1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use fixed::types::I80F48;

pub trait ClampToInt {
    fn clamp_to_i64(&self) -> i64;
    fn clamp_to_u64(&self) -> u64;
}

impl ClampToInt for I80F48 {
    fn clamp_to_i64(&self) -> i64 {
        if *self <= i64::MIN {
            i64::MIN
        } else if *self >= i64::MAX {
            i64::MAX
        } else {
            self.to_num::<i64>()
        }
    }

    fn clamp_to_u64(&self) -> u64 {
        if *self <= 0 {
            0
        } else if *self >= u64::MAX {
            u64::MAX
        } else {
            self.to_num::<u64>()
        }
    }
}

impl ClampToInt for f64 {
    fn clamp_to_i64(&self) -> i64 {
        if *self <= i64::MIN as f64 {
            i64::MIN
        } else if *self >= i64::MAX as f64 {
            i64::MAX
        } else {
            *self as i64
        }
    }

    fn clamp_to_u64(&self) -> u64 {
        if *self <= 0.0 {
            0
        } else if *self >= u64::MAX as f64 {
            u64::MAX
        } else {
            *self as u64
        }
    }
}

impl ClampToInt for u64 {
    fn clamp_to_i64(&self) -> i64 {
        if *self >= i64::MAX as u64 {
            i64::MAX
        } else {
            *self as i64
        }
    }

    fn clamp_to_u64(&self) -> u64 {
        *self
    }
}

pub trait LowPrecisionDivision {
    fn checked_div_30bit_precision(&self, rhs: I80F48) -> Option<I80F48>;
    fn checked_div_f64_precision(&self, rhs: I80F48) -> Option<I80F48>;
}

impl LowPrecisionDivision for I80F48 {
    /// Divide by taking the top 64 bits of self, and top 32 bits of rhs. Then divide
    /// those as u64 and shift everything back. Leads to a division result that has the
    /// first 30 bits correct.
    fn checked_div_30bit_precision(&self, rhs: I80F48) -> Option<I80F48> {
        let a = self;
        let b = rhs;

        if b.is_zero() {
            return None;
        }

        let a_neg = a.is_negative();
        let b_neg = b.is_negative();
        let r_neg = a_neg ^ b_neg;

        let an_bits = if a_neg { -a.to_bits() } else { a.to_bits() } as u128;
        let bn_bits = if b_neg { -b.to_bits() } else { b.to_bits() } as u128;

        let an_zeros = an_bits.leading_zeros();
        let bn_zeros = bn_bits.leading_zeros();

        // shift (positive means to the left) and
        // ar has the high bit be 1
        let (an_shift, ar) = if an_zeros >= 64 {
            let s = an_zeros - 64;
            (s as i32, (an_bits << s) as u64)
        } else {
            let s = 64 - an_zeros;
            (-(s as i32), (an_bits >> s) as u64)
        };

        // br has the first u32 be zero
        let (bn_shift, br) = if bn_zeros >= 96 {
            (0, bn_bits as u64)
        } else {
            let s = 96 - bn_zeros;
            (-(s as i32), (bn_bits >> s) as u64)
        };

        let rr = ar / br;
        let s = 48 + bn_shift - an_shift;
        let rr_zeros = rr.leading_zeros() as i32;
        let r = if 63 + rr_zeros < s {
            return None; // overflow
        } else if s >= 0 {
            (rr as u128) << s
        } else {
            (rr as u128) >> (-s)
        };

        Some(I80F48::from_bits(if r_neg {
            -(r as i128)
        } else {
            r as i128
        }))
    }

    /// Convert to f64 and divide those.
    fn checked_div_f64_precision(&self, rhs: I80F48) -> Option<I80F48> {
        I80F48::checked_from_num(self.to_num::<f64>() / rhs.to_num::<f64>())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn test_i80f48_mul_rounding() {
        // It's not desired, but I80F48 seems to round to -inf
        let price = I80F48::from_num(0.04);
        let x = I80F48::from_bits(96590783907000000);
        assert_eq!((x * price).to_string(), "13.726375969298193");
        assert_eq!(((-x) * price).to_string(), "-13.726375969298196");
    }

    /// Random I80F48, uniformly distributed over number of value bits.
    fn rand_i80f48() -> I80F48 {
        use rand::Rng;
        let mut rng = rand::thread_rng();
        let bits = rng.gen_range(0..128);
        if bits == 0 {
            return I80F48::ZERO;
        }
        let val = rng.gen_range(2u128.pow(bits - 1)..2u128.pow(bits));
        I80F48::from_bits(if rng.gen::<bool>() {
            -(val as i128)
        } else {
            val as i128
        })
    }

    /// Check that I80F48 division is correct
    #[test]
    pub fn test_i80f48_div() {
        for _ in 0..10000 {
            let a = rand_i80f48();
            let b = rand_i80f48();
            let actual = a.checked_div(b);
            let expected = (|| {
                use num::BigInt;
                if b.is_zero() {
                    return None;
                }
                let a = BigInt::from(a.to_bits()) * BigInt::from(2).pow(128);
                let b = BigInt::from(b.to_bits());
                let r: BigInt = (a / b) >> 80;
                if r > BigInt::from(i128::MAX) || r < BigInt::from(i128::MIN) {
                    return None;
                }
                let (sign, digits) = r.to_u64_digits();
                assert!(digits.len() < 3);
                let rv = match digits.len() {
                    0 => 0u128,
                    1 => digits[0] as u128,
                    2 => digits[0] as u128 + (digits[1] as u128) * (1 << 64),
                    _ => 0,
                };
                Some(I80F48::from_bits(match sign {
                    num::bigint::Sign::Minus => -(rv as i128),
                    _ => rv as i128,
                }))
            })();
            assert_eq!(actual.is_some(), expected.is_some());
            if actual.is_some() && expected.is_some() {
                let actual = actual.unwrap();
                let expected = expected.unwrap();
                if actual.is_positive() {
                    assert_eq!(actual, expected);
                } else {
                    // BigInt shr rounds differently than I80F48 div
                    assert!(actual == expected || actual == expected + I80F48::DELTA);
                }
            }
        }
    }

    #[test]
    pub fn test_i80f48_div_30bit_sanity() {
        let one = I80F48::ONE;
        let two = I80F48::from(2);
        let half = I80F48::from_num(0.5);
        assert_eq!(one.checked_div_30bit_precision(one), Some(one));
        assert_eq!(one.checked_div_30bit_precision(-one), Some(-one));
        assert_eq!((-one).checked_div_30bit_precision(one), Some(-one));
        assert_eq!((-one).checked_div_30bit_precision(-one), Some(one));
        assert_eq!(half.checked_div_30bit_precision(half), Some(one));
        assert_eq!(two.checked_div_30bit_precision(two), Some(one));
        assert_eq!(one.checked_div_30bit_precision(two), Some(half));
        assert_eq!(one.checked_div_30bit_precision(half), Some(two));
        assert_eq!(two.checked_div_30bit_precision(half), Some(I80F48::from(4)));
        assert_eq!(
            one.checked_div_30bit_precision(I80F48::from_bits(1)),
            Some(I80F48::from_bits(1 << 96))
        );

        for i in 0..127 {
            for j in 0..127 {
                println!("i {i}, j {j}");
                let a = I80F48::from_bits(1 << i);
                let b = I80F48::from_bits(1 << j);
                let s = i + 48 - j;
                let r = if s >= 0 && s < 127 {
                    Some(I80F48::from_bits(1 << s))
                } else if s < 0 {
                    Some(I80F48::ZERO)
                } else {
                    None
                };
                assert_eq!(a.checked_div_30bit_precision(b), r);
            }
        }
    }

    #[test]
    pub fn test_i80f48_div_30bit_random() {
        for _ in 0..10000 {
            let a = rand_i80f48();
            let b = rand_i80f48();
            let actual = a.checked_div_30bit_precision(b);
            let expected = a.checked_div(b);
            assert_eq!(actual.is_some(), expected.is_some());
            if actual.is_some() && expected.is_some() {
                let actual = actual.unwrap();
                let expected = expected.unwrap();
                let precision_bits = {
                    let zexp = expected.abs().to_bits().leading_zeros();
                    let err = (actual - expected).abs();
                    let zerr = err.to_bits().leading_zeros();
                    zerr as i32 - zexp as i32
                };
                let sign_ok = actual.is_negative() == expected.is_negative();

                // either at least 30 bits of precision, or all but the last bit correct (last bit may round differently)
                assert!(
                    (precision_bits >= 30 && sign_ok) || (actual - expected).abs() <= I80F48::DELTA
                );
            }
        }
    }

    #[test]
    pub fn test_i80f48_div_f64_random() {
        for _ in 0..10000 {
            let a = rand_i80f48();
            let b = rand_i80f48();
            let actual = a.checked_div_f64_precision(b);
            let expected = a.checked_div(b);
            assert_eq!(actual.is_some(), expected.is_some());
            if actual.is_some() && expected.is_some() {
                let actual = actual.unwrap();
                let expected = expected.unwrap();
                let precision_bits = {
                    let zexp = expected.abs().to_bits().leading_zeros();
                    let err = (actual - expected).abs();
                    let zerr = err.to_bits().leading_zeros();
                    zerr as i32 - zexp as i32
                };
                let sign_ok = actual.is_negative() == expected.is_negative();

                // either at least 50 bits of precision, or all but the last bit correct (last bit may round differently)
                assert!(
                    (precision_bits >= 50 && sign_ok) || (actual - expected).abs() <= I80F48::DELTA
                );
            }
        }
    }
}