rusefi/firmware/controllers/math/speed_density.cpp

120 lines
3.9 KiB
C++

/**
* @file speed_density.cpp
*
* See http://rusefi.com/wiki/index.php?title=Manual:Software:Fuel_Control#Speed_Density for details
*
* @date May 29, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include <rusefi/interpolation.h>
#include "engine_configuration.h"
#include "error_handling.h"
#include "fuel_computer.h"
#include "speed_density.h"
#include "fuel_math.h"
#include "sensor.h"
#include "efi_interpolation.h"
#include "table_helper.h"
#include "engine_math.h"
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif
#define rpmMin 500
#define rpmMax 8000
fuel_Map3D_t veMap{"ve"};
#define tpMin 0
#define tpMax 100
float IFuelComputer::getTChargeCoefficient(int rpm, float tps) {
// First, do TPS mode since it doesn't need any of the airflow math.
if (engineConfiguration->tChargeMode == TCHARGE_MODE_RPM_TPS) {
float minRpmKcurrentTPS = interpolateMsg("minRpm", tpMin,
engineConfiguration->tChargeMinRpmMinTps, tpMax,
engineConfiguration->tChargeMinRpmMaxTps, tps);
float maxRpmKcurrentTPS = interpolateMsg("maxRpm", tpMin,
engineConfiguration->tChargeMaxRpmMinTps, tpMax,
engineConfiguration->tChargeMaxRpmMaxTps, tps);
return interpolateMsg("Kcurr", rpmMin, minRpmKcurrentTPS, rpmMax, maxRpmKcurrentTPS, rpm);
}
constexpr floatms_t gramsPerMsToKgPerHour = (3600.0f * 1000.0f) / 1000.0f;
// We're actually using an 'old' airMass calculated for the previous cycle, but it's ok, we're not having any self-excitaton issues
floatms_t airMassForEngine = sdAirMassInOneCylinder * engineConfiguration->cylindersCount;
// airMass is in grams per 1 cycle for 1 cyl. Convert it to airFlow in kg/h for the engine.
// And if the engine is stopped (0 rpm), then airFlow is also zero (avoiding NaN division)
floatms_t airFlow = (rpm == 0) ? 0 : airMassForEngine * gramsPerMsToKgPerHour / getEngineCycleDuration(rpm);
if (engineConfiguration->tChargeMode == TCHARGE_MODE_AIR_INTERP) {
// just interpolate between user-specified min and max coefs, based on the max airFlow value
return interpolateClamped(
0.0, engineConfiguration->tChargeAirCoefMin,
engineConfiguration->tChargeAirFlowMax, engineConfiguration->tChargeAirCoefMax,
airFlow
);
} else if (engineConfiguration->tChargeMode == TCHARGE_MODE_AIR_INTERP_TABLE) {
return interpolate2d(
airFlow,
engineConfiguration->tchargeBins,
engineConfiguration->tchargeValues
);
} else {
criticalError("Unexpected tChargeMode: %d", engineConfiguration->tChargeMode);
return 0;
}
}
// http://rusefi.com/math/t_charge.html
/***panel:Charge Temperature*/
temperature_t IFuelComputer::getTCharge(int rpm, float tps) {
const auto clt = Sensor::get(SensorType::Clt);
const auto iat = Sensor::get(SensorType::Iat);
float airTemp;
// Without either valid, return 0C. It's wrong, but it'll pretend to be nice and dense, so at least you won't go lean.
if (!iat && !clt) {
return 0;
} else if (!clt && iat) {
// Intake temperature will almost always be colder (richer) than CLT - use that
return iat.Value;
} else if (!iat && clt) {
// Without valid intake temperature, assume intake temp is 0C, and interpolate anyway
airTemp = 0;
} else {
// All is well - use real air temp
airTemp = iat.Value;
}
float coolantTemp = clt.Value;
sdTcharge_coff = getTChargeCoefficient(rpm, tps);
if (std::isnan(sdTcharge_coff)) {
warning(ObdCode::CUSTOM_ERR_T2_CHARGE, "t2-getTCharge NaN");
return coolantTemp;
}
// Interpolate between CLT and IAT:
// 0.0 coefficient -> use CLT (full heat transfer)
// 1.0 coefficient -> use IAT (no heat transfer)
float Tcharge = interpolateClamped(0.0f, coolantTemp, 1.0f, airTemp, sdTcharge_coff);
if (std::isnan(Tcharge)) {
// we can probably end up here while resetting engine state - interpolation would fail
warning(ObdCode::CUSTOM_ERR_TCHARGE_NOT_READY, "getTCharge NaN");
return coolantTemp;
}
return Tcharge;
}
void initSpeedDensity() {
veMap.initTable(config->veTable, config->veRpmBins, config->veLoadBins);
}