rusefi/firmware/console/status_loop.cpp

818 lines
28 KiB
C++

/**
* @file status_loop.cpp
* @brief Human-readable protocol status messages
*
* http://rusefi.com/forum/viewtopic.php?t=263 rusEfi console overview
* http://rusefi.com/forum/viewtopic.php?t=210 Commands overview
*
*
* @date Mar 15, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "pch.h"
#include "status_loop.h"
#include "hip9011_logic.h"
#if EFI_LOGIC_ANALYZER
#include "logic_analyzer.h"
#endif /* EFI_LOGIC_ANALYZER */
#include "trigger_central.h"
#include "sensor_reader.h"
#include "mmc_card.h"
#include "console_io.h"
#include "malfunction_central.h"
#include "speed_density.h"
#include "advance_map.h"
#include "tunerstudio.h"
#include "fuel_math.h"
#include "main_trigger_callback.h"
#include "spark_logic.h"
#include "idle_thread.h"
#include "svnversion.h"
#include "can_hw.h"
#include "periodic_thread_controller.h"
#include "cdm_ion_sense.h"
#include "binary_logging.h"
#include "buffered_writer.h"
#include "dynoview.h"
#include "frequency_sensor.h"
#include "digital_input_exti.h"
#include "dc_motors.h"
#if EFI_PROD_CODE
// todo: move this logic to algo folder!
#include "rtc_helper.h"
#include "rusefi.h"
#include "pin_repository.h"
#include "max31855.h"
#include "single_timer_executor.h"
#include "periodic_task.h"
#endif /* EFI_PROD_CODE */
#if EFI_INTERNAL_FLASH
#include "flash_main.h"
#endif
#if EFI_MAP_AVERAGING
#include "map_averaging.h"
#endif
#if (BOARD_TLE8888_COUNT > 0)
#include "tle8888.h"
#endif /* BOARD_TLE8888_COUNT */
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
extern WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
#include "sensor_chart.h"
int warningEnabled = true;
extern int maxTriggerReentrant;
extern uint32_t maxLockedDuration;
static void setWarningEnabled(int value) {
warningEnabled = value;
}
/**
* This is useful if we are changing engine mode dynamically
* For example http://rusefi.com/forum/viewtopic.php?f=5&t=1085
*/
static int packEngineMode() {
return (engineConfiguration->fuelAlgorithm << 4) +
(engineConfiguration->injectionMode << 2) +
engineConfiguration->ignitionMode;
}
static int prevCkpEventCounter = -1;
/**
* Time when the firmware version was last reported
* TODO: implement a request/response instead of just constantly sending this out
*/
static Timer printVersionTimer;
static void printRusefiVersion(const char *engineTypeName, const char *firmwareBuildId) {
// VersionChecker in rusEFI console is parsing these version string, please follow the expected format
efiPrintfProto(PROTOCOL_VERSION_TAG, "%d@%s %s %s %d",
getRusEfiVersion(), VCS_VERSION,
firmwareBuildId,
engineTypeName,
getTimeNowS());
}
// Inform the console about the mapping between a pin's logical name (for example, injector 3)
// and the physical MCU pin backing that function (for example, PE3)
static void printOutPin(const char *pinName, brain_pin_e hwPin) {
if (hwPin == Gpio::Unassigned || hwPin == Gpio::Invalid) {
return;
}
const char *hwPinName;
if (isBrainPinValid(hwPin)) {
hwPinName = hwPortname(hwPin);
} else {
hwPinName = "smart";
}
efiPrintfProto(PROTOCOL_OUTPIN, "%s@%s", pinName, hwPinName);
}
// Print out the current mapping between logical and physical pins that
// the engine sniffer cares about, so we can display a physical pin
// in each engine sniffer row
static void printEngineSnifferPinMappings() {
#if EFI_PROD_CODE
printOutPin(PROTOCOL_CRANK1, engineConfiguration->triggerInputPins[0]);
printOutPin(PROTOCOL_CRANK2, engineConfiguration->triggerInputPins[1]);
for (int i = 0;i<CAM_INPUTS_COUNT;i++) {
extern const char *vvtNames[];
printOutPin(vvtNames[i], engineConfiguration->camInputs[i]);
}
printOutPin(PROTOCOL_HIP_NAME, engineConfiguration->hip9011IntHoldPin);
printOutPin(PROTOCOL_TACH_NAME, engineConfiguration->tachOutputPin);
#if EFI_LOGIC_ANALYZER
printOutPin(PROTOCOL_WA_CHANNEL_1, engineConfiguration->logicAnalyzerPins[0]);
printOutPin(PROTOCOL_WA_CHANNEL_2, engineConfiguration->logicAnalyzerPins[1]);
#endif /* EFI_LOGIC_ANALYZER */
int cylCount = minI(engineConfiguration->cylindersCount, MAX_CYLINDER_COUNT);
for (int i = 0; i < cylCount; i++) {
printOutPin(enginePins.coils[i].getShortName(), engineConfiguration->ignitionPins[i]);
printOutPin(enginePins.trailingCoils[i].getShortName(), engineConfiguration->trailingCoilPins[i]);
printOutPin(enginePins.injectors[i].getShortName(), engineConfiguration->injectionPins[i]);
}
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) {
printOutPin(enginePins.auxValve[i].getShortName(), engineConfiguration->auxValves[i]);
}
#endif /* EFI_PROD_CODE */
}
void printOverallStatus() {
#if EFI_ENGINE_SNIFFER
waveChart.publishIfFull();
#endif /* EFI_ENGINE_SNIFFER */
#if EFI_SENSOR_CHART
publishSensorChartIfFull();
#endif // EFI_SENSOR_CHART
/**
* we report the version every second - this way the console does not need to
* request it and we will display it pretty soon
*/
if (printVersionTimer.hasElapsedSec(1)) {
// we're sending, reset the timer
printVersionTimer.reset();
// Output the firmware version, board type, git hash, uptime in seconds, etc
printRusefiVersion(getEngine_type_e(engineConfiguration->engineType), FIRMWARE_ID);
// Output the current engine sniffer pin mappings
printEngineSnifferPinMappings();
}
}
static systime_t timeOfPreviousReport = (systime_t) -1;
#if !defined(LOGIC_ANALYZER_BUFFER_SIZE)
// TODO: how small can this be?
#define LOGIC_ANALYZER_BUFFER_SIZE 1000
#endif /* LOGIC_ANALYZER_BUFFER_SIZE */
#if EFI_LOGIC_ANALYZER
static char logicAnalyzerBuffer[LOGIC_ANALYZER_BUFFER_SIZE];
static Logging logicAnalyzerLogger("logic analyzer", logicAnalyzerBuffer, sizeof(logicAnalyzerBuffer));
#endif // EFI_LOGIC_ANALYZER
/**
* @brief Sends all pending data to rusEfi console
*
* This method is periodically invoked by the main loop
* todo: is this mostly dead code?
*/
void updateDevConsoleState() {
#if EFI_PROD_CODE
// todo: unify with simulator!
if (hasFirmwareError()) {
efiPrintf("%s error: %s", CRITICAL_PREFIX, getCriticalErrorMessage());
warningEnabled = false;
return;
}
#endif /* EFI_PROD_CODE */
#if HAL_USE_ADC
printFullAdcReportIfNeeded();
#endif /* HAL_USE_ADC */
systime_t nowSeconds = getTimeNowS();
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
int currentCkpEventCounter = engine->triggerCentral.triggerState.getTotalEventCounter();
if (prevCkpEventCounter == currentCkpEventCounter && timeOfPreviousReport == nowSeconds) {
return;
}
timeOfPreviousReport = nowSeconds;
prevCkpEventCounter = currentCkpEventCounter;
#else
chThdSleepMilliseconds(200);
#endif
#if EFI_LOGIC_ANALYZER
printWave(&logicAnalyzerLogger);
scheduleLogging(&logicAnalyzerLogger);
#endif /* EFI_LOGIC_ANALYZER */
}
__attribute__((weak)) Gpio getCommsLedPin() {
return Gpio::Unassigned;
}
__attribute__((weak)) Gpio getWarningLedPin() {
return Gpio::Unassigned;
}
__attribute__((weak)) Gpio getRunningLedPin() {
return Gpio::Unassigned;
}
static OutputPin* leds[] = { &enginePins.warningLedPin, &enginePins.runningLedPin,
&enginePins.errorLedPin, &enginePins.communicationLedPin, &enginePins.checkEnginePin };
static void initStatusLeds() {
enginePins.communicationLedPin.initPin("led: comm status", getCommsLedPin(), LED_PIN_MODE, true);
// checkEnginePin is already initialized by the time we get here
enginePins.warningLedPin.initPin("led: warning status", getWarningLedPin(), LED_PIN_MODE, true);
enginePins.runningLedPin.initPin("led: running status", getRunningLedPin(), LED_PIN_MODE, true);
}
#if EFI_PROD_CODE
static bool isTriggerErrorNow() {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
bool justHadError = engine->triggerCentral.triggerState.someSortOfTriggerError();
return justHadError || engine->triggerCentral.isTriggerDecoderError();
#else
return false;
#endif /* EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */
}
extern bool consoleByteArrived;
class CommunicationBlinkingTask : public PeriodicTimerController {
int getPeriodMs() override {
return counter % 2 == 0 ? onTimeMs : offTimeMs;
}
void setAllLeds(int value) {
// make sure we do not turn the critical LED off if already have
// critical error by now
for (uint32_t i = 0; !hasFirmwareError() && i < sizeof(leds) / sizeof(leds[0]); i++) {
leds[i]->setValue(value);
}
}
void PeriodicTask() override {
counter++;
bool lowVBatt = Sensor::getOrZero(SensorType::BatteryVoltage) < LOW_VBATT;
if (counter == 1) {
// first invocation of BlinkingTask
setAllLeds(1);
} else if (counter == 2) {
// second invocation of BlinkingTask
setAllLeds(0);
} else if (counter % 2 == 0) {
enginePins.communicationLedPin.setValue(0);
#if HW_CHECK_SD
extern int totalLoggedBytes;
if (totalLoggedBytes > 2000) {
enginePins.communicationLedPin.setValue(1);
}
#endif // HW_CHECK_SD
//#if HW_CHECK_MODE
// // we have to do anything possible to help users notice FACTORY MODE
// enginePins.errorLedPin.setValue(1);
// enginePins.runningLedPin.setValue(1);
//#endif // HW_CHECK_MODE
if (!lowVBatt) {
enginePins.warningLedPin.setValue(0);
}
} else {
#define BLINKING_PERIOD_MS 33
if (hasFirmwareError()) {
// special behavior in case of critical error - not equal on/off time
// this special behavior helps to notice that something is not right, also
// differentiates software firmware error from critical interrupt error with CPU halt.
offTimeMs = 50;
onTimeMs = 450;
} else if (consoleByteArrived) {
offTimeMs = 100;
onTimeMs = 33;
#if EFI_INTERNAL_FLASH
} else if (getNeedToWriteConfiguration()) {
offTimeMs = onTimeMs = 500;
#endif // EFI_INTERNAL_FLASH
} else {
onTimeMs =
#if EFI_USB_SERIAL
is_usb_serial_ready() ? 3 * BLINKING_PERIOD_MS :
#endif // EFI_USB_SERIAL
BLINKING_PERIOD_MS;
offTimeMs = 0.6 * onTimeMs;
}
enginePins.communicationLedPin.setValue(1);
//#if HW_CHECK_MODE
// // we have to do anything possible to help users notice FACTORY MODE
// enginePins.errorLedPin.setValue(0);
// enginePins.runningLedPin.setValue(0);
//#endif // HW_CHECK_MODE
#if EFI_ENGINE_CONTROL
if (lowVBatt || isTriggerErrorNow()) {
// todo: at the moment warning codes do not affect warning LED?!
enginePins.warningLedPin.setValue(1);
}
#endif /* EFI_ENGINE_CONTROL */
}
}
private:
int counter = 0;
int onTimeMs = 100;
int offTimeMs = 100;
};
static CommunicationBlinkingTask communicationsBlinkingTask;
#endif /* EFI_PROD_CODE */
#if EFI_HIP_9011
extern HIP9011 instance;
#endif /* EFI_HIP_9011 */
#if EFI_TUNER_STUDIO
static void updateTempSensors() {
SensorResult clt = Sensor::get(SensorType::Clt);
engine->outputChannels.coolant = clt.value_or(0);
engine->outputChannels.isCltError = !clt.Valid;
SensorResult iat = Sensor::get(SensorType::Iat);
engine->outputChannels.intake = iat.value_or(0);
engine->outputChannels.isIatError = !iat.Valid;
SensorResult auxTemp1 = Sensor::get(SensorType::AuxTemp1);
engine->outputChannels.auxTemp1 = auxTemp1.value_or(0);
SensorResult auxTemp2 = Sensor::get(SensorType::AuxTemp2);
engine->outputChannels.auxTemp2 = auxTemp2.value_or(0);
}
static void updateThrottles() {
SensorResult tps1 = Sensor::get(SensorType::Tps1);
engine->outputChannels.TPSValue = tps1.value_or(0);
engine->outputChannels.isTpsError = !tps1.Valid;
engine->outputChannels.tpsADC = convertVoltageTo10bitADC(Sensor::getRaw(SensorType::Tps1Primary));
SensorResult tps2 = Sensor::get(SensorType::Tps2);
engine->outputChannels.TPS2Value = tps2.value_or(0);
// If we don't have a TPS2 at all, don't turn on the failure light
engine->outputChannels.isTps2Error = isTps2Error();
SensorResult pedal = Sensor::get(SensorType::AcceleratorPedal);
engine->outputChannels.throttlePedalPosition = pedal.value_or(0);
// Only report fail if you have one (many people don't)
engine->outputChannels.isPedalError = isPedalError();
// TPS 1 pri/sec split
engine->outputChannels.tps1Split = Sensor::getOrZero(SensorType::Tps1Primary) - Sensor::getOrZero(SensorType::Tps1Secondary);
// TPS 2 pri/sec split
engine->outputChannels.tps2Split = Sensor::getOrZero(SensorType::Tps2Primary) - Sensor::getOrZero(SensorType::Tps2Secondary);
// TPS1 - TPS2 split
engine->outputChannels.tps12Split = Sensor::getOrZero(SensorType::Tps1) - Sensor::getOrZero(SensorType::Tps2);
// Pedal pri/sec split
engine->outputChannels.accPedalSplit = Sensor::getOrZero(SensorType::AcceleratorPedalPrimary) - Sensor::getOrZero(SensorType::AcceleratorPedalSecondary);
}
static void updateLambda() {
float lambdaValue = Sensor::getOrZero(SensorType::Lambda1);
engine->outputChannels.lambdaValue = lambdaValue;
engine->outputChannels.AFRValue = lambdaValue * engine->fuelComputer.stoichiometricRatio;
float lambda2Value = Sensor::getOrZero(SensorType::Lambda2);
engine->outputChannels.lambdaValue2 = lambda2Value;
engine->outputChannels.AFRValue2 = lambda2Value * engine->fuelComputer.stoichiometricRatio;
}
static void updateFuelSensors() {
// Low pressure is directly in kpa
engine->outputChannels.lowFuelPressure = Sensor::getOrZero(SensorType::FuelPressureLow);
// High pressure is in bar, aka 100 kpa
engine->outputChannels.highFuelPressure = KPA2BAR(Sensor::getOrZero(SensorType::FuelPressureHigh));
engine->outputChannels.flexPercent = Sensor::getOrZero(SensorType::FuelEthanolPercent);
engine->outputChannels.fuelTankLevel = Sensor::getOrZero(SensorType::FuelLevel);
}
static void updateVvtSensors() {
#if EFI_SHAFT_POSITION_INPUT
// 248
engine->outputChannels.vvtPositionB1I = engine->triggerCentral.getVVTPosition(/*bankIndex*/0, /*camIndex*/0);
engine->outputChannels.vvtPositionB1E = engine->triggerCentral.getVVTPosition(/*bankIndex*/0, /*camIndex*/1);
engine->outputChannels.vvtPositionB2I = engine->triggerCentral.getVVTPosition(/*bankIndex*/1, /*camIndex*/0);
engine->outputChannels.vvtPositionB2E = engine->triggerCentral.getVVTPosition(/*bankIndex*/1, /*camIndex*/1);
#endif
}
static void updateVehicleSpeed() {
#if EFI_VEHICLE_SPEED
engine->outputChannels.vehicleSpeedKph = Sensor::getOrZero(SensorType::VehicleSpeed);
engine->outputChannels.speedToRpmRatio = engine->module<GearDetector>()->getGearboxRatio();
engine->outputChannels.detectedGear = Sensor::getOrZero(SensorType::DetectedGear);
#endif /* EFI_VEHICLE_SPEED */
}
static void updateRawSensors() {
engine->outputChannels.rawTps1Primary = Sensor::getRaw(SensorType::Tps1Primary);
engine->outputChannels.rawTps1Secondary = Sensor::getRaw(SensorType::Tps1Secondary);
engine->outputChannels.rawTps2Primary = Sensor::getRaw(SensorType::Tps2Primary);
engine->outputChannels.rawTps2Secondary = Sensor::getRaw(SensorType::Tps2Secondary);
engine->outputChannels.rawPpsPrimary = Sensor::getRaw(SensorType::AcceleratorPedalPrimary);
engine->outputChannels.rawPpsSecondary = Sensor::getRaw(SensorType::AcceleratorPedalSecondary);
engine->outputChannels.rawBattery = Sensor::getRaw(SensorType::BatteryVoltage);
engine->outputChannels.rawClt = Sensor::getRaw(SensorType::Clt);
engine->outputChannels.rawIat = Sensor::getRaw(SensorType::Iat);
engine->outputChannels.rawOilPressure = Sensor::getRaw(SensorType::OilPressure);
engine->outputChannels.rawLowFuelPressure = Sensor::getRaw(SensorType::FuelPressureLow);
engine->outputChannels.rawHighFuelPressure = Sensor::getRaw(SensorType::FuelPressureHigh);
engine->outputChannels.rawMaf = Sensor::getRaw(SensorType::Maf);
engine->outputChannels.rawMaf2 = Sensor::getRaw(SensorType::Maf2);
engine->outputChannels.rawMap = Sensor::getRaw(SensorType::MapSlow);
engine->outputChannels.rawWastegatePosition = Sensor::getRaw(SensorType::WastegatePosition);
engine->outputChannels.rawIdlePositionSensor = Sensor::getRaw(SensorType::IdlePosition);
engine->outputChannels.luaGauges[0] = Sensor::getOrZero(SensorType::LuaGauge1);
engine->outputChannels.luaGauges[1] = Sensor::getOrZero(SensorType::LuaGauge2);
for (int i = 0; i < LUA_ANALOG_INPUT_COUNT; i++) {
adc_channel_e ch = engineConfiguration->auxAnalogInputs[i];
if (isAdcChannelValid(ch)) {
engine->outputChannels.rawAnalogInput[i] = getVoltageDivided("raw aux", ch);
}
}
// TODO: transition AFR to new sensor model
engine->outputChannels.rawAfr = (engineConfiguration->afr.hwChannel == EFI_ADC_NONE) ? 0 : getVoltageDivided("ego", engineConfiguration->afr.hwChannel);
}
static void updatePressures() {
engine->outputChannels.baroPressure = Sensor::getOrZero(SensorType::BarometricPressure);
engine->outputChannels.MAPValue = Sensor::getOrZero(SensorType::Map);
engine->outputChannels.oilPressure = Sensor::getOrZero(SensorType::OilPressure);
engine->outputChannels.auxLinear1 = Sensor::getOrZero(SensorType::AuxLinear1);
engine->outputChannels.auxLinear2 = Sensor::getOrZero(SensorType::AuxLinear2);
}
static void updateMiscSensors() {
engine->outputChannels.VBatt = Sensor::getOrZero(SensorType::BatteryVoltage);
engine->outputChannels.idlePositionSensor = Sensor::getOrZero(SensorType::IdlePosition);
engine->outputChannels.wastegatePositionSensor = Sensor::getOrZero(SensorType::WastegatePosition);
engine->outputChannels.ISSValue = Sensor::getOrZero(SensorType::InputShaftSpeed);
engine->outputChannels.auxSpeed1 = Sensor::getOrZero(SensorType::AuxSpeed1);
engine->outputChannels.auxSpeed2 = Sensor::getOrZero(SensorType::AuxSpeed2);
#if HAL_USE_ADC
engine->outputChannels.internalMcuTemperature = getMCUInternalTemperature();
#endif /* HAL_USE_ADC */
}
static void updateSensors() {
updateTempSensors();
updateThrottles();
updateRawSensors();
updateLambda();
updateFuelSensors();
updateVvtSensors();
updateVehicleSpeed();
updatePressures();
updateMiscSensors();
}
static void updateFuelCorrections() {
engine->outputChannels.fuelPidCorrection[0] = 100.0f * (engine->stftCorrection[0] - 1.0f);
engine->outputChannels.fuelPidCorrection[1] = 100.0f * (engine->stftCorrection[1] - 1.0f);
engine->outputChannels.Gego = 100.0f * engine->stftCorrection[0];
// get rid of this, have gauges use injector model info directly
engine->outputChannels.injectorLagMs = engine->module<InjectorModel>()->getDeadtime();
}
static void updateFuelResults() {
engine->outputChannels.fuelFlowRate = engine->engineState.fuelConsumption.getConsumptionGramPerSecond();
engine->outputChannels.totalFuelConsumption = engine->engineState.fuelConsumption.getConsumedGrams();
}
static void updateFuelInfo() {
updateFuelCorrections();
updateFuelResults();
const auto& wallFuel = engine->injectionEvents.elements[0].wallFuel;
engine->outputChannels.wallFuelAmount = wallFuel.getWallFuel() * 1000; // Convert grams to mg
engine->outputChannels.wallFuelCorrectionValue = wallFuel.wallFuelCorrection * 1000; // Convert grams to mg
engine->outputChannels.injectionOffset = engine->engineState.injectionOffset;
engine->outputChannels.veValue = engine->engineState.currentVe;
}
static void updateIgnition(int rpm) {
engine->outputChannels.coilDutyCycle = getCoilDutyCycle(rpm);
}
static void updateFlags() {
#if EFI_USB_SERIAL
engine->outputChannels.isUsbConnected = is_usb_serial_ready();
#endif // EFI_USB_SERIAL
engine->outputChannels.isMainRelayOn = enginePins.mainRelay.getLogicValue();
engine->outputChannels.isFanOn = enginePins.fanRelay.getLogicValue();
engine->outputChannels.isFan2On = enginePins.fanRelay2.getLogicValue();
engine->outputChannels.isO2HeaterOn = enginePins.o2heater.getLogicValue();
// todo: eliminate state copy logic by giving DfcoController it's owm xxx.txt and leveraging LiveData
engine->outputChannels.dfcoActive = engine->module<DfcoController>()->cutFuel();
#if EFI_LAUNCH_CONTROL
engine->outputChannels.launchTriggered = engine->launchController.isLaunchCondition;
#endif
#if EFI_PROD_CODE
engine->outputChannels.isTriggerError = isTriggerErrorNow();
#endif // EFI_PROD_CODE
#if EFI_INTERNAL_FLASH
engine->outputChannels.needBurn = getNeedToWriteConfiguration();
#endif /* EFI_INTERNAL_FLASH */
}
// weird thing: one of the reasons for this to be a separate method is stack usage reduction in non-optimized build
// see https://github.com/rusefi/rusefi/issues/3302 and linked tickets
static void updateTpsDebug() {
// TPS 1 pri/sec ratio - useful for ford ETB that has partial-range second channel
engine->outputChannels.debugFloatField5 = 100 * Sensor::getOrZero(SensorType::Tps1Primary) / Sensor::getOrZero(SensorType::Tps1Secondary);
}
// sensor state for EFI Analytics Tuner Studio
// todo: the 'let's copy internal state for external consumers' approach is DEPRECATED
// As of 2022 it's preferred to leverage LiveData where all state is exposed
void updateTunerStudioState() {
TunerStudioOutputChannels *tsOutputChannels = &engine->outputChannels;
#if EFI_SHAFT_POSITION_INPUT
int rpm = Sensor::get(SensorType::Rpm).value_or(0);
#else /* EFI_SHAFT_POSITION_INPUT */
int rpm = 0;
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_PROD_CODE
executorStatistics();
#endif /* EFI_PROD_CODE */
// header
tsOutputChannels->tsConfigVersion = TS_FILE_VERSION;
static_assert(offsetof (TunerStudioOutputChannels, tsConfigVersion) == TS_FILE_VERSION_OFFSET);
DcHardware *getdcHardware();
DcHardware *dc = getdcHardware();
engine->dc_motors.dcOutput0 = dc->dcMotor.get();
engine->dc_motors.isEnabled0_int = dc->msg() == nullptr;
#if EFI_SHAFT_POSITION_INPUT
// offset 0
tsOutputChannels->RPMValue = rpm;
auto instantRpm = engine->triggerCentral.instantRpm.getInstantRpm();
tsOutputChannels->instantRpm = instantRpm;
updateSensors();
updateFuelInfo();
updateIgnition(rpm);
updateFlags();
// 104
tsOutputChannels->rpmAcceleration = engine->rpmCalculator.getRpmAcceleration();
// Output both the estimated air flow, and measured air flow (if available)
tsOutputChannels->mafMeasured = Sensor::getOrZero(SensorType::Maf);
tsOutputChannels->mafMeasured2 = Sensor::getOrZero(SensorType::Maf2);
tsOutputChannels->mafEstimate = engine->engineState.airflowEstimate;
tsOutputChannels->totalTriggerErrorCounter = engine->triggerCentral.triggerState.totalTriggerErrorCounter;
tsOutputChannels->orderingErrorCounter = engine->triggerCentral.triggerState.orderingErrorCounter;
#endif // EFI_SHAFT_POSITION_INPUT
// 68
// 140
#if EFI_ENGINE_CONTROL
tsOutputChannels->injectorDutyCycle = getInjectorDutyCycle(rpm);
#endif
// 224
efitimesec_t timeSeconds = getTimeNowS();
tsOutputChannels->seconds = timeSeconds;
// 252
tsOutputChannels->engineMode = packEngineMode();
// 120
tsOutputChannels->firmwareVersion = getRusEfiVersion();
// 276
tsOutputChannels->accelerationX = engine->sensors.accelerometer.x;
// 278
tsOutputChannels->accelerationY = engine->sensors.accelerometer.y;
tsOutputChannels->accelerationZ = engine->sensors.accelerometer.z;
tsOutputChannels->accelerationRoll = engine->sensors.accelerometer.roll;
tsOutputChannels->accelerationYaw = engine->sensors.accelerometer.yaw;
#if EFI_DYNO_VIEW
tsOutputChannels->VssAcceleration = getDynoviewAcceleration();
#endif
tsOutputChannels->turboSpeed = Sensor::getOrZero(SensorType::TurbochargerSpeed);
extern FrequencySensor inputShaftSpeedSensor;
tsOutputChannels->issEdgeCounter = inputShaftSpeedSensor.eventCounter;
extern FrequencySensor vehicleSpeedSensor;
tsOutputChannels->vssEdgeCounter = vehicleSpeedSensor.eventCounter;
#if HW_CHECK_MODE
tsOutputChannels->hasCriticalError = 1;
#else
tsOutputChannels->hasCriticalError = hasFirmwareError();
#endif // HW_CHECK_MODE
tsOutputChannels->isWarnNow = engine->engineState.warnings.isWarningNow();
#if EFI_HIP_9011_DEBUG
tsOutputChannels->isKnockChipOk = (instance.invalidResponsesCount == 0);
#endif /* EFI_HIP_9011 */
tsOutputChannels->tpsAccelFuel = engine->engineState.tpsAccelEnrich;
tsOutputChannels->checkEngine = hasErrorCodes();
#if EFI_MAX_31855
for (int i = 0; i < EGT_CHANNEL_COUNT; i++)
tsOutputChannels->egt[i] = getMax31855EgtValue(i);
#endif /* EFI_MAX_31855 */
tsOutputChannels->warningCounter = engine->engineState.warnings.warningCounter;
tsOutputChannels->lastErrorCode = static_cast<uint16_t>(engine->engineState.warnings.lastErrorCode);
for (int i = 0; i < 8;i++) {
tsOutputChannels->recentErrorCode[i] = static_cast<uint16_t>(engine->engineState.warnings.recentWarnings.get(i).Code);
}
tsOutputChannels->starterState = enginePins.starterControl.getLogicValue();
tsOutputChannels->starterRelayDisable = enginePins.starterRelayDisable.getLogicValue();
tsOutputChannels->mapFast = Sensor::getOrZero(SensorType::MapFast);
tsOutputChannels->revolutionCounterSinceStart = engine->rpmCalculator.getRevolutionCounterSinceStart();
#if EFI_CAN_SUPPORT
postCanState();
#endif /* EFI_CAN_SUPPORT */
#if EFI_CLOCK_LOCKS
tsOutputChannels->maxLockedDuration = NT2US(maxLockedDuration);
#endif /* EFI_CLOCK_LOCKS */
#if EFI_SHAFT_POSITION_INPUT
tsOutputChannels->maxTriggerReentrant = maxTriggerReentrant;
tsOutputChannels->triggerPrimaryFall = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_FALLING);
tsOutputChannels->triggerPrimaryRise = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_RISING);
tsOutputChannels->triggerSecondaryFall = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_FALLING);
tsOutputChannels->triggerSecondaryRise = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_RISING);
tsOutputChannels->triggerVvtRise = engine->triggerCentral.vvtEventRiseCounter[0];
tsOutputChannels->triggerVvtFall = engine->triggerCentral.vvtEventFallCounter[0];
tsOutputChannels->triggerVvt2Fall = engine->triggerCentral.vvtEventRiseCounter[1];
tsOutputChannels->triggerVvt2Rise = engine->triggerCentral.vvtEventFallCounter[1];
#endif // EFI_SHAFT_POSITION_INPUT
#if HAL_USE_PAL && EFI_PROD_CODE
tsOutputChannels->extiOverflowCount = getExtiOverflowCounter();
#endif
switch (engineConfiguration->debugMode) {
case DBG_TPS_ACCEL:
tsOutputChannels->debugIntField1 = engine->tpsAccelEnrichment.cb.getSize();
break;
case DBG_SR5_PROTOCOL: {
const int _10_6 = 100000;
tsOutputChannels->debugIntField1 = tsState.textCommandCounter * _10_6 + tsState.totalCounter;
tsOutputChannels->debugIntField2 = tsState.outputChannelsCommandCounter * _10_6 + tsState.writeValueCommandCounter;
tsOutputChannels->debugIntField3 = tsState.readPageCommandsCounter * _10_6 + tsState.burnCommandCounter;
break;
}
case DBG_TRIGGER_COUNTERS:
#if EFI_SHAFT_POSITION_INPUT
tsOutputChannels->debugIntField4 = engine->triggerCentral.triggerState.currentCycle.eventCount[0];
tsOutputChannels->debugIntField5 = engine->triggerCentral.triggerState.currentCycle.eventCount[1];
#endif // EFI_SHAFT_POSITION_INPUT
break;
#if EFI_HIP_9011_DEBUG
case DBG_KNOCK:
// todo: maybe extract hipPostState(tsOutputChannels);
tsOutputChannels->debugIntField1 = instance.correctResponsesCount;
tsOutputChannels->debugIntField2 = instance.invalidResponsesCount;
break;
#endif /* EFI_HIP_9011 */
#if EFI_MAP_AVERAGING
case DBG_MAP:
postMapState(tsOutputChannels);
break;
#endif /* EFI_MAP_AVERAGING */
case DBG_ANALOG_INPUTS:
tsOutputChannels->debugFloatField4 = isAdcChannelValid(engineConfiguration->map.sensor.hwChannel) ? getVoltageDivided("map", engineConfiguration->map.sensor.hwChannel) : 0.0f;
tsOutputChannels->debugFloatField7 = isAdcChannelValid(engineConfiguration->afr.hwChannel) ? getVoltageDivided("ego", engineConfiguration->afr.hwChannel) : 0.0f;
break;
case DBG_ANALOG_INPUTS2:
updateTpsDebug();
break;
case DBG_INSTANT_RPM:
{
#if EFI_SHAFT_POSITION_INPUT
tsOutputChannels->debugFloatField2 = instantRpm / Sensor::getOrZero(SensorType::Rpm);
#endif // EFI_SHAFT_POSITION_INPUT
}
break;
case DBG_ION:
#if EFI_CDM_INTEGRATION
ionPostState(tsOutputChannels);
#endif /* EFI_CDM_INTEGRATION */
break;
case DBG_TLE8888:
#if (BOARD_TLE8888_COUNT > 0)
tle8888PostState();
#endif /* BOARD_TLE8888_COUNT */
break;
case DBG_LOGIC_ANALYZER:
#if EFI_LOGIC_ANALYZER
reportLogicAnalyzerToTS();
#endif /* EFI_LOGIC_ANALYZER */
break;
default:
;
}
}
#endif /* EFI_TUNER_STUDIO */
void initStatusLoop() {
addConsoleActionI("warn", setWarningEnabled);
}
void startStatusThreads() {
// todo: refactoring needed, this file should probably be split into pieces
#if EFI_PROD_CODE
initStatusLeds();
communicationsBlinkingTask.start();
#endif /* EFI_PROD_CODE */
}