rusefi/firmware/controllers/trigger/trigger_central.cpp

1174 lines
42 KiB
C++

/*
* @file trigger_central.cpp
* Here we have a bunch of higher-level methods which are not directly related to actual signal decoding
*
* @date Feb 23, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "trigger_central.h"
#include "trigger_decoder.h"
#include "main_trigger_callback.h"
#include "listener_array.h"
#include "hip9011.h"
#include "logic_analyzer.h"
#include "local_version_holder.h"
#include "trigger_simulator.h"
#include "trigger_emulator_algo.h"
#include "map_averaging.h"
#include "main_trigger_callback.h"
#include "status_loop.h"
#include "engine_sniffer.h"
#include "auto_generated_sync_edge.h"
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif /* EFI_TUNER_STUDIO */
#if EFI_ENGINE_SNIFFER
WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
static scheduling_s debugToggleScheduling;
#define DEBUG_PIN_DELAY US2NT(60)
#define TRIGGER_WAVEFORM(x) getTriggerCentral()->triggerShape.x
#if EFI_SHAFT_POSITION_INPUT
TriggerCentral::TriggerCentral() :
vvtEventRiseCounter(),
vvtEventFallCounter(),
vvtPosition(),
triggerState("TRG")
{
memset(&hwEventCounters, 0, sizeof(hwEventCounters));
triggerState.resetState();
noiseFilter.resetAccumSignalData();
}
void TriggerNoiseFilter::resetAccumSignalData() {
memset(lastSignalTimes, 0xff, sizeof(lastSignalTimes)); // = -1
memset(accumSignalPeriods, 0, sizeof(accumSignalPeriods));
memset(accumSignalPrevPeriods, 0, sizeof(accumSignalPrevPeriods));
}
int TriggerCentral::getHwEventCounter(int index) const {
return hwEventCounters[index];
}
angle_t TriggerCentral::getVVTPosition(uint8_t bankIndex, uint8_t camIndex) {
if (bankIndex >= BANKS_COUNT || camIndex >= CAMS_PER_BANK) {
return NAN;
}
return vvtPosition[bankIndex][camIndex];
}
/**
* @return angle since trigger synchronization point, NOT angle since TDC.
*/
expected<float> TriggerCentral::getCurrentEnginePhase(efitick_t nowNt) const {
floatus_t oneDegreeUs = engine->rpmCalculator.oneDegreeUs;
if (cisnan(oneDegreeUs)) {
return unexpected;
}
float elapsed;
float toothPhase;
{
// under lock to avoid mismatched tooth phase and time
chibios_rt::CriticalSectionLocker csl;
elapsed = m_lastToothTimer.getElapsedUs(nowNt);
toothPhase = m_lastToothPhaseFromSyncPoint;
}
return toothPhase + elapsed / oneDegreeUs;
}
/**
* todo: why is this method NOT reciprocal to getRpmMultiplier?!
*/
static int getCrankDivider(operation_mode_e operationMode) {
switch (operationMode) {
case FOUR_STROKE_CRANK_SENSOR:
return 2;
case FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR:
return SYMMETRICAL_CRANK_SENSOR_DIVIDER;
case FOUR_STROKE_THREE_TIMES_CRANK_SENSOR:
return SYMMETRICAL_THREE_TIMES_CRANK_SENSOR_DIVIDER;
case FOUR_STROKE_TWELVE_TIMES_CRANK_SENSOR:
return SYMMETRICAL_TWELVE_TIMES_CRANK_SENSOR_DIVIDER;
default:
case FOUR_STROKE_CAM_SENSOR:
case TWO_STROKE:
// That's easy - trigger cycle matches engine cycle
return 1;
}
}
static bool vvtWithRealDecoder(vvt_mode_e vvtMode) {
// todo: why does VVT_2JZ not use real decoder?
return vvtMode != VVT_INACTIVE
&& vvtMode != VVT_2JZ
&& vvtMode != VVT_HONDA_K_INTAKE
&& vvtMode != VVT_MAP_V_TWIN
&& vvtMode != VVT_SECOND_HALF
&& vvtMode != VVT_FIRST_HALF;
}
angle_t TriggerCentral::syncAndReport(int divider, int remainder) {
angle_t engineCycle = getEngineCycle(getEngineRotationState()->getOperationMode());
angle_t totalShift = triggerState.syncEnginePhase(divider, remainder, engineCycle);
if (totalShift != 0) {
// Reset instant RPM, since the engine phase has now changed, invalidating the tooth history buffer
// maybe TODO: could/should we rotate the buffer around to re-align it instead? Is that worth it?
instantRpm.resetInstantRpm();
}
return totalShift;
}
static void turnOffAllDebugFields(void *arg) {
(void)arg;
#if EFI_PROD_CODE
for (int index = 0;index<TRIGGER_INPUT_PIN_COUNT;index++) {
if (isBrainPinValid(engineConfiguration->triggerInputDebugPins[index])) {
writePad("trigger debug", engineConfiguration->triggerInputDebugPins[index], 0);
}
}
for (int index = 0;index<CAM_INPUTS_COUNT;index++) {
if (isBrainPinValid(engineConfiguration->camInputsDebug[index])) {
writePad("cam debug", engineConfiguration->camInputsDebug[index], 0);
}
}
#endif /* EFI_PROD_CODE */
}
static angle_t adjustCrankPhase(int camIndex) {
float maxSyncThreshold = engineConfiguration->maxCamPhaseResolveRpm;
if (maxSyncThreshold != 0 && Sensor::getOrZero(SensorType::Rpm) > maxSyncThreshold) {
// The user has elected to stop trying to resolve crank phase after some RPM.
// Maybe their cam sensor only works at low RPM or something.
// Anyway, don't try to change crank phase at all, and return that we made no change.
return 0;
}
operation_mode_e operationMode = getEngineRotationState()->getOperationMode();
auto crankDivider = getCrankDivider(operationMode);
if (crankDivider == 1) {
// Crank divider of 1 means there's no ambiguity, so don't try to resolve it
return 0;
}
TriggerCentral *tc = getTriggerCentral();
vvt_mode_e vvtMode = engineConfiguration->vvtMode[camIndex];
switch (vvtMode) {
case VVT_FIRST_HALF:
case VVT_MAP_V_TWIN:
case VVT_MITSUBISHI_4G63:
case VVT_MITSUBISHI_4G9x:
return tc->syncAndReport(crankDivider, 1);
case VVT_SECOND_HALF:
case VVT_NISSAN_VQ:
case VVT_BOSCH_QUICK_START:
case VVT_MIATA_NB:
case VVT_2JZ:
case VVT_TOYOTA_4_1:
case VVT_FORD_COYOTE:
case VVT_FORD_ST170:
case VVT_BARRA_3_PLUS_1:
case VVT_NISSAN_MR:
case VVT_MAZDA_SKYACTIV:
case VVT_MITSUBISHI_3A92:
case VVT_MITSUBISHI_6G75:
case VVT_HONDA_K_EXHAUST:
return tc->syncAndReport(crankDivider, 0);
case VVT_HONDA_K_INTAKE:
// with 4 evenly spaced tooth we cannot use this wheel for engine sync
firmwareError(ObdCode::OBD_PCM_Processor_Fault, "Honda K Intake is not suitable for engine sync");
[[fallthrough]];
case VVT_INACTIVE:
// do nothing
return 0;
}
return 0;
}
/**
* See also wrapAngle
*/
static angle_t wrapVvt(angle_t vvtPosition, int period) {
// Wrap VVT position in to the range [-360, 360)
while (vvtPosition < -period / 2) {
vvtPosition += period;
}
while (vvtPosition >= period / 2) {
vvtPosition -= period;
}
return vvtPosition;
}
static void logVvtFront(bool useOnlyRise, bool isImportantFront, TriggerValue front, efitick_t nowNt, int index) {
if (isImportantFront && isBrainPinValid(engineConfiguration->camInputsDebug[index])) {
#if EFI_PROD_CODE
writePad("cam debug", engineConfiguration->camInputsDebug[index], 1);
#endif /* EFI_PROD_CODE */
getExecutorInterface()->scheduleByTimestampNt("dbg_on", &debugToggleScheduling, nowNt + DEBUG_PIN_DELAY, &turnOffAllDebugFields);
}
if (!useOnlyRise || engineConfiguration->displayLogicLevelsInEngineSniffer) {
// If we care about both edges OR displayLogicLevel is set, log every front exactly as it is
addEngineSnifferVvtEvent(index, front == TriggerValue::RISE ? FrontDirection::UP : FrontDirection::DOWN);
#if EFI_TOOTH_LOGGER
LogTriggerTooth(front == TriggerValue::RISE ? SHAFT_SECONDARY_RISING : SHAFT_SECONDARY_FALLING, nowNt);
#endif /* EFI_TOOTH_LOGGER */
} else {
if (isImportantFront) {
// On the important edge, log a rise+fall pair, and nothing on the real falling edge
addEngineSnifferVvtEvent(index, FrontDirection::UP);
addEngineSnifferVvtEvent(index, FrontDirection::DOWN);
#if EFI_TOOTH_LOGGER
LogTriggerTooth(SHAFT_SECONDARY_RISING, nowNt);
LogTriggerTooth(SHAFT_SECONDARY_FALLING, nowNt);
#endif /* EFI_TOOTH_LOGGER */
}
}
}
void hwHandleVvtCamSignal(bool isRising, efitick_t timestamp, int index) {
hwHandleVvtCamSignal(isRising ? TriggerValue::RISE : TriggerValue::FALL, timestamp, index);
}
// 'invertCamVVTSignal' is already accounted by the time this method is invoked
void hwHandleVvtCamSignal(TriggerValue front, efitick_t nowNt, int index) {
TriggerCentral *tc = getTriggerCentral();
if (tc->directSelfStimulation || !tc->hwTriggerInputEnabled) {
// sensor noise + self-stim = loss of trigger sync
return;
}
if (index == 0) {
engine->outputChannels.vvtChannel1 = front == TriggerValue::RISE;
} else if (index == 1) {
engine->outputChannels.vvtChannel2 = front == TriggerValue::RISE;
}
int bankIndex = index / CAMS_PER_BANK;
int camIndex = index % CAMS_PER_BANK;
if (front == TriggerValue::RISE) {
tc->vvtEventRiseCounter[index]++;
} else {
tc->vvtEventFallCounter[index]++;
}
if (engineConfiguration->vvtMode[camIndex] == VVT_INACTIVE) {
warning(ObdCode::CUSTOM_VVT_MODE_NOT_SELECTED, "VVT: event on %d but no mode", camIndex);
}
#if VR_HW_CHECK_MODE
// some boards do not have hardware VR input LEDs which makes such boards harder to validate
// from experience we know that assembly mistakes happen and quality control is required
extern ioportid_t criticalErrorLedPort;
extern ioportmask_t criticalErrorLedPin;
for (int i = 0 ; i < 100 ; i++) {
// turning pin ON and busy-waiting a bit
palWritePad(criticalErrorLedPort, criticalErrorLedPin, 1);
}
palWritePad(criticalErrorLedPort, criticalErrorLedPin, 0);
#endif // VR_HW_CHECK_MODE
const auto& vvtShape = tc->vvtShape[camIndex];
bool isVvtWithRealDecoder = vvtWithRealDecoder(engineConfiguration->vvtMode[camIndex]);
// Non real decoders only use the rising edge
bool vvtUseOnlyRise = !isVvtWithRealDecoder || vvtShape.useOnlyRisingEdges;
bool isImportantFront = !vvtUseOnlyRise || (front == TriggerValue::RISE);
logVvtFront(vvtUseOnlyRise, isImportantFront, front, nowNt, index);
if (!isImportantFront) {
// This edge is unimportant, ignore it.
return;
}
// If the main trigger is not synchronized, don't decode VVT yet
if (!tc->triggerState.getShaftSynchronized()) {
return;
}
TriggerDecoderBase& vvtDecoder = tc->vvtState[bankIndex][camIndex];
if (isVvtWithRealDecoder) {
vvtDecoder.decodeTriggerEvent(
"vvt",
vvtShape,
nullptr,
tc->vvtTriggerConfiguration[camIndex],
front == TriggerValue::RISE ? SHAFT_PRIMARY_RISING : SHAFT_PRIMARY_FALLING, nowNt);
// yes we log data from all VVT channels into same fields for now
tc->triggerState.vvtSyncGapRatio = vvtDecoder.triggerSyncGapRatio;
tc->triggerState.vvtToothDurations0 = (uint32_t)NT2US(vvtDecoder.toothDurations[0]);
tc->triggerState.vvtStateIndex = vvtDecoder.currentCycle.current_index;
}
tc->vvtCamCounter++;
auto currentPhase = tc->getCurrentEnginePhase(nowNt);
if (!currentPhase) {
// If we couldn't resolve engine speed (yet primary trigger is sync'd), this
// probably means that we have partial crank sync, but not RPM information yet
return;
}
angle_t angleFromPrimarySyncPoint = currentPhase.Value;
// convert trigger cycle angle into engine cycle angle
angle_t currentPosition = angleFromPrimarySyncPoint - tdcPosition();
// https://github.com/rusefi/rusefi/issues/1713 currentPosition could be negative that's expected
#if EFI_UNIT_TEST
tc->currentVVTEventPosition[bankIndex][camIndex] = currentPosition;
#endif // EFI_UNIT_TEST
tc->triggerState.vvtCurrentPosition = currentPosition;
if (isVvtWithRealDecoder && vvtDecoder.currentCycle.current_index != 0) {
// this is not sync tooth - exiting
return;
}
switch(engineConfiguration->vvtMode[camIndex]) {
case VVT_2JZ:
// we do not know if we are in sync or out of sync, so we have to be looking for both possibilities
if ((currentPosition < engineConfiguration->scriptSetting[4] || currentPosition > engineConfiguration->scriptSetting[5]) &&
(currentPosition < engineConfiguration->scriptSetting[4] + 360 || currentPosition > engineConfiguration->scriptSetting[5] + 360)) {
// outside of the expected range
return;
}
break;
default:
// else, do nothing
break;
}
tc->triggerState.vvtCounter++;
auto vvtPosition = engineConfiguration->vvtOffsets[bankIndex * CAMS_PER_BANK + camIndex] - currentPosition;
// this could be just an 'if' but let's have it expandable for future use :)
switch(engineConfiguration->vvtMode[camIndex]) {
case VVT_HONDA_K_INTAKE:
// honda K has four tooth in VVT intake trigger, so we just wrap each of those to 720 / 4
vvtPosition = wrapVvt(vvtPosition, 180);
break;
default:
// else, do nothing
break;
}
// Only do engine sync using one cam, other cams just provide VVT position.
if (index == engineConfiguration->engineSyncCam) {
angle_t crankOffset = adjustCrankPhase(camIndex);
// vvtPosition was calculated against wrong crank zero position. Now that we have adjusted crank position we
// shall adjust vvt position as well
vvtPosition -= crankOffset;
vvtPosition = wrapVvt(vvtPosition, FOUR_STROKE_CYCLE_DURATION);
if (absF(angleFromPrimarySyncPoint) < 7) {
/**
* we prefer not to have VVT sync right at trigger sync so that we do not have phase detection error if things happen a bit in
* wrong order due to belt flex or else
* https://github.com/rusefi/rusefi/issues/3269
*/
warning(ObdCode::CUSTOM_VVT_SYNC_POSITION, "VVT sync position too close to trigger sync");
}
} else {
// Not using this cam for engine sync, just wrap the value in to the reasonable range
vvtPosition = wrapVvt(vvtPosition, FOUR_STROKE_CYCLE_DURATION);
}
// Only record VVT position if we have full engine sync - may be bogus before that point
if (tc->triggerState.hasSynchronizedPhase()) {
tc->vvtPosition[bankIndex][camIndex] = vvtPosition;
} else {
tc->vvtPosition[bankIndex][camIndex] = 0;
}
}
int triggerReentrant = 0;
int maxTriggerReentrant = 0;
uint32_t triggerDuration;
uint32_t triggerMaxDuration = 0;
/**
* This function is called by all "hardware" trigger inputs:
* - Hardware triggers
* - Trigger replay from CSV (unit tests)
*/
void hwHandleShaftSignal(int signalIndex, bool isRising, efitick_t timestamp) {
TriggerCentral *tc = getTriggerCentral();
ScopePerf perf(PE::HandleShaftSignal);
#if VR_HW_CHECK_MODE
// some boards do not have hardware VR input LEDs which makes such boards harder to validate
// from experience we know that assembly mistakes happen and quality control is required
extern ioportid_t criticalErrorLedPort;
extern ioportmask_t criticalErrorLedPin;
#if HW_CHECK_ALWAYS_STIMULATE
disableTriggerStimulator();
#endif // HW_CHECK_ALWAYS_STIMULATE
for (int i = 0 ; i < 100 ; i++) {
// turning pin ON and busy-waiting a bit
palWritePad(criticalErrorLedPort, criticalErrorLedPin, 1);
}
palWritePad(criticalErrorLedPort, criticalErrorLedPin, 0);
#endif // VR_HW_CHECK_MODE
if (tc->directSelfStimulation || !tc->hwTriggerInputEnabled) {
// sensor noise + self-stim = loss of trigger sync
return;
}
handleShaftSignal(signalIndex, isRising, timestamp);
}
// Handle all shaft signals - hardware or emulated both
void handleShaftSignal(int signalIndex, bool isRising, efitick_t timestamp) {
bool isPrimary = signalIndex == 0;
if (!isPrimary && !TRIGGER_WAVEFORM(needSecondTriggerInput)) {
return;
}
trigger_event_e signal;
// todo: add support for 3rd channel
if (isRising) {
signal = isPrimary ?
(engineConfiguration->invertPrimaryTriggerSignal ? SHAFT_PRIMARY_FALLING : SHAFT_PRIMARY_RISING) :
(engineConfiguration->invertSecondaryTriggerSignal ? SHAFT_SECONDARY_FALLING : SHAFT_SECONDARY_RISING);
} else {
signal = isPrimary ?
(engineConfiguration->invertPrimaryTriggerSignal ? SHAFT_PRIMARY_RISING : SHAFT_PRIMARY_FALLING) :
(engineConfiguration->invertSecondaryTriggerSignal ? SHAFT_SECONDARY_RISING : SHAFT_SECONDARY_FALLING);
}
if (isPrimary) {
engine->outputChannels.triggerChannel1 = signal == SHAFT_PRIMARY_RISING;
} else {
engine->outputChannels.triggerChannel2 = signal == SHAFT_SECONDARY_RISING;
}
// Don't accept trigger input in case of some problems
if (!getLimpManager()->allowTriggerInput()) {
return;
}
#if EFI_TOOTH_LOGGER
// Log to the Tunerstudio tooth logger
// We want to do this before anything else as we
// actually want to capture any noise/jitter that may be occurring
bool logLogicState = engineConfiguration->displayLogicLevelsInEngineSniffer && getTriggerCentral()->triggerShape.useOnlyRisingEdges;
if (!logLogicState) {
// we log physical state even if displayLogicLevelsInEngineSniffer if both fronts are used by decoder
LogTriggerTooth(signal, timestamp);
}
#endif /* EFI_TOOTH_LOGGER */
// for effective noise filtering, we need both signal edges,
// so we pass them to handleShaftSignal() and defer this test
if (!engineConfiguration->useNoiselessTriggerDecoder) {
if (!isUsefulSignal(signal, getTriggerCentral()->triggerShape)) {
/**
* no need to process VR falls further
*/
return;
}
}
if (engineConfiguration->triggerInputDebugPins[signalIndex] != Gpio::Unassigned) {
#if EFI_PROD_CODE
writePad("trigger debug", engineConfiguration->triggerInputDebugPins[signalIndex], 1);
#endif /* EFI_PROD_CODE */
getExecutorInterface()->scheduleByTimestampNt("dbg_off", &debugToggleScheduling, timestamp + DEBUG_PIN_DELAY, &turnOffAllDebugFields);
}
#if EFI_TOOTH_LOGGER
if (logLogicState) {
// first log rising normally
LogTriggerTooth(signal, timestamp);
// in 'logLogicState' mode we log opposite front right after logical rising away
if (signal == SHAFT_PRIMARY_RISING) {
LogTriggerTooth(SHAFT_PRIMARY_FALLING, timestamp);
} else {
LogTriggerTooth(SHAFT_SECONDARY_FALLING, timestamp);
}
}
#endif /* EFI_TOOTH_LOGGER */
uint32_t triggerHandlerEntryTime = getTimeNowLowerNt();
if (triggerReentrant > maxTriggerReentrant)
maxTriggerReentrant = triggerReentrant;
triggerReentrant++;
getTriggerCentral()->handleShaftSignal(signal, timestamp);
triggerReentrant--;
triggerDuration = getTimeNowLowerNt() - triggerHandlerEntryTime;
triggerMaxDuration = maxI(triggerMaxDuration, triggerDuration);
}
void TriggerCentral::resetCounters() {
memset(hwEventCounters, 0, sizeof(hwEventCounters));
}
static const bool isUpEvent[4] = { false, true, false, true };
static const int wheelIndeces[4] = { 0, 0, 1, 1};
static void reportEventToWaveChart(trigger_event_e ckpSignalType, int triggerEventIndex, bool addOppositeEvent) {
if (!getTriggerCentral()->isEngineSnifferEnabled) { // this is here just as a shortcut so that we avoid engine sniffer as soon as possible
return; // engineSnifferRpmThreshold is accounted for inside getTriggerCentral()->isEngineSnifferEnabled
}
int wheelIndex = wheelIndeces[(int )ckpSignalType];
bool isUp = isUpEvent[(int) ckpSignalType];
addEngineSnifferCrankEvent(wheelIndex, triggerEventIndex, isUp ? FrontDirection::UP : FrontDirection::DOWN);
if (addOppositeEvent) {
// let's add the opposite event right away
addEngineSnifferCrankEvent(wheelIndex, triggerEventIndex, isUp ? FrontDirection::DOWN : FrontDirection::UP);
}
}
/**
* This is used to filter noise spikes (interference) in trigger signal. See
* The basic idea is to use not just edges, but the average amount of time the signal stays in '0' or '1'.
* So we update 'accumulated periods' to track where the signal is.
* And then compare between the current period and previous, with some tolerance (allowing for the wheel speed change).
* @return true if the signal is passed through.
*/
bool TriggerNoiseFilter::noiseFilter(efitick_t nowNt,
TriggerDecoderBase * triggerState,
trigger_event_e signal) {
// todo: find a better place for these defs
static const trigger_event_e opposite[4] = { SHAFT_PRIMARY_RISING, SHAFT_PRIMARY_FALLING, SHAFT_SECONDARY_RISING, SHAFT_SECONDARY_FALLING };
static const TriggerWheel triggerIdx[4] = { TriggerWheel::T_PRIMARY, TriggerWheel::T_PRIMARY, TriggerWheel::T_SECONDARY, TriggerWheel:: T_SECONDARY };
// we process all trigger channels independently
TriggerWheel ti = triggerIdx[signal];
// falling is opposite to rising, and vise versa
trigger_event_e os = opposite[signal];
// todo: currently only primary channel is filtered, because there are some weird trigger types on other channels
if (ti != TriggerWheel::T_PRIMARY)
return true;
// update period accumulator: for rising signal, we update '0' accumulator, and for falling - '1'
if (lastSignalTimes[signal] != -1)
accumSignalPeriods[signal] += nowNt - lastSignalTimes[signal];
// save current time for this trigger channel
lastSignalTimes[signal] = nowNt;
// now we want to compare current accumulated period to the stored one
efitick_t currentPeriod = accumSignalPeriods[signal];
// the trick is to compare between different
efitick_t allowedPeriod = accumSignalPrevPeriods[os];
// but first check if we're expecting a gap
bool isGapExpected = TRIGGER_WAVEFORM(isSynchronizationNeeded) && triggerState->getShaftSynchronized() &&
(triggerState->currentCycle.eventCount[(int)ti] + 1) == TRIGGER_WAVEFORM(getExpectedEventCount(ti));
if (isGapExpected) {
// usually we need to extend the period for gaps, based on the trigger info
allowedPeriod *= TRIGGER_WAVEFORM(syncRatioAvg);
}
// also we need some margin for rapidly changing trigger-wheel speed,
// that's why we expect the period to be no less than 2/3 of the previous period (this is just an empirical 'magic' coef.)
efitick_t minAllowedPeriod = 2 * allowedPeriod / 3;
// but no longer than 5/4 of the previous 'normal' period
efitick_t maxAllowedPeriod = 5 * allowedPeriod / 4;
// above all, check if the signal comes not too early
if (currentPeriod >= minAllowedPeriod) {
// now we store this period as a reference for the next time,
// BUT we store only 'normal' periods, and ignore too long periods (i.e. gaps)
if (!isGapExpected && (maxAllowedPeriod == 0 || currentPeriod <= maxAllowedPeriod)) {
accumSignalPrevPeriods[signal] = currentPeriod;
}
// reset accumulator
accumSignalPeriods[signal] = 0;
return true;
}
// all premature or extra-long events are ignored - treated as interference
return false;
}
void TriggerCentral::decodeMapCam(efitick_t timestamp, float currentPhase) {
if (engineConfiguration->vvtMode[0] == VVT_MAP_V_TWIN &&
Sensor::getOrZero(SensorType::Rpm) < engineConfiguration->cranking.rpm) {
// we are trying to figure out which 360 half of the total 720 degree cycle is which, so we compare those in 360 degree sense.
auto toothAngle360 = currentPhase;
while (toothAngle360 >= 360) {
toothAngle360 -= 360;
}
if (mapCamPrevToothAngle < engineConfiguration->mapCamDetectionAnglePosition && toothAngle360 > engineConfiguration->mapCamDetectionAnglePosition) {
// we are somewhere close to 'mapCamDetectionAnglePosition'
// warning: hack hack hack
float map = engine->outputChannels.instantMAPValue;
// Compute diff against the last time we were here
float diff = map - mapCamPrevCycleValue;
mapCamPrevCycleValue = map;
if (diff > 0) {
mapVvt_map_peak++;
int revolutionCounter = getTriggerCentral()->triggerState.getCrankSynchronizationCounter();
mapVvt_MAP_AT_CYCLE_COUNT = revolutionCounter - prevChangeAtCycle;
prevChangeAtCycle = revolutionCounter;
hwHandleVvtCamSignal(TriggerValue::RISE, timestamp, /*index*/0);
hwHandleVvtCamSignal(TriggerValue::FALL, timestamp, /*index*/0);
#if EFI_UNIT_TEST
// hack? feature? existing unit test relies on VVT phase available right away
// but current implementation which is based on periodicFastCallback would only make result available on NEXT tooth
getLimpManager()->onFastCallback();
#endif // EFI_UNIT_TEST
}
mapVvt_MAP_AT_SPECIAL_POINT = map;
mapVvt_MAP_AT_DIFF = diff;
}
mapCamPrevToothAngle = toothAngle360;
}
}
bool TriggerCentral::isToothExpectedNow(efitick_t timestamp) {
// Check that the expected next phase (from the last tooth) is close to the actual current phase:
// basically, check that the tooth width is correct
auto estimatedCurrentPhase = getCurrentEnginePhase(timestamp);
auto lastToothPhase = m_lastToothPhaseFromSyncPoint;
if (expectedNextPhase && estimatedCurrentPhase) {
float angleError = expectedNextPhase.Value - estimatedCurrentPhase.Value;
// Wrap around correctly at the end of the cycle
float cycle = getEngineState()->engineCycle;
if (angleError < -cycle / 2) {
angleError += cycle;
}
triggerToothAngleError = angleError;
// Only perform checks if engine is spinning quickly
// All kinds of garbage happens while cranking
if (Sensor::getOrZero(SensorType::Rpm) > 1000) {
// Now compute how close we are to the last tooth decoded
float angleSinceLastTooth = estimatedCurrentPhase.Value - lastToothPhase;
if (angleSinceLastTooth < 0.5f) {
// This tooth came impossibly early, ignore it
// This rejects things like doubled edges, for example:
// |-| |----------------
// | | |
// ____________| |_|
// 1 2
// #1 will be decoded
// #2 will be ignored
// We're not sure which edge was the "real" one, but they were close enough
// together that it doesn't really matter.
warning(ObdCode::CUSTOM_PRIMARY_DOUBLED_EDGE, "doubled trigger edge after %.2f deg at #%d", angleSinceLastTooth, triggerState.currentCycle.current_index);
return false;
}
// Absolute error from last tooth
float absError = absF(angleError);
float isRpmEnough = Sensor::getOrZero(SensorType::Rpm) > 1000;
// TODO: configurable threshold
if (isRpmEnough && absError > 10 && absError < 180) {
// This tooth came at a very unexpected time, ignore it
warning(ObdCode::CUSTOM_PRIMARY_BAD_TOOTH_TIMING, "tooth #%d error of %.1f", triggerState.currentCycle.current_index, angleError);
// TODO: this causes issues with some real engine logs, should it?
// return false;
}
}
} else {
triggerToothAngleError = 0;
}
// We aren't ready to reject unexpected teeth, so accept this tooth
return true;
}
/**
* This method is NOT invoked for VR falls.
*/
void TriggerCentral::handleShaftSignal(trigger_event_e signal, efitick_t timestamp) {
if (triggerShape.shapeDefinitionError) {
// trigger is broken, we cannot do anything here
warning(ObdCode::CUSTOM_ERR_UNEXPECTED_SHAFT_EVENT, "Shaft event while trigger is mis-configured");
// magic value to indicate a problem
hwEventCounters[0] = 155;
return;
}
// This code gathers some statistics on signals and compares accumulated periods to filter interference
if (engineConfiguration->useNoiselessTriggerDecoder) {
if (!noiseFilter.noiseFilter(timestamp, &triggerState, signal)) {
return;
}
if (!isUsefulSignal(signal, triggerShape)) {
return;
}
}
if (!isToothExpectedNow(timestamp)) {
triggerIgnoredToothCount++;
return;
}
isSpinningJustForWatchdog = true;
m_lastEventTimer.reset(timestamp);
int eventIndex = (int) signal;
efiAssertVoid(ObdCode::CUSTOM_TRIGGER_EVENT_TYPE, eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type");
hwEventCounters[eventIndex]++;
// Decode the trigger!
auto decodeResult = triggerState.decodeTriggerEvent(
"trigger",
triggerShape,
engine,
primaryTriggerConfiguration,
signal, timestamp);
// Don't propagate state if we don't know where we are
if (decodeResult) {
ScopePerf perf(PE::ShaftPositionListeners);
/**
* If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree
* cycle into a four stroke, 720 degrees cycle.
*/
int crankDivider = getCrankDivider(triggerShape.getWheelOperationMode());
int crankInternalIndex = triggerState.getCrankSynchronizationCounter() % crankDivider;
int triggerIndexForListeners = decodeResult.Value.CurrentIndex + (crankInternalIndex * triggerShape.getSize());
reportEventToWaveChart(signal, triggerIndexForListeners, triggerShape.useOnlyRisingEdges);
// Look up this tooth's angle from the sync point. If this tooth is the sync point, we'll get 0 here.
auto currentPhaseFromSyncPoint = getTriggerCentral()->triggerFormDetails.eventAngles[triggerIndexForListeners];
// Adjust so currentPhase is in engine-space angle, not trigger-space angle
currentEngineDecodedPhase = wrapAngleMethod(currentPhaseFromSyncPoint - tdcPosition(), "currentEnginePhase", ObdCode::CUSTOM_ERR_6555);
// Record precise time and phase of the engine. This is used for VVT decode, and to check that the
// trigger pattern selected matches reality (ie, we check the next tooth is where we think it should be)
{
// under lock to avoid mismatched tooth phase and time
chibios_rt::CriticalSectionLocker csl;
m_lastToothTimer.reset(timestamp);
m_lastToothPhaseFromSyncPoint = currentPhaseFromSyncPoint;
}
#if TRIGGER_EXTREME_LOGGING
efiPrintf("trigger %d %d %d", triggerIndexForListeners, getRevolutionCounter(), (int)getTimeNowUs());
#endif /* TRIGGER_EXTREME_LOGGING */
// Update engine RPM
rpmShaftPositionCallback(signal, triggerIndexForListeners, timestamp);
// Schedule the TDC mark
tdcMarkCallback(triggerIndexForListeners, timestamp);
#if !EFI_UNIT_TEST
#if EFI_MAP_AVERAGING
mapAveragingTriggerCallback(triggerIndexForListeners, timestamp);
#endif /* EFI_MAP_AVERAGING */
#endif /* EFI_UNIT_TEST */
#if EFI_LOGIC_ANALYZER
waTriggerEventListener(signal, triggerIndexForListeners, timestamp);
#endif
// TODO: is this logic to compute next trigger tooth angle correct?
auto nextToothIndex = triggerIndexForListeners;
angle_t nextPhase = 0;
do {
// I don't love this.
nextToothIndex = (nextToothIndex + 1) % engineCycleEventCount;
nextPhase = getTriggerCentral()->triggerFormDetails.eventAngles[nextToothIndex] - tdcPosition();
wrapAngle(nextPhase, "nextEnginePhase", ObdCode::CUSTOM_ERR_6555);
} while (nextPhase == currentEngineDecodedPhase);
float expectNextPhase = nextPhase + tdcPosition();
wrapAngle(expectNextPhase, "nextEnginePhase", ObdCode::CUSTOM_ERR_6555);
expectedNextPhase = expectNextPhase;
#if EFI_CDM_INTEGRATION
if (trgEventIndex == 0 && isBrainPinValid(engineConfiguration->cdmInputPin)) {
int cdmKnockValue = getCurrentCdmValue(getTriggerCentral()->triggerState.getCrankSynchronizationCounter());
engine->knockLogic(cdmKnockValue);
}
#endif /* EFI_CDM_INTEGRATION */
if (engine->rpmCalculator.getCachedRpm() > 0 && triggerIndexForListeners == 0) {
engine->tpsAccelEnrichment.onEngineCycleTps();
}
// Handle ignition and injection
mainTriggerCallback(triggerIndexForListeners, timestamp, currentEngineDecodedPhase, nextPhase);
// Decode the MAP based "cam" sensor
decodeMapCam(timestamp, currentEngineDecodedPhase);
} else {
// We don't have sync, but report to the wave chart anyway as index 0.
reportEventToWaveChart(signal, 0, triggerShape.useOnlyRisingEdges);
expectedNextPhase = unexpected;
}
}
static void triggerShapeInfo() {
#if EFI_PROD_CODE || EFI_SIMULATOR
TriggerWaveform *shape = &getTriggerCentral()->triggerShape;
TriggerFormDetails *triggerFormDetails = &getTriggerCentral()->triggerFormDetails;
efiPrintf("syncEdge=%s", getSyncEdge(TRIGGER_WAVEFORM(syncEdge)));
efiPrintf("gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0]));
for (size_t i = 0; i < shape->getSize(); i++) {
efiPrintf("event %d %.2f", i, triggerFormDetails->eventAngles[i]);
}
#endif
}
#if EFI_PROD_CODE
extern PwmConfig triggerEmulatorSignal;
#endif /* #if EFI_PROD_CODE */
void triggerInfo(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
TriggerCentral *tc = getTriggerCentral();
TriggerWaveform *ts = &tc->triggerShape;
#if (HAL_TRIGGER_USE_PAL == TRUE) && (PAL_USE_CALLBACKS == TRUE)
efiPrintf("trigger PAL mode %d", tc->hwTriggerInputEnabled);
#else
#endif /* HAL_TRIGGER_USE_PAL */
efiPrintf("Template %s (%d) trigger %s (%d) syncEdge=%s tdcOffset=%.2f",
getEngine_type_e(engineConfiguration->engineType), engineConfiguration->engineType,
getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type,
getSyncEdge(TRIGGER_WAVEFORM(syncEdge)), TRIGGER_WAVEFORM(tdcPosition));
if (engineConfiguration->trigger.type == trigger_type_e::TT_TOOTHED_WHEEL) {
efiPrintf("total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount,
engineConfiguration->trigger.customSkippedToothCount);
}
efiPrintf("trigger#1 event counters up=%d/down=%d", tc->getHwEventCounter(0),
tc->getHwEventCounter(1));
if (ts->needSecondTriggerInput) {
efiPrintf("trigger#2 event counters up=%d/down=%d", tc->getHwEventCounter(2),
tc->getHwEventCounter(3));
}
efiPrintf("expected cycle events %d/%d",
TRIGGER_WAVEFORM(getExpectedEventCount(TriggerWheel::T_PRIMARY)),
TRIGGER_WAVEFORM(getExpectedEventCount(TriggerWheel::T_SECONDARY)));
efiPrintf("trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type,
boolToString(TRIGGER_WAVEFORM(needSecondTriggerInput)));
efiPrintf("synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s",
boolToString(ts->isSynchronizationNeeded),
boolToString(tc->isTriggerDecoderError()),
tc->triggerState.totalTriggerErrorCounter,
tc->triggerState.orderingErrorCounter,
tc->triggerState.getCrankSynchronizationCounter(),
boolToString(tc->directSelfStimulation));
if (TRIGGER_WAVEFORM(isSynchronizationNeeded)) {
efiPrintf("gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0]));
}
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
#if EFI_PROD_CODE
efiPrintf("primary trigger input: %s", hwPortname(engineConfiguration->triggerInputPins[0]));
efiPrintf("primary trigger simulator: %s %s freq=%d",
hwPortname(engineConfiguration->triggerSimulatorPins[0]),
getPin_output_mode_e(engineConfiguration->triggerSimulatorPinModes[0]),
engineConfiguration->triggerSimulatorRpm);
if (ts->needSecondTriggerInput) {
efiPrintf("secondary trigger input: %s", hwPortname(engineConfiguration->triggerInputPins[1]));
#if EFI_EMULATE_POSITION_SENSORS
efiPrintf("secondary trigger simulator: %s %s phase=%d",
hwPortname(engineConfiguration->triggerSimulatorPins[1]),
getPin_output_mode_e(engineConfiguration->triggerSimulatorPinModes[1]), triggerEmulatorSignal.safe.phaseIndex);
#endif /* EFI_EMULATE_POSITION_SENSORS */
}
for (int camInputIndex = 0; camInputIndex<CAM_INPUTS_COUNT;camInputIndex++) {
if (isBrainPinValid(engineConfiguration->camInputs[camInputIndex])) {
int camLogicalIndex = camInputIndex % CAMS_PER_BANK;
efiPrintf("VVT input: %s mode %s", hwPortname(engineConfiguration->camInputs[camInputIndex]),
getVvt_mode_e(engineConfiguration->vvtMode[camLogicalIndex]));
efiPrintf("VVT %d event counters: %d/%d",
camInputIndex,
tc->vvtEventRiseCounter[camInputIndex], tc->vvtEventFallCounter[camInputIndex]);
}
}
efiPrintf("primary logic input: %s", hwPortname(engineConfiguration->logicAnalyzerPins[0]));
efiPrintf("secondary logic input: %s", hwPortname(engineConfiguration->logicAnalyzerPins[1]));
efiPrintf("totalTriggerHandlerMaxTime=%d", triggerMaxDuration);
#endif /* EFI_PROD_CODE */
#if EFI_ENGINE_SNIFFER
efiPrintf("engine sniffer current size=%d", waveChart.getSize());
#endif /* EFI_ENGINE_SNIFFER */
}
static void resetRunningTriggerCounters() {
#if !EFI_UNIT_TEST
getTriggerCentral()->resetCounters();
triggerInfo();
#endif
}
void onConfigurationChangeTriggerCallback() {
bool changed = false;
// todo: how do we static_assert here?
efiAssertVoid(ObdCode::OBD_PCM_Processor_Fault, efi::size(engineConfiguration->camInputs) == efi::size(engineConfiguration->vvtOffsets), "sizes");
for (size_t camIndex = 0; camIndex < efi::size(engineConfiguration->camInputs); camIndex++) {
changed |= isConfigurationChanged(camInputs[camIndex]);
changed |= isConfigurationChanged(vvtOffsets[camIndex]);
}
for (size_t i = 0; i < efi::size(engineConfiguration->triggerGapOverrideFrom); i++) {
changed |= isConfigurationChanged(triggerGapOverrideFrom[i]);
changed |= isConfigurationChanged(triggerGapOverrideTo[i]);
}
for (size_t i = 0; i < efi::size(engineConfiguration->triggerInputPins); i++) {
changed |= isConfigurationChanged(triggerInputPins[i]);
}
for (size_t i = 0; i < efi::size(engineConfiguration->vvtMode); i++) {
changed |= isConfigurationChanged(vvtMode[i]);
}
changed |= isConfigurationChanged(trigger.type);
changed |= isConfigurationChanged(skippedWheelOnCam);
changed |= isConfigurationChanged(twoStroke);
changed |= isConfigurationChanged(globalTriggerAngleOffset);
changed |= isConfigurationChanged(trigger.customTotalToothCount);
changed |= isConfigurationChanged(trigger.customSkippedToothCount);
changed |= isConfigurationChanged(overrideTriggerGaps);
if (changed) {
#if EFI_ENGINE_CONTROL
engine->updateTriggerWaveform();
getTriggerCentral()->noiseFilter.resetAccumSignalData();
#endif
}
#if EFI_DEFAILED_LOGGING
efiPrintf("isTriggerConfigChanged=%d", triggerConfigChanged);
#endif /* EFI_DEFAILED_LOGGING */
// we do not want to miss two updates in a row
getTriggerCentral()->triggerConfigChangedOnLastConfigurationChange = getTriggerCentral()->triggerConfigChangedOnLastConfigurationChange || changed;
}
static void initVvtShape(TriggerWaveform& shape, const TriggerConfiguration& config, TriggerDecoderBase &initState) {
shape.initializeTriggerWaveform(FOUR_STROKE_CAM_SENSOR, config.TriggerType);
shape.initializeSyncPoint(initState, config);
}
void TriggerCentral::validateCamVvtCounters() {
// micro-optimized 'crankSynchronizationCounter % 256'
int camVvtValidationIndex = triggerState.getCrankSynchronizationCounter() & 0xFF;
if (camVvtValidationIndex == 0) {
vvtCamCounter = 0;
} else if (camVvtValidationIndex == 0xFE && vvtCamCounter < 60) {
// magic logic: we expect at least 60 CAM/VVT events for each 256 trigger cycles, otherwise throw a code
warning(ObdCode::OBD_Camshaft_Position_Sensor_Circuit_Range_Performance, "No Camshaft Position Sensor signals");
}
}
/**
* Calculate 'shape.triggerShapeSynchPointIndex' value using 'TriggerDecoderBase *state'
*/
static void calculateTriggerSynchPoint(
const PrimaryTriggerConfiguration &primaryTriggerConfiguration,
TriggerWaveform& shape,
TriggerDecoderBase& initState) {
#if EFI_PROD_CODE
efiAssertVoid(ObdCode::CUSTOM_TRIGGER_STACK, hasLotsOfRemainingStack(), "calc s");
#endif
shape.initializeSyncPoint(initState, primaryTriggerConfiguration);
if (shape.getSize() >= PWM_PHASE_MAX_COUNT) {
// todo: by the time we are here we had already modified a lot of RAM out of bounds!
firmwareError(ObdCode::CUSTOM_ERR_TRIGGER_WAVEFORM_TOO_LONG, "Trigger length above maximum: %d", shape.getSize());
shape.setShapeDefinitionError(true);
return;
}
if (shape.getSize() == 0) {
firmwareError(ObdCode::CUSTOM_ERR_TRIGGER_ZERO, "triggerShape size is zero");
}
}
TriggerDecoderBase initState("init");
void TriggerCentral::updateWaveform() {
// Re-read config in case it's changed
primaryTriggerConfiguration.update();
for (int camIndex = 0;camIndex < CAMS_PER_BANK;camIndex++) {
vvtTriggerConfiguration[camIndex].update();
}
triggerShape.initializeTriggerWaveform(lookupOperationMode(), primaryTriggerConfiguration.TriggerType);
/**
* this is only useful while troubleshooting a new trigger shape in the field
* in very VERY rare circumstances
*/
if (engineConfiguration->overrideTriggerGaps) {
int gapIndex = 0;
// copy however many the user wants
for (; gapIndex < engineConfiguration->gapTrackingLengthOverride; gapIndex++) {
float gapOverrideFrom = engineConfiguration->triggerGapOverrideFrom[gapIndex];
float gapOverrideTo = engineConfiguration->triggerGapOverrideTo[gapIndex];
TRIGGER_WAVEFORM(setTriggerSynchronizationGap3(/*gapIndex*/gapIndex, gapOverrideFrom, gapOverrideTo));
}
// fill the remainder with the default gaps
for (; gapIndex < GAP_TRACKING_LENGTH; gapIndex++) {
triggerShape.syncronizationRatioFrom[gapIndex] = NAN;
triggerShape.syncronizationRatioTo[gapIndex] = NAN;
}
}
if (!triggerShape.shapeDefinitionError) {
int length = triggerShape.getLength();
engineCycleEventCount = length;
efiAssertVoid(ObdCode::CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0");
triggerErrorDetection.clear();
/**
* 'initState' instance of TriggerDecoderBase is used only to initialize 'this' TriggerWaveform instance
* #192 BUG real hardware trigger events could be coming even while we are initializing trigger
*/
calculateTriggerSynchPoint(primaryTriggerConfiguration,
triggerShape,
initState);
}
for (int camIndex = 0; camIndex < CAMS_PER_BANK; camIndex++) {
// todo: should 'vvtWithRealDecoder' be used here?
if (engineConfiguration->vvtMode[camIndex] != VVT_INACTIVE) {
initVvtShape(
vvtShape[camIndex],
vvtTriggerConfiguration[camIndex],
initState
);
}
}
// This is not the right place for this, but further refactoring has to happen before it can get moved.
triggerState.setNeedsDisambiguation(engine->triggerCentral.triggerShape.needsDisambiguation());
}
/**
* @returns true if configuration just changed, and if that change has affected trigger
*/
bool TriggerCentral::checkIfTriggerConfigChanged() {
// we want to make sure that configuration has changed AND that change has changed trigger specifically
bool result = triggerVersion.isOld(engine->getGlobalConfigurationVersion()) && triggerConfigChangedOnLastConfigurationChange;
triggerConfigChangedOnLastConfigurationChange = false; // whoever has called the method is supposed to react to changes
return result;
}
#if EFI_UNIT_TEST
bool TriggerCentral::isTriggerConfigChanged() {
return triggerConfigChangedOnLastConfigurationChange;
}
#endif // EFI_UNIT_TEST
void validateTriggerInputs() {
if (!isBrainPinValid(engineConfiguration->triggerInputPins[0]) && isBrainPinValid(engineConfiguration->triggerInputPins[1])) {
firmwareError(ObdCode::OBD_PCM_Processor_Fault, "First trigger channel is missing");
}
if (!isBrainPinValid(engineConfiguration->camInputs[0]) && isBrainPinValid(engineConfiguration->camInputs[2])) {
firmwareError(ObdCode::OBD_PCM_Processor_Fault, "First bank cam input is required if second bank specified");
}
}
void initTriggerCentral() {
#if EFI_ENGINE_SNIFFER
initWaveChart(&waveChart);
#endif /* EFI_ENGINE_SNIFFER */
#if EFI_PROD_CODE || EFI_SIMULATOR
addConsoleAction(CMD_TRIGGERINFO, triggerInfo);
addConsoleAction("trigger_shape_info", triggerShapeInfo);
addConsoleAction("reset_trigger", resetRunningTriggerCounters);
#endif // EFI_PROD_CODE || EFI_SIMULATOR
}
/**
* @return TRUE is something is wrong with trigger decoding
*/
bool TriggerCentral::isTriggerDecoderError() {
return triggerErrorDetection.sum(6) > 4;
}
#endif // EFI_SHAFT_POSITION_INPUT