DIGITAL_INPUT);
static LENameOrdinalPair leKnock(LE_METHOD_KNOCK, "knock");
static LENameOrdinalPair leIntakeVVT(LE_METHOD_INTAKE_VVT, "ivvt");
static LENameOrdinalPair leExhaustVVT(LE_METHOD_EXHAUST_VVT, "evvt");
static LENameOrdinalPair leCrankingRpm(LE_METHOD_CRANKING_RPM, "cranking_rpm");
static LENameOrdinalPair leStartupFuelPumpDuration(LE_METHOD_STARTUP_FUEL_PUMP_DURATION, "startup_fuel_pump_duration");
static LENameOrdinalPair leInShutdown(LE_METHOD_IN_SHUTDOWN, "in_shutdown");
static LENameOrdinalPair leInMrBench(LE_METHOD_IN_MR_BENCH, "in_mr_bench");
static LENameOrdinalPair leTimeSinceTrigger(LE_METHOD_TIME_SINCE_TRIGGER_EVENT, "time_since_trigger");
#include "fsio_names.def"
#define LE_EVAL_POOL_SIZE 32
static LECalculator evalCalc;
static LEElement evalPoolElements[LE_EVAL_POOL_SIZE];
static LEElementPool evalPool(evalPoolElements, LE_EVAL_POOL_SIZE);
#define SYS_ELEMENT_POOL_SIZE 128
#define UD_ELEMENT_POOL_SIZE 128
static LEElement sysElements[SYS_ELEMENT_POOL_SIZE] CCM_OPTIONAL;
LEElementPool sysPool(sysElements, SYS_ELEMENT_POOL_SIZE);
static LEElement userElements[UD_ELEMENT_POOL_SIZE] CCM_OPTIONAL;
LEElementPool userPool(userElements, UD_ELEMENT_POOL_SIZE);
class FsioPointers {
public:
FsioPointers();
LEElement * fsioLogics[FSIO_COMMAND_COUNT];
};
FsioPointers::FsioPointers() : fsioLogics() {
}
static FsioPointers state;
static LEElement * acRelayLogic;
static LEElement * fuelPumpLogic;
static LEElement * radiatorFanLogic;
static LEElement * alternatorLogic;
static LEElement * starterRelayDisableLogic;
#if EFI_MAIN_RELAY_CONTROL
static LEElement * mainRelayLogic;
#endif /* EFI_MAIN_RELAY_CONTROL */
static Logging *logger;
#if EFI_PROD_CODE || EFI_SIMULATOR
FsioResult getEngineValue(le_action_e action DECLARE_ENGINE_PARAMETER_SUFFIX) {
efiAssert(CUSTOM_ERR_ASSERT, engine!=NULL, "getLEValue", unexpected);
switch (action) {
case LE_METHOD_FAN:
return enginePins.fanRelay.getLogicValue();
case LE_METHOD_TIME_SINCE_AC_TOGGLE:
return (getTimeNowUs() - engine->acSwitchLastChangeTime) / US_PER_SECOND_F;
case LE_METHOD_AC_TOGGLE:
return getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_COOLANT:
return Sensor::get(SensorType::Clt).value_or(0);
case LE_METHOD_IS_COOLANT_BROKEN:
return !Sensor::get(SensorType::Clt).Valid;
case LE_METHOD_INTAKE_AIR:
return Sensor::get(SensorType::Iat).value_or(0);
case LE_METHOD_RPM:
return Sensor::get(SensorType::Rpm).value_or(0);
case LE_METHOD_MAF:
return getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_MAP:
return Sensor::get(SensorType::Map).value_or(0);
#if EFI_SHAFT_POSITION_INPUT
case LE_METHOD_INTAKE_VVT:
return engine->triggerCentral.getVVTPosition(0, 0);
case LE_METHOD_EXHAUST_VVT:
return engine->triggerCentral.getVVTPosition(0, 1);
#endif
case LE_METHOD_TIME_SINCE_TRIGGER_EVENT:
return engine->triggerCentral.getTimeSinceTriggerEvent(getTimeNowNt());
case LE_METHOD_TIME_SINCE_BOOT:
#if EFI_MAIN_RELAY_CONTROL
// in main relay control mode, we return the number of seconds since the ignition is turned on
// (or negative if the ignition key is switched off)
return engine->getTimeIgnitionSeconds();
#else
return getTimeNowSeconds();
#endif /* EFI_MAIN_RELAY_CONTROL */
case LE_METHOD_STARTUP_FUEL_PUMP_DURATION:
return engineConfiguration->startUpFuelPumpDuration;
case LE_METHOD_CRANKING_RPM:
return engineConfiguration->cranking.rpm;
case LE_METHOD_IN_SHUTDOWN:
return engine->isInShutdownMode();
case LE_METHOD_IN_MR_BENCH:
return engine->isInMainRelayBench();
case LE_METHOD_VBATT:
return Sensor::get(SensorType::BatteryVoltage).value_or(0);
case LE_METHOD_TPS:
return Sensor::get(SensorType::DriverThrottleIntent).value_or(0);
// cfg_xxx references are code generated
#include "fsio_getters.def"
default:
warning(CUSTOM_FSIO_UNEXPECTED, "FSIO ERROR no data for action=%d", action);
return unexpected;
}
}
#if EFI_PROD_CODE
#include "pin_repository.h"
#include "pwm_generator_logic.h"
static void setFsioAnalogInputPin(const char *indexStr, const char *pinName) {
// todo: reduce code duplication between all "set pin methods"
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_ANALOG_INPUT_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
engineConfiguration->fsioAdc[index] = (adc_channel_e) pin;
scheduleMsg(logger, "FSIO analog input pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void setFsioDigitalInputPin(const char *indexStr, const char *pinName) {
// todo: reduce code duplication between all "set pin methods"
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
CONFIG(fsioDigitalInputs)[index] = pin;
scheduleMsg(logger, "FSIO digital input pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void setFsioPidOutputPin(const char *indexStr, const char *pinName) {
int index = atoi(indexStr) - 1;
if (index < 0 || index >= CAM_INPUTS_COUNT) {
scheduleMsg(logger, "invalid VVT index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
engineConfiguration->auxPidPins[index] = pin;
scheduleMsg(logger, "VVT pid pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void showFsioInfo(void);
static void setFsioOutputPin(const char *indexStr, const char *pinName) {
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
CONFIG(fsioOutputPins)[index] = pin;
scheduleMsg(logger, "FSIO output pin #%d [%s]", (index + 1), hwPortname(pin));
scheduleMsg(logger, "please writeconfig and reboot for pin to take effect");
showFsioInfo();
}
#endif /* EFI_PROD_CODE */
#endif
/**
* index is between zero and LE_COMMAND_LENGTH-1
*/
void setFsioExt(int index, brain_pin_e pin, const char * formula, int pwmFrequency DECLARE_CONFIG_PARAMETER_SUFFIX) {
CONFIG(fsioOutputPins)[index] = pin;
int len = strlen(formula);
if (len >= LE_COMMAND_LENGTH) {
return;
}
strcpy(config->fsioFormulas[index], formula);
CONFIG(fsioFrequency)[index] = pwmFrequency;
}
void setFsio(int index, brain_pin_e pin, const char * exp DECLARE_CONFIG_PARAMETER_SUFFIX) {
setFsioExt(index, pin, exp, NO_PWM PASS_CONFIG_PARAMETER_SUFFIX);
}
void applyFsioConfiguration(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
userPool.reset();
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
const char *formula = config->fsioFormulas[i];
int len = strlen(formula);
LEElement *logic = userPool.parseExpression(formula);
if (len > 0 && logic == NULL) {
warning(CUSTOM_FSIO_PARSING, "parsing [%s]", formula);
}
state.fsioLogics[i] = logic;
}
}
void onConfigurationChangeFsioCallback(engine_configuration_s *previousConfiguration DECLARE_ENGINE_PARAMETER_SUFFIX) {
(void)previousConfiguration;
#if EFI_FSIO
applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
}
static LECalculator calc;
static SimplePwm fsioPwm[FSIO_COMMAND_COUNT] CCM_OPTIONAL;
// that's crazy, but what's an alternative? we need const char *, a shared buffer would not work for pin repository
static const char *getGpioPinName(int index) {
switch (index) {
case 0:
return "FSIO_OUT_0";
case 1:
return "FSIO_OUT_1";
case 10:
return "FSIO_OUT_10";
case 11:
return "FSIO_OUT_11";
case 12:
return "FSIO_OUT_12";
case 13:
return "FSIO_OUT_13";
case 14:
return "FSIO_OUT_14";
case 15:
return "FSIO_OUT_15";
case 2:
return "FSIO_OUT_2";
case 3:
return "FSIO_OUT_3";
case 4:
return "FSIO_OUT_4";
case 5:
return "FSIO_OUT_5";
case 6:
return "FSIO_OUT_6";
case 7:
return "FSIO_OUT_7";
case 8:
return "FSIO_OUT_8";
case 9:
return "FSIO_OUT_9";
}
return NULL;
}
float getFsioOutputValue(int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (state.fsioLogics[index] == NULL) {
warning(CUSTOM_NO_FSIO, "no FSIO for #%d %s", index + 1, hwPortname(CONFIG(fsioOutputPins)[index]));
return NAN;
} else {
return calc.evaluate(engine->fsioState.fsioLastValue[index], state.fsioLogics[index] PASS_ENGINE_PARAMETER_SUFFIX);
}
}
/**
* @param index from zero for (FSIO_COMMAND_COUNT - 1)
*/
static void runFsioCalculation(int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (strlen(config->fsioFormulas[index]) == 0) {
engine->fsioState.fsioLastValue[index] = NAN;
return;
}
bool isPwmMode = CONFIG(fsioFrequency)[index] != NO_PWM;
float fvalue = getFsioOutputValue(index PASS_ENGINE_PARAMETER_SUFFIX);
engine->fsioState.fsioLastValue[index] = fvalue;
if (isPwmMode) {
fsioPwm[index].setSimplePwmDutyCycle(fvalue);
} else {
int value = (int) fvalue;
if (value != enginePins.fsioOutputs[index].getLogicValue()) {
// scheduleMsg(logger, "setting %s %s", getIo_pin_e(pin), boolToString(value));
enginePins.fsioOutputs[index].setValue(value);
}
}
}
static const char * action2String(le_action_e action) {
static char buffer[_MAX_FILLER];
switch(action) {
case LE_METHOD_RPM:
return "RPM";
case LE_METHOD_CRANKING_RPM:
return "cranking_rpm";
case LE_METHOD_COOLANT:
return "CLT";
case LE_METHOD_FAN:
return "fan";
case LE_METHOD_STARTUP_FUEL_PUMP_DURATION:
return leStartupFuelPumpDuration.name;
case LE_METHOD_IN_SHUTDOWN:
return leInShutdown.name;
case LE_METHOD_IN_MR_BENCH:
return leInMrBench.name;
#include "fsio_strings.def"
default: {
// this is here to make compiler happy
}
}
itoa10(buffer, (int)action);
return buffer;
}
static void setPinState(const char * msg, OutputPin *pin, LEElement *element DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_PROD_CODE
if (isRunningBenchTest()) {
return; // let's not mess with bench testing
}
#endif /* EFI_PROD_CODE */
if (!element) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", msg);
} else {
int value = (int)calc.evaluate(pin->getLogicValue(), element PASS_ENGINE_PARAMETER_SUFFIX);
if (pin->isInitialized() && value != pin->getLogicValue()) {
for (int i = 0;i < calc.currentCalculationLogPosition;i++) {
scheduleMsg(logger, "calc %d: action %s value %.2f", i, action2String(calc.calcLogAction[i]), calc.calcLogValue[i]);
}
scheduleMsg(logger, "setPin %s %s", msg, value ? "on" : "off");
pin->setValue(value);
}
}
}
#if EFI_PROD_CODE
static void setFsioFrequency(int index, int frequency) {
index--;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
CONFIG(fsioFrequency)[index] = frequency;
if (frequency == 0) {
scheduleMsg(logger, "FSIO output #%d@%s set to on/off mode", index + 1, hwPortname(CONFIG(fsioOutputPins)[index]));
} else {
scheduleMsg(logger, "Setting FSIO frequency %dHz on #%d@%s", frequency, index + 1, hwPortname(CONFIG(fsioOutputPins)[index]));
}
}
#endif /* EFI_PROD_CODE */
/**
* @param out param! current and new value as long as element is not NULL
* @return 'true' if value has changed
*/
static bool updateValueOrWarning(int humanIndex, const char *msg, float *value DECLARE_ENGINE_PARAMETER_SUFFIX) {
int fsioIndex = humanIndex - 1;
LEElement * element = state.fsioLogics[fsioIndex];
if (element == NULL) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", msg);
return false;
} else {
float beforeValue = *value;
*value = calc.evaluate(beforeValue, element PASS_ENGINE_PARAMETER_SUFFIX);
// floating '==' comparison without EPS seems fine here
return (beforeValue != *value);
}
}
static void useFsioForServo(int servoIndex DECLARE_ENGINE_PARAMETER_SUFFIX) {
updateValueOrWarning(8 + servoIndex, "servo", &engine->fsioState.servoValues[servoIndex] PASS_ENGINE_PARAMETER_SUFFIX);
}
/**
* this method should be invoked periodically to calculate FSIO and toggle corresponding FSIO outputs
*/
void runFsio(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
for (int index = 0; index < FSIO_COMMAND_COUNT; index++) {
runFsioCalculation(index PASS_ENGINE_PARAMETER_SUFFIX);
}
#if EFI_FUEL_PUMP
if (isBrainPinValid(CONFIG(fuelPumpPin))) {
setPinState("pump", &enginePins.fuelPumpRelay, fuelPumpLogic PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif /* EFI_FUEL_PUMP */
#if EFI_MAIN_RELAY_CONTROL
if (isBrainPinValid(CONFIG(mainRelayPin)))
// the MAIN_RELAY_LOGIC calls engine->isInShutdownMode()
setPinState("main_relay", &enginePins.mainRelay, mainRelayLogic PASS_ENGINE_PARAMETER_SUFFIX);
#else /* EFI_MAIN_RELAY_CONTROL */
/**
* main relay is always on if ECU is on, that's a good enough initial implementation
*/
if (isBrainPinValid(CONFIG(mainRelayPin)))
enginePins.mainRelay.setValue(!engine->isInMainRelayBench(PASS_ENGINE_PARAMETER_SIGNATURE));
#endif /* EFI_MAIN_RELAY_CONTROL */
if (isBrainPinValid(CONFIG(starterRelayDisablePin)))
setPinState("starter_relay", &enginePins.starterRelayDisable, starterRelayDisableLogic PASS_ENGINE_PARAMETER_SUFFIX);
/**
* o2 heater is off during cranking
* todo: convert to FSIO?
* open question if heater should be ON during cranking
*/
enginePins.o2heater.setValue(engine->rpmCalculator.isRunning());
if (isBrainPinValid(CONFIG(acRelayPin))) {
setPinState("A/C", &enginePins.acRelay, acRelayLogic PASS_ENGINE_PARAMETER_SUFFIX);
}
// if (isBrainPinValid(CONFIG(alternatorControlPin))) {
// setPinState("alternator", &enginePins.alternatorField, alternatorLogic, engine PASS_ENGINE_PARAMETER_SUFFIX);
// }
if (isBrainPinValid(CONFIG(fanPin))) {
setPinState("fan", &enginePins.fanRelay, radiatorFanLogic PASS_ENGINE_PARAMETER_SUFFIX);
}
#if EFI_ENABLE_ENGINE_WARNING
if (engineConfiguration->useFSIO4ForSeriousEngineWarning) {
updateValueOrWarning(MAGIC_OFFSET_FOR_ENGINE_WARNING, "eng warning", &ENGINE(fsioState.isEngineWarning) PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif /* EFI_ENABLE_ENGINE_WARNING */
#if EFI_ENABLE_CRITICAL_ENGINE_STOP
if (engineConfiguration->useFSIO5ForCriticalIssueEngineStop) {
bool changed = updateValueOrWarning(MAGIC_OFFSET_FOR_CRITICAL_ENGINE, "eng critical", &ENGINE(fsioState.isCriticalEngineCondition) PASS_ENGINE_PARAMETER_SUFFIX);
if (changed && float2bool(ENGINE(fsioState.isCriticalEngineCondition))) {
doScheduleStopEngine(PASS_ENGINE_PARAMETER_SIGNATURE);
}
}
#endif /* EFI_ENABLE_CRITICAL_ENGINE_STOP */
if (engineConfiguration->useFSIO12ForIdleOffset) {
updateValueOrWarning(MAGIC_OFFSET_FOR_IDLE_OFFSET, "idle offset", &ENGINE(fsioState.fsioIdleOffset) PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO13ForIdleMinValue) {
updateValueOrWarning(MAGIC_OFFSET_FOR_IDLE_MIN_VALUE, "idle minValue", &ENGINE(fsioState.fsioIdleMinValue) PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO15ForIdleRpmAdjustment) {
updateValueOrWarning(MAGIC_OFFSET_FOR_IDLE_TARGET_RPM, "RPM target", &ENGINE(fsioState.fsioIdleTargetRPMAdjustment) PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO16ForTimingAdjustment) {
updateValueOrWarning(MAGIC_OFFSET_FOR_TIMING_FSIO, "timing", &ENGINE(fsioState.fsioTimingAdjustment) PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO6ForRevLimiter) {
updateValueOrWarning(6, "rpm limit", &ENGINE(fsioState.fsioRpmHardLimit) PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO8ForServo1) {
useFsioForServo(0 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO9ForServo2) {
useFsioForServo(1 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO10ForServo3) {
useFsioForServo(2 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO11ForServo4) {
useFsioForServo(3 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO12ForServo5) {
useFsioForServo(4 PASS_ENGINE_PARAMETER_SUFFIX);
}
}
static void showFsio(const char *msg, LEElement *element) {
#if EFI_PROD_CODE || EFI_SIMULATOR
if (msg != NULL)
scheduleMsg(logger, "%s:", msg);
while (element->action != LE_METHOD_RETURN) {
scheduleMsg(logger, "action %d: fValue=%.2f", element->action, element->fValue);
element++;
}
scheduleMsg(logger, "<end>");
#endif
}
static void showFsioInfo(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
scheduleMsg(logger, "sys used %d/user used %d", sysPool.getSize(), userPool.getSize());
showFsio("a/c", acRelayLogic);
showFsio("fuel", fuelPumpLogic);
showFsio("fan", radiatorFanLogic);
showFsio("alt", alternatorLogic);
for (int i = 0; i < CAM_INPUTS_COUNT ; i++) {
brain_pin_e pin = engineConfiguration->auxPidPins[i];
if (isBrainPinValid(pin)) {
scheduleMsg(logger, "VVT pid #%d [%s]", (i + 1),
hwPortname(pin));
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
char * exp = config->fsioFormulas[i];
if (exp[0] != 0) {
/**
* in case of FSIO user interface indexes are starting with 0, the argument for that
* is the fact that the target audience is more software developers
*/
int freq = CONFIG(fsioFrequency)[i];
const char *modeMessage = freq == 0 ? " (on/off mode)" : "";
scheduleMsg(logger, "FSIO #%d [%s] at %s@%dHz%s value=%.2f", (i + 1), exp,
hwPortname(CONFIG(fsioOutputPins)[i]),
freq, modeMessage,
engine->fsioState.fsioLastValue[i]);
// scheduleMsg(logger, "user-defined #%d value=%.2f", i, engine->engineConfigurationPtr2->fsioLastValue[i]);
showFsio(NULL, state.fsioLogics[i]);
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
float v = CONFIG(fsio_setting)[i];
if (!cisnan(v)) {
scheduleMsg(logger, "user property #%d: %.2f", i + 1, v);
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e inputPin = CONFIG(fsioDigitalInputs)[i];
if (isBrainPinValid(inputPin)) {
scheduleMsg(logger, "FSIO digital input #%d: %s", i, hwPortname(inputPin));
}
}
#endif
}
/**
* set_fsio_setting 1 0.11
*/
static void setFsioSetting(float humanIndexF, float value) {
#if EFI_PROD_CODE || EFI_SIMULATOR
int index = (int)humanIndexF - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", (int)humanIndexF);
return;
}
engineConfiguration->fsio_setting[index] = value;
showFsioInfo();
#endif
}
void setFsioExpression(const char *indexStr, const char *quotedLine DECLARE_CONFIG_PARAMETER_SUFFIX) {
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
char * l = unquote((char*) quotedLine);
if (strlen(l) > LE_COMMAND_LENGTH - 1) {
scheduleMsg(logger, "Too long %d", strlen(l));
return;
}
scheduleMsg(logger, "setting user out #%d to [%s]", index + 1, l);
strcpy(config->fsioFormulas[index], l);
}
void applyFsioExpression(const char *indexStr, const char *quotedLine DECLARE_ENGINE_PARAMETER_SUFFIX) {
setFsioExpression(indexStr, quotedLine PASS_CONFIG_PARAMETER_SUFFIX);
// this would apply the changes
applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
showFsioInfo();
}
static void rpnEval(char *line) {
#if EFI_PROD_CODE || EFI_SIMULATOR
line = unquote(line);
scheduleMsg(logger, "Parsing [%s]", line);
evalPool.reset();
LEElement * e = evalPool.parseExpression(line);
if (e == NULL) {
scheduleMsg(logger, "parsing failed");
} else {
float result = evalCalc.evaluate(0, e PASS_ENGINE_PARAMETER_SUFFIX);
scheduleMsg(logger, "Evaluate result: %.2f", result);
}
#endif
}
ValueProvider3D *getFSIOTable(int index) {
switch (index) {
default:
return &fsioTable1;
case 1:
return &fsioTable2;
case 2:
return &fsioTable3;
case 3:
return &fsioTable4;
}
}
void initFsioImpl(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_PROD_CODE || EFI_SIMULATOR
logger = sharedLogger;
#else
// only unit test needs this
sysPool.reset();
#endif
#if EFI_FUEL_PUMP
fuelPumpLogic = sysPool.parseExpression(FUEL_PUMP_LOGIC);
#endif /* EFI_FUEL_PUMP */
acRelayLogic = sysPool.parseExpression(AC_RELAY_LOGIC);
radiatorFanLogic = sysPool.parseExpression(FAN_CONTROL_LOGIC);
alternatorLogic = sysPool.parseExpression(ALTERNATOR_LOGIC);
#if EFI_MAIN_RELAY_CONTROL
if (isBrainPinValid(CONFIG(mainRelayPin)))
mainRelayLogic = sysPool.parseExpression(MAIN_RELAY_LOGIC);
#endif /* EFI_MAIN_RELAY_CONTROL */
if (isBrainPinValid(CONFIG(starterRelayDisablePin)))
starterRelayDisableLogic = sysPool.parseExpression(STARTER_RELAY_LOGIC);
#if EFI_PROD_CODE
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e brainPin = CONFIG(fsioOutputPins)[i];
if (isBrainPinValid(brainPin)) {
int frequency = CONFIG(fsioFrequency)[i];
if (frequency == 0) {
enginePins.fsioOutputs[i].initPin(getGpioPinName(i), CONFIG(fsioOutputPins)[i]);
} else {
startSimplePwmExt(&fsioPwm[i], "FSIOpwm",
&engine->executor,
brainPin, &enginePins.fsioOutputs[i], frequency, 0.5f);
}
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e inputPin = CONFIG(fsioDigitalInputs)[i];
if (isBrainPinValid(inputPin)) {
efiSetPadMode("FSIO input", inputPin, getInputMode(engineConfiguration->fsioInputModes[i]));
}
}
addConsoleActionSS("set_fsio_pid_output_pin", (VoidCharPtrCharPtr) setFsioPidOutputPin);
addConsoleActionSS("set_fsio_output_pin", (VoidCharPtrCharPtr) setFsioOutputPin);
addConsoleActionII("set_fsio_output_frequency", (VoidIntInt) setFsioFrequency);
addConsoleActionSS("set_fsio_digital_input_pin", (VoidCharPtrCharPtr) setFsioDigitalInputPin);
addConsoleActionSS("set_fsio_analog_input_pin", (VoidCharPtrCharPtr) setFsioAnalogInputPin);
#endif /* EFI_PROD_CODE */
#if EFI_PROD_CODE || EFI_SIMULATOR
addConsoleActionSS("set_rpn_expression", applyFsioExpression);
addConsoleActionFF("set_fsio_setting", setFsioSetting);
addConsoleAction("fsioinfo", showFsioInfo);
addConsoleActionS("rpn_eval", (VoidCharPtr) rpnEval);
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
fsioTable1.init(config->fsioTable1, config->fsioTable1LoadBins,
config->fsioTable1RpmBins);
fsioTable2.init(config->fsioTable2, config->fsioTable2LoadBins,
config->fsioTable2RpmBins);
fsioTable3.init(config->fsioTable3, config->fsioTable3LoadBins,
config->fsioTable3RpmBins);
fsioTable4.init(config->fsioTable4, config->fsioTable4LoadBins,
config->fsioTable4RpmBins);
}
#else /* !EFI_FSIO */
// "Limp-mode" implementation for some RAM-limited configs without FSIO
void runHardcodedFsio(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_PROD_CODE
if (isRunningBenchTest()) {
return; // let's not mess with bench testing
}
#endif /* EFI_PROD_CODE */
// see MAIN_RELAY_LOGIC
if (isBrainPinValid(CONFIG(mainRelayPin))) {
enginePins.mainRelay.setValue((getTimeNowSeconds() < 2) || (Sensor::get(SensorType::BatteryVoltage).value_or(0) > LOW_VBATT) || engine->isInShutdownMode());
}
// see STARTER_RELAY_LOGIC
if (isBrainPinValid(CONFIG(starterRelayDisablePin))) {
enginePins.starterRelayDisable.setValue(engine->rpmCalculator.getRpm() < engineConfiguration->cranking.rpm);
}
// see FAN_CONTROL_LOGIC
if (isBrainPinValid(CONFIG(fanPin))) {
auto clt = Sensor::get(SensorType::Clt);
enginePins.fanRelay.setValue(!clt.Valid || (enginePins.fanRelay.getLogicValue() && (clt.Value > engineConfiguration->fanOffTemperature)) ||
(clt.Value > engineConfiguration->fanOnTemperature) || !clt.Valid);
}
// see AC_RELAY_LOGIC
if (isBrainPinValid(CONFIG(acRelayPin))) {
enginePins.acRelay.setValue(getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE) && engine->rpmCalculator.getRpm() > 850);
}
// see FUEL_PUMP_LOGIC
if (isBrainPinValid(CONFIG(fuelPumpPin))) {
enginePins.fuelPumpRelay.setValue((getTimeNowSeconds() < engine->triggerActivitySecond + engineConfiguration->startUpFuelPumpDuration) || (engine->rpmCalculator.getRpm() > 0));
}
enginePins.o2heater.setValue(engine->rpmCalculator.isRunning());
}
#endif /* EFI_FSIO */