
Audit
Mango v4

Presented by:

OtterSec contact@osec.io

Nicola Vela nick0ve@osec.io

Harrison Green hgarrereyn@osec.io

mailto:contact@osec.io
mailto:nick0ve@osec.io
mailto:hgarrereyn@osec.io

Contents
01 Executive Summary 3

Overview . 3
Key Findings . 3

02 Scope 4

03 Findings 5

04 Vulnerabilities 6
OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions 8
OS-MNG-ADV-01 [med] | [0.22.0] Allocator Can Overflow Into Program Area 10
OS-MNG-ADV-02 [low] | Inadequate Sanitization Of Token Indexes 11
OS-MNG-ADV-03 [low] | [0.17.0] Insufficient Verification Of Pyth Oracle Status 13
OS-MNG-ADV-04 [low] | [0.17.0] Possible Borrow In Token Force Closing 14
OS-MNG-ADV-05 [low] | [0.18.0] Not Reserving TokenPositions 15
OS-MNG-ADV-06 [low] | [0.19.0] Swap Fee Acts As A Rebate 16
OS-MNG-ADV-07 [low] | [0.19.0] Account Resizing May Be Blocked 17
OS-MNG-ADV-08 [low] | [0.20.0] TCS Premium Auction Can Leave Window 19
OS-MNG-ADV-09 [low] | [0.22.0] Missing ATA Ownership Check 20

05 General Findings 21
OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions 23
OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD . 25
OS-MNG-SUG-02 | Incorrect Check When Copying String Data 26
OS-MNG-SUG-03 | Replace Panics With Descriptive Errors . 27
OS-MNG-SUG-04 | Improve Clarity Of Token Index Check . 28
OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading 29
OS-MNG-SUG-06 | [0.17.0] Calculating Buyback Fees Accrued Checks 30
OS-MNG-SUG-07 | [0.17.0] Consider Merging Functions . 31
OS-MNG-SUG-08 | [0.17.0] Address Anti-pattern In Edit Instructions 32
OS-MNG-SUG-09 | [0.17.0] Improve Comment Clarity . 33
OS-MNG-SUG-10 | [0.17.0] Loss Of Accrued Buyback Fees . 34
OS-MNG-SUG-11 | [0.19.0] Swap Fee May Be Bypassed . 35
OS-MNG-SUG-12 | [0.20.0] (nit) Simplify TCS Assertion . 36
OS-MNG-SUG-13 | [0.20.0] Remove Liqee Token Account Deactivation in TCS Trigger 37
OS-MNG-SUG-14 | [0.20.0] (nit) Align Naming Convention . 38
OS-MNG-SUG-15 | [0.20.0] Defensive Assert in TCS Start . 39
OS-MNG-SUG-16 | [0.20.0] Inconsistent Maker Fee Computation 40

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 43

Mango v4 Audit CONTENTS

Appendices

A Vulnerability Rating Scale 42

B Procedure 43

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 43

01 | Executive Summary

Overview
Mango engaged OtterSec to perform an assessment of the mango-v4 program. We performed an initial
audit of the core program code and subsequent follow-up audits on specific release candidates. This
document contains findings from all reviews. The assessments were conducted between February 22nd,
2023 and January 29th, 2024. For more information on our auditing methodology, see Appendix B.

All the issues were communicated to the team prior to the delivery of the report to speed up remediation.
After delivering our audit report, we worked closely with the team to streamline patches and confirm
remediation.

Key Findings
Over the course of this audit engagement, we produced 27 findings in total.

In particular, we found an issue related to HealthRegion, which allowsmultiple instructions to execute
withoutperforminghealth checks. Thismayallowmalicioususers tocreatedebtand immediately liquidate
it in the same transaction, stealing funds from the protocol (OS-MNG-ADV-00). We also noted an issue
with token registrations that may lead to a denial of service (OS-MNG-ADV-02).

Additionally, we discovered an issue in how the protocol handles USD to USDC conversions (OS-MNG-
SUG-01). We also made recommendations about the general quality of life issues (OS-MNG-SUG-09) and
returning unclear errors to the users (OS-MNG-SUG-03).

Overall, we commend the Mango team for being responsive and knowledgeable throughout the audit.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 43

02 | Scope
The source code was delivered to us in a git repository at github.com/blockworks-foundation/mango-v4.
The initial auditwas performed against commit 5c7a2e3. Subsequent audits on specific release candidates
were performed as follows:

• 0.17.0 - 9bd3913

• 0.18.0 - d98bf23

• 0.19.0 - e37f1ed

• 0.20.0 - a41a82e

• 0.21.0 - d6f46be

• 0.22.0 - e107b28

Mango-v4 is a decentralized exchange built on Solana, offering various on-chain cryptocurrency trading
options.

Users may build accounts with a variety of positions. However, every position must be over-collateralized
so that the protocol maymanage the risk of margin trading through permissionless liquidations.

Its key features include:

1. Borrowing and lending capabilities, offering users to lend and earn interest based on howmany
users borrow.

2. Perpetual futures trading across various assets through its own orderbook.

3. Spot trading through Openbook DEX.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 43

https://github.com/blockworks-foundation/mango-v4
https://github.com/blockworks-foundation/mango-v4/commit/5c7a2e3
https://github.com/blockworks-foundation/mango-v4/commit/9bd3913ba4486e15e5c52fc27f65f894cb077152
https://github.com/blockworks-foundation/mango-v4/commit/d98bf2357bc9d31ba98e4b9256aec34c39324a9c
https://github.com/blockworks-foundation/mango-v4/commit/e37f1ed99656923f6e29e46e0925b5bdac3ed1b1
https://github.com/blockworks-foundation/mango-v4/commit/a41a82e57ad7df90a8041f1b0070faf536e41eb8
https://github.com/blockworks-foundation/mango-v4/commit/d6f46bec70a86a3d29adad015871a8c1da1a6b32
https://github.com/blockworks-foundation/mango-v4/commit/e107b281f9f8f1ff1b8c9c0e68eacd0eafe4a1cc

03 | Findings
Overall, we reported 27 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will help mitigate future vulnerabilities.

Severity Count

Critical 1
High 0

Medium 1
Low 8

Informational 17

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 43

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 43

Mango v4 Audit 04 | Vulnerabilities

ID Severity Status Description

OS-MNG-ADV-00 Critical Resolved Malicious users may exploit the lack of access controls
within HealthRegions to generate bad debt and imme-
diately liquidate it within a single transaction.

OS-MNG-ADV-01 Medium Resolved [0.22.0] The custom allocator is missing an upper bound
check and could overwrite the program region.

OS-MNG-ADV-02 Low Resolved A token may be registered with a reserved value of
token_index, resulting in user token accounts becom-
ing interpreted as deactivated.

OS-MNG-ADV-03 Low Resolved [0.17.0] The protocol does not adequately check the
status on Pyth oracles, potentially resulting in the use
of stale data.

OS-MNG-ADV-04 Low Resolved [0.17.0] TokenForceCloseBorrowsWithToken’s cur-
rent implementation may result in a scenario where the
liquidation candidate liqee incurs a borrow on the asset
token.

OS-MNG-ADV-05 Low Resolved [0.18.0] TokenConditionalSwaps do not reserve token
positions, which may result in triggers failing.

OS-MNG-ADV-06 Low Resolved [0.19.0] The flash loan swap fee acts as a rebate in certain
cases.

OS-MNG-ADV-07 Low Resolved [0.19.0] Rent transfer during account resizing does not con-
sider externally transferred lamports.

OS-MNG-ADV-08 Low Resolved [0.20.0] A TCS premium auction can trade at prices outside
the start window.

OS-MNG-ADV-09 Low Resolved [0.22.0] The token_withdraw instruction does not vali-
date the ownership of the user’s Associated Token Account.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 43

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions

Description

HealthRegion allows multiple instructions to be executed without performing health checks, thereby
reducing gas costs, as long as the account remains in a healthy position at the end. However, this fea-
ture also introduces new attack surfaces. For instance, an attacker may bypass the limitations of the
FlashLoan implementation, which prevents users from calling Mango after receiving a flash loan.

To execute a flash loan without using FlashLoanBegin/Start, an attacker may:

1. Borrow any quantity of tokens within a HealthRegion, which would render their account in a
state that is unchecked and unhealthy.

2. Conduct certain operations using the borrowed tokens.

3. Deposit the tokens back to restore their account to a healthy state.

Furthermore, rather than returning the borrowed tokens to restore the health of the account, an attacker
may exploit the TokenLiqBankruptcy instruction to liquidate the bad debt. This enables the attacker
to force the protocol to cover the liquidation cost, resulting in the unauthorized appropriation of funds.

Proof of Concept

To demonstrate how this attack may be carried out, let us consider a scenario where the attacker has
two accounts: A and B. Account A will serve as the liquidatee, while Account B will be the liquidator. The
attacker may execute a transaction with the following instructions:

1. HealthRegionBegin(A) - pre_init_health is zero.

2. A.TokenWithdraw(amt) -Awhereamt is theamountof tokens toborrow fromtheliab_bank.
As A is within the HealthRegion, it may proceed into a liquidable stage without restriction.

3. B.TokenLiqBankruptcy(A) - B liquidates A through the token_liq_bankruptcy instruc-
tion. The protocol repays A’s liabilities, and post_init_health becomes zero.

4. HealthRegionEnd(A).

This results in the attacker stealing amt tokens from the bank.

Remediation

Update the currentHealthRegion implementation to prevent liquidations andwithdrawals from being
executed inside it by leveraging the existing instruction introspection logic.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 43

Mango v4 Audit 04 | Vulnerabilities

Patch

Resolved in b22a1e7 by explicitly allowing only the instructions necessary to interact with the perpetual
and spot markets inside HealthRegions.

DIFF

+ let allowed_inner_ix = [
+ crate::instruction::PerpCancelAllOrders::discriminator(),
+ crate::instruction::PerpCancelAllOrdersBySide::discriminator(),
+ crate::instruction::PerpCancelOrder::discriminator(),
+

crate::instruction::PerpCancelOrderByClientOrderId::discriminator(),↪→

+ crate::instruction::PerpPlaceOrder::discriminator(),
+ crate::instruction::PerpPlaceOrderPegged::discriminator(),
+ crate::instruction::Serum3CancelAllOrders::discriminator(),
+ crate::instruction::Serum3CancelOrder::discriminator(),
+ crate::instruction::Serum3PlaceOrder::discriminator(),
+ crate::instruction::Serum3SettleFunds::discriminator(),
+ crate::instruction::Serum3SettleFundsV2::discriminator(),
+];

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 43

https://github.com/blockworks-foundation/mango-v4/commit/b22a1e7f57a76b0edf627bccfb35f3eb088d2af0

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-01 [med]| [0.22.0] Allocator Can Overflow Into Program Area

In commit v0.22.0, a custom allocator was introduced to address limitations in the default allocator. The
default allocator lacks the ability to leverage additional heap space requested for a transaction.

However the custom allocator could technically overflow into the program region if an allocation of size
bigger than 0x100000000 is requested.

Remediation

Implement a check in the allocator to ensure that the requested allocation size does not exceed a safe
upper-bound limit.

Patch

Fixed in afc2ff9.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 43

https://github.com/blockworks-foundation/mango-v4/commit/afc2ff9e80d443e86c09341240965c53d7f7be26

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-02 [low] | Inadequate Sanitization Of Token Indexes

Description

The protocol does not adequately check the provided token_indexwhen registering a token. While
the value TokenIndex::MAX is reserved to represent a disabled TokenPosition, it is not explicitly
disallowed from being registered. As a result, if token registration occurs with TokenIndex::MAX, all
user token accounts for that token become interpreted as deactivated, and utilizing themwill result in an
error.

RUST

impl Default for TokenPosition {
...

TokenPosition {
...
token_index: TokenIndex::MAX,
...

}
...

}

This may result in all user token accounts for this token being interpreted as deactivated, and attempting
to trade themwill result in an error.

Moreover, there is inconsistent behavior between is_active_for_token and is_active. Specif-
ically, when token_index == TokenIndex::MAX, then is_active_for_token returns true,
while is_active returns false.

RUST

impl TokenPosition {
...
pub fn is_active(&self) -> bool {

self.token_index != TokenIndex::MAX
}

pub fn is_active_for_token(&self, token_index: TokenIndex) ->
bool {↪→

self.token_index == token_index
}
...

}

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 43

Mango v4 Audit 04 | Vulnerabilities

Similar behavior occurs for the Serum3MarketIndex and PerpMarketIndex indices, which have a
reserved MAX value reserved for deactivated entries.

Remediation

Disallow the reserved value TokenIndex::MAX for token registration. Additionally, modify the incon-
sistent behavior between is_active_for_token and is_active.

DIFF

pub fn token_register(
...
token_index: TokenIndex,
...

) -> Result<()> {
...

+ require_neq!(token_index, TokenIndex::MAX);
...

}

pub fn token_register_trustless(
...
token_index: TokenIndex,
...

) -> Result<()> {
...

+ require_neq!(token_index, TokenIndex::MAX);
...

}

pub fn is_active_for_token(&self, token_index: TokenIndex) -> bool {
- self.token_index == token_index
+ self.token_index == token_index && self.token_index !=

TokenIndex::MAX↪→

}

Patch

Resolved in 99360e6.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 43

https://github.com/blockworks-foundation/mango-v4/commit/99360e69a3c03323ec2d5eadfb7727d5ef65c056

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-03 [low] | [0.17.0] Insufficient Verification Of Pyth Oracle Status

Description

The Pyth oracle suggests validating the status on the PriceAccount and utilizing the returned price
only when the status is Trading. This practice is particularly crucial for markets not operating round-
the-clock, like US equities.

Remediation

Ensure that the status of the Pyth oracle is Trading to guard against utilizing outdated data under
unusual market circumstances.

Patch

Fixed in baaec4e.

DIFF

+ if price_account.agg.status !=
pyth_sdk_solana::PriceStatus::Trading {↪→

+ msg!(
+ "Pyth price status isn't 'Trading': status: {}",
+ price_data.status as u64
+);

+ return Err(MangoError::OracleStale.into());
+ }

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 43

https://github.com/blockworks-foundation/mango-v4/pull/607/commits/baaec4e6a2e6178fb8cd957481a8656c4b160236

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-04 [low] | [0.17.0] Possible Borrow In Token Force Closing

Description

When both the asset and liability tokens are inforce-closemode, chain-liquidationmay occur, provid-
ing additional fees for liquidators. Although check three in TokenForceCloseBorrowsWithToken
ensures that the health of the liqee does not decrease, preventing flip-flopping between two tokens,
it may bemore beneficial to verify that the asset bank is not also in force-closemode.

Remediation

Modify the implementation of TokenForceCloseBorrowsWithToken to ensure the asset bank is
not in the force-closemode. This may prevent the occurrence of chain-liquidation and any undue
advantage given to liquidators at the expense of the liqee.

Patch

Fixed in fe84c6a.

DIFF

+ require!(
+ !asset_bank.are_borrows_reduce_only(),
+ MangoError::TokenInReduceOnlyMode
+);

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 43

https://github.com/blockworks-foundation/mango-v4/pull/613/commits/fe84c6ac8d912ee78c4dbb436d9f9e67dfc9033a

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-05 [low] | [0.18.0] Not Reserving TokenPositions

Description

TokenConditionalSwaps (TCS) were introduced in 0.18.0 as a new type of order that occurs when the price
falls within a certain user-specified window. These orders allow users to create stop-losses and other
similar types of conditional orders.

Order fulfillment occurs asynchronously through a liquidator-initiated trigger instruction. Uponmeeting
the price criterion, a TCS is eligible to be triggered via TokenConditionalSwapTrigger, which
performs the swap and updates the state of the TCS order, removing it if it has been fully completed.

Completing a TCS requires the liqee, a user who placed the TCS, to have a token position for both sides
of the swap. If these token positions do not yet exist, they will be created during TokenConditional-
SwapTrigger. However, since the construction of a TCS does not reserve token positions, it is possible
that at the time of a trigger, the liqueemay have no available spots for new token positions, resulting in
the transaction failing.

Since this error occurs in a liquidator-initiated instruction rather than a user-initiated one, from the user’s
perspective, itmay appear as though the TCS is simply failing to be filled. The specific issuemay be difficult
to pinpoint without looking through liquidator logs. Certain types of TCS orders, such as stop-losses, are
somewhat time-sensitive, and failing to fill these timely would be detrimental to system users.

Remediation

Reserve a token position for both sides of a TCS during creation so that it will not fail to trigger.

Patch

Fixed in 348fef8.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 43

https://github.com/blockworks-foundation/mango-v4/commit/348fef80f3c8b7436accfb02612be32208d43a5d

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-06 [low] | [0.19.0] Swap Fee Acts As A Rebate

Description

A flash loan swap fee was recently introduced, intended to be applied to deposits that occur during the
flash loan. However, the fee is incorrectly applied both to positive change amounts (deposits) and negative
change amounts (withdraws):

RUST

let swap_fee = if flash_loan_type == FlashLoanType::Swap {
change.amount * I80F48::from_num(max_swap_fee_rate)

} else {
I80F48::ZERO

};

The result of this logic is that a fee is properly collected on deposits, but it actually acts as a rebate on
withdraws.

Remediation

Ensure the fee is never negative (indicating a rebate).

Patch

Fixed in #693 along with a restructuring of the fee type.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 43

https://github.com/blockworks-foundation/mango-v4/pull/693

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-07 [low] | [0.19.0] Account Resizing May Be Blocked

Description

When increasing the size of Mango accounts, it may be necessary to transfer more lamports into the
account to meet the new rent exemption requirements. AccountExpand attempts to perform this
transfer but fails to consider the situation where there are more lamports than expected in the user
account.

For example, consider the following code in AccountExpand:

RUST

let new_space = MangoAccount::space(
token_count,
serum3_count,
perp_count,
perp_oo_count,
token_conditional_swap_count,

);
let new_rent_minimum = Rent::get()?.minimum_balance(new_space);

let realloc_account = ctx.accounts.account.as_ref();
let old_space = realloc_account.data_len();
let old_lamports = realloc_account.lamports();

require_gt!(new_space, old_space);

// transfer required additional rent
anchor_lang::system_program::transfer(

anchor_lang::context::CpiContext::new(
ctx.accounts.system_program.to_account_info(),
anchor_lang::system_program::Transfer {

from: ctx.accounts.payer.to_account_info(),
to: realloc_account.clone(),

},
),
new_rent_minimum - old_lamports,

)?;

If a user directly transfers lamports into the Mango account (outside of Mango instructions), it is possible
that old_lamports is actually larger than new_rent_minimum. In this case, the subtraction will
overflow, and the instruction will fail.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 43

Mango v4 Audit 04 | Vulnerabilities

Remediation

Do not attempt to transfer more lamports if the target account already meets the new rent exemption
requirements.

Patch

Fixed in #694.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 43

https://github.com/blockworks-foundation/mango-v4/pull/694

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-08 [low] | [0.20.0] TCS Premium Auction Can Leave Window

In v0.20.0, two new TCS types were introduced: “linear auction” and “premium auction”. The original
TCS type was renamed “fixed premium”. In short, the purpose of a TCS is to allow users to place orders
that will be executed at some point in the future, when the oracle price is above or below a threshold for
example. To incentive liquidators to trigger the TCS (perform the trade), creators of a TCS offer a premium
on top of the oracle price.

In the original implementation of TCS (fixed premium), this premiumwas specified as a fixed percentage
of the oracle price. However, this may be inefficient. Users risk overpaying on premiumwhen a smaller
one would have sufficed, and risk underpaying resulting in a TCS that doesn’t trigger. The two new TCS
types address this inefficiency.

The linear auction allows users to specify a start and end time for the auction and a start and end price.
The oracle price is ignored and the price offered by the TCS is simply the linear interpolation of the start
and end price while the auction is ongoing. This format is stateless as the offered price is simply a function
of time, and the user’s have full control over the price window in which the trade can execute.

The premium auction instead operates like a fixed premium where the premium rate linearly ramps
up over time. Users specify a price window in which the auction can start (like fixed premium) and
specify a minimum andmaximum premium rate and duration to ramp up. In order to start a premium
auction, the oracle price must first fall into the specified window at which point a user can invoke
TokenConditionalSwapStart to mark the TCS as “active.” Once active, the TCS can be triggered
with a premium price computed based on the current oracle price and how long the auction has been
running.

Importantly, while the TCS can only start when the oracle price falls in the specified window, there is
no similar mechanism to prevent trading when the oracle price leaves the window. Since the premium
price is computed as a factor of the current oracle price, the TCS may end up trading at prices that fall
considerably outside the specified window.

Out of window execution does not pose a threat to the protocol as triggering a TCS is gated on a health
check, however it may cause users of the protocol to perform a bad trade unexpectedly if they are not
aware of the behavior.

Patch

Implementing stop/restart functionality presents a challenge as those instructions need to be incen-
tivized (similar to start). Authors acknowledge that out-of-window execution can happen and will provide
info/warning for users.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 43

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-09 [low] | [0.22.0] Missing ATA Ownership Check

In the token_withdraw instruction, the program expects to send funds to the Mango account owner.
However, it does not validate whether the owner field of the Associated Token Account is indeed the
genuine owner.

RUST

let owner_ata = associated_token::get_associated_token_address(
&account.fixed.owner,
&ctx.accounts.vault.mint,

);
require_keys_eq!(

ctx.accounts.token_account.key(),
owner_ata,
MangoError::DelegateWithdrawOnlyToOwnerAta

);

Remediation

Perform a check to ensure that owner field of ctx.accounts.token_accountmatches the owner.

Patch

Fixed in 719aee3.

© 2024 Otter Audits LLC. All Rights Reserved. 20 / 43

https://github.com/blockworks-foundation/mango-v4/commit/719aee37ae6871b710ed23d03eef46b2c6815801

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

© 2024 Otter Audits LLC. All Rights Reserved. 21 / 43

Mango v4 Audit 05 | General Findings

ID Description

OS-MNG-SUG-00 Admin-only instructions with incorrect parameters may result in unexpected be-
havior.

OS-MNG-SUG-01 Theprotocol assumes that oneUSDCalways pegs to oneUSD,whichmaynot always
be true.

OS-MNG-SUG-02 fill_from_str utilizes 31 bytes out of 32 bytes.

OS-MNG-SUG-03 Multiple instances of unwrapping may result in panic for users.

OS-MNG-SUG-04 Utilize named constants instead of magic numbers to improve code clarity.

OS-MNG-SUG-05 Utilizing different oracle prices at different time periods may result in misleading
net deposit calculations.

OS-MNG-SUG-06 [0.17.0] reduce_buyback_fees_accrued may be called with an amount
larger than the sumofbuyback_fees_accrued_current and*_previous.

OS-MNG-SUG-07 [0.17.0] expire_buyback_fees and accrue_buyback_feesmay bemore
effective if merged.

OS-MNG-SUG-08 [0.17.0] The current implementation of token_edit may result in dangerous
outcomes due to its order of operations.

OS-MNG-SUG-09 [0.17.0] Comments in perp_liq_force_cancel_ordersmay result in confu-
sion due to their ambiguity.

OS-MNG-SUG-10 [0.17.0] Usersmay lose accrued buyback fees when the group interval changes from
zero to a positive value.

OS-MNG-SUG-11 [0.19.0] The flash loan swap fee may be bypassed.

OS-MNG-SUG-12 [0.20.0] (nit) Simplify an assertion in TCS trigger

OS-MNG-SUG-13 [0.20.0] Remove the attempt to deactivate liqee token accounts during TCS trigger

OS-MNG-SUG-14 [0.20.0] (nit) Use liqor/liqee notation for TCS start

OS-MNG-SUG-15 [0.20.0] Add a defensive assert in TokenConditionalSwapStart

OS-MNG-SUG-16 [0.20.0] Inconsistent maker fee computation in TCS trigger
© 2024 Otter Audits LLC. All Rights Reserved. 22 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions

Description

Various admin-gated instructions to configure the protocol do not perform adequate validation on the
parameters supplied, potentially resulting in future vulnerabilities. While this may not pose an immediate
security risk, it leaves the system open to exploitation in the future.

One example is the init_base_asset_weight parameter for editing a perpetual market utilizing the
perp_edit_market instruction. This parameter must be positive; however, creating the perpetual
market through the perp_create_market instruction does not enforce this requirement.

RUST

pub fn perp_create_market(
...
init_base_asset_weight: f32,
...

) -> Result<()> {
...
let mut perp_market =

ctx.accounts.perp_market.load_init()?;↪→

*perp_market = PerpMarket {
...
init_base_asset_weight:

I80F48::from_num(init_base_asset_weight),↪→

...
};

}

pub fn perp_edit_market(
...
init_base_asset_weight_opt: Option<f32>,
...

) -> Result<()> {
...
require_gte!(

init_base_asset_weight,
0.0,
MangoError::InitAssetWeightCantBeNegative

);
...

}

© 2024 Otter Audits LLC. All Rights Reserved. 23 / 43

Mango v4 Audit 05 | General Findings

Remediation

Implement additional rigorous validation checks on the parameters supplied to admin-only instructions
to prevent future vulnerabilities. Specifically, for perp_create_market, ensure that the
init_base_asset_weight parameter is positive.

Patch

Improved checks will be implemented gradually.

© 2024 Otter Audits LLC. All Rights Reserved. 24 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD

Description

The protocol assumes that one USDC always pegs to one USD. However, in exceptional events such as
market instability or other macroeconomic factors, the peg may break down, and the value of USDCmay
deviate from one USD.

The protocol employs a StubOracle that sets the price at one to determine the value of USDC/USD.
When calculating Token/USDC pricing, the protocol utilizes Token/USD oracles and derives the USDC
pricing directly from the USD pricing without any intermediate conversion.

This approachmay result in loss of funds for users if the USDC peg is unstable and arbitrage bots are taking
advantage of the price discrepancy between USDC and USD.

Remediation

Implement a more robust and adaptable pricing mechanism for USDC that accounts for the possibility of
a broken USDC peg.

Patch

USDC is no longer assumed to peg to one USD; rather, it is treated like any other token. As such, a de-peg
event would not have knock-on effects on other tokens on the platform.

© 2024 Otter Audits LLC. All Rights Reserved. 25 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-02 | Incorrect Check When Copying String Data

Description

fill_from_str is frequently used throughout the codebase to copy string data into 32-byte-sized
buffers. However, the function requires input data to be < 32 bytes instead of <= 32 bytes. As a result, it
never utilizes the byte at index 31.

Remediation

Require input data to be less than or equal to 32 bytes.

Patch

Resolved in 658a220.

DIFF

pub fn fill_from_str<const N: usize>(name: &str) -> Result<[u8; N]> {
let name_bytes = name.as_bytes();

- require!(name_bytes.len() < N, MangoError::SomeError);
+ require!(name_bytes.len() <= N, MangoError::SomeError);

let mut name_ = [0u8; N];
name_[..name_bytes.len()].copy_from_slice(name_bytes);
Ok(name_)

}

© 2024 Otter Audits LLC. All Rights Reserved. 26 / 43

https://github.com/blockworks-foundation/mango-v4/commit/658a2200955a08b694cc7002ee01960cb8cedd73

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-03 | Replace Panics With Descriptive Errors

Description

The codebase contains multiple instances of unwrapping, whichmay cause panics that are difficult for
users to understand. For example, invoking token_add_bankwhile the maximum number of banks
has already been addedmay result in panic.

Remediation

Utilize descriptive errors that provide clear information about what produced the error.

Patch

The issue is acknowledged; more descriptive errors will gradually be integrated into the codebase.

© 2024 Otter Audits LLC. All Rights Reserved. 27 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-04 | Improve Clarity Of Token Index Check

Description

In token_register_trustless, there is a check to ensure that the token index is not equal to zero
using the require_neq!macro. However, this check may be unclear to developers and difficult to
understand without additional context.

Remediation

Use the QUOTE_TOKEN_INDEX constant, which is more descriptive of the intended behavior.

DIFF

pub fn token_register_trustless(
ctx: Context<TokenRegisterTrustless>,
token_index: TokenIndex,
name: String,

) -> Result<()> {
- require_neq!(token_index, 0);
+ require_neq!(token_index, QUOTE_TOKEN_INDEX);

Patch

Resolved in 99360e6.

© 2024 Otter Audits LLC. All Rights Reserved. 28 / 43

https://github.com/blockworks-foundation/mango-v4/commit/99360e69a3c03323ec2d5eadfb7727d5ef65c056

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading

Description

When depositing and withdrawing tokens into a bank, the net_deposits field of the user’s
MangoAccount is updated by adding or subtracting the deposited or withdrawn token values in USD.

Multiplying the amount of tokens by the oracle price at the time of the operation calculates this value.
However, the oracle price utilized to calculate the value of tokens deposited or withdrawnmay not be
the same as the one used in the previous operation, which may result in misleading net_deposits
calculations.

Consider the following scenario:
A user deposits one SOL when its value is $100 and later withdraws one SOL when its value is $10. In
this case, the net_deposits field would display a result of $90, despite the user not having made any
actual deposits into the bank.

Remediation

Ensure the net_deposits field is zero to avoid such discrepancies.

Patch

This feature is working as intended, and improvement to the documentation is planned to clarify the
intent.

© 2024 Otter Audits LLC. All Rights Reserved. 29 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-06 | [0.17.0] Calculating Buyback Fees Accrued Checks

Description

Currently, it is possible to call reduce_buyback_fees_accruedwith an amount that exceeds the
total of buyback_fees_accrued_current and *_previous. Even though
AccountBuybackFeesWithMango usually prevents this logic, it would be safer to addmore checks
to disallow such scenarios from occurring.

Remediation

Utilize checked math for subtraction in reduce_buyback_fees_accrued. This will prevent the
function frombeing calledwithanamount larger than the sumofbuyback_fees_accrued_current
and *_previous.

Patch

Fixed in 4dc0e71.

© 2024 Otter Audits LLC. All Rights Reserved. 30 / 43

https://github.com/blockworks-foundation/mango-v4/pull/608/commits/4dc0e71686aaa2b79add6905242540a2684147fd

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-07 | [0.17.0] Consider Merging Functions

Description

Currently,expire_buyback_fees andaccrue_buyback_fees are implemented as separate func-
tions. However, these functions are often called in succession to ensure that the timestamp is updated
correctly.

For instance, in the perpetual flow, expire_buyback_fees is invoked when an order is *placed*, but
accrue_buyback_fees is called when an order is *filled*.

If the duration between the order placement and filling exceeds the group interval, accrued fees for a user
may be inadvertently stored ”in the past” (when the user’s buyback_fees_expiry_timestamp is
outdated). Consequently, when the user attempts to buy back the fees, the expire_buyback_fees
call in AccountBuybackFeesWithMangomay reset accrued fees to zero.

Remediation

Merge expire_buyback_fees and accrue_buyback_fees into a single function. This prevents
potential loss of accrued fees and ensures the timestamp is updated correctly.

Patch

Fixed in 12c9c35.

© 2024 Otter Audits LLC. All Rights Reserved. 31 / 43

https://github.com/blockworks-foundation/mango-v4/pull/608/commits/12c9c35afcd87c68b69ab5e9c9ebefb6831e5d20

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-08 | [0.17.0] Address Anti-pattern In Edit Instructions

Description

There is a potential anti-pattern in the token_edit implementation.

token_edit.rs RUST

if let Some(force_close) = force_close_opt {
if force_close {

require!(bank.reduce_only > 0, MangoError::SomeError);
}
msg!(

"Force close: old - {:?}, new - {:?}",
bank.force_close,
u8::from(force_close)

);
bank.force_close = u8::from(force_close);
require_group_admin = true;

};
}

It may be dangerous to check stateful requirements while editing the state of an object. In this specific
scenario, it works, but any changes in the order of updates may result in incorrect results. For instance,
the check would break if the code updated force_close before reduce_only.

Remediation

Group necessary invariants and check them together in the end after performing all the possible up-
dates. For instance, another invariant to assert could be that the asset weight is always less than the
liability weight, possibly by a certain factor. This recommendation also applies to PerpEditMarket
and Serum3EditMarket.

© 2024 Otter Audits LLC. All Rights Reserved. 32 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-09 | [0.17.0] Improve Comment Clarity

Description

The comments in the perp_liq_force_cancel_orders and
serum3_liq_force_cancel_ordersmay be interpreted differently and not accurately reflect the
conditions for the cancellation of orders that may occur.

perp_liq_force_cancel_orders.rs RUST

// Early return if if liquidation is not allowed or if market is not
in force close↪→

let liquidatable = account.check_liquidatable(&health_cache)?;
let can_force_cancel = !account.fixed.is_operational()

|| liquidatable == CheckLiquidatable::Liquidatable
|| perp_market.is_force_close();

if !can_force_cancel {
return Ok(());

}

serum3_liq_force_cancel_orders.rs RUST

// Early return if if liquidation is not allowed or if market is not
in force close↪→

...
let liquidatable = account.check_liquidatable(&health_cache)?;
let can_force_cancel = !account.fixed.is_operational()

|| liquidatable == CheckLiquidatable::Liquidatable
|| serum_market.is_force_close();

if !can_force_cancel {
return Ok(());

}

Remediation

Improve the clarity of the comments to correctly represent the conditions for canceling orders. The
comments should indicate similar to ”Orders may be canceled if: 1. the account is frozen, 2. the account
is liquidatable, or 3. the market is in force-close mode.”

Patch

Fixed in af0bb41.

© 2024 Otter Audits LLC. All Rights Reserved. 33 / 43

https://github.com/blockworks-foundation/mango-v4/pull/613/commits/af0bb4182ca59984d71ec86fd602a95f92fcfc93

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-10 | [0.17.0] Loss Of Accrued Buyback Fees

Description

Whenexpire_buyback_fees is first invokedaftermodifyingbuyback_fees_expiry_interval,
the user’s buyback_fees_expiry_timestamp is likely to be a past timestamp. As a result, both the
_current and _previous buyback fees accrued will be reset, resulting in a loss for the user.

Remediation

Implement a buyback_fees_expiry_interval_start storage on the group that records the
timestamp of the last group interval update. Then, verify this value within expire_buyback_fees to
prevent premature expiration of buyback fees.

© 2024 Otter Audits LLC. All Rights Reserved. 34 / 43

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-11 | [0.19.0] Swap Fee May Be Bypassed

Description

A fee was introduced to flash loans involving exactly two banks (i.e. “swaps”). The fee is intended to be
collected on deposits during the flash loan.

Flash loans in Mango have an associated FlashLoanType, which may be UNKNOWN or SWAP. The only
requirement for this parameter is that if a flash loan is marked as a SWAP, theremust be exactly two banks.
Apart from this requirement, users may select either type when issuing the instruction. This parameter is
intended to be a UI parameter, and it is set correctly when users interact with the Mango program through
the client.

The recently introduced swap fee uses this parameter to check whether or not to apply the fee. However,
since the parameter is freely adjustable by the user, an observant user may simply set the flash loan type
to UNKNOWN to avoid paying the fee. While this is not normally possible through the Mango client, users
can construct flash loan instructions outside of the client to adjust the FlashLoanType parameter.

Remediation

Ensuring that all swap-type flash loans pay the fee is not entirely straightforward. Even by properly
classifying all two-bank flash loans as a SWAP, users may avoid the fee by including a third “dummy” bank.
Therefore, we recommend considering a more general-purpose fee for all flash loans or an alternative
economic constraint to incentivize users to properly classify flash loans as a SWAP.

Patch

Fixed in #693 by introducing a general-purpose deposit fee on flash loans.

Reverted in #754.

© 2024 Otter Audits LLC. All Rights Reserved. 35 / 43

https://github.com/blockworks-foundation/mango-v4/pull/693
https://github.com/blockworks-foundation/mango-v4/pull/754

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-12 | [0.20.0] (nit) Simplify TCS Assertion

Consider replacing the condition:

RUST

if tcs_is_expired {
if min_buy_token > 0 {

require!(!tcs_is_expired,
MangoError::TokenConditionalSwapExpired);↪→

}
...

}

with the simplified:

RUST

if tcs_is_expired {
require!(min_buy_token == 0,

MangoError::TokenConditionalSwapExpired);↪→

...
}

This pattern occurs in the token_conditional_swap_trigger implementation.

Patch

Resolved in bb6b4b9.

© 2024 Otter Audits LLC. All Rights Reserved. 36 / 43

https://github.com/blockworks-foundation/mango-v4/commit/bb6b4b9cbe64eae07f79f1955d11dfae68e5452b

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-13 | [0.20.0] Remove Liqee Token Account Deactivation in TCS
Trigger

After transferring funds during a TCS trigger, the instruction checks if it is possible to deactivate the liqee or
liqor token positions for either the buy or sell tokens. This may be possible for example when transferring
funds would bring the account position close to zero and no other account orders have a lock on the token
position.

RUST

if !liqee_buy_active {
liqee.deactivate_token_position_and_log(liqee_buy_raw_index,

liqee_key);↪→

}
if !liqee_sell_withdraw.position_is_active {

liqee.deactivate_token_position_and_log(liqee_sell_raw_index,
liqee_key);↪→

}

However, in this case the currently executing TCS instruction will always have a lock on both the liqee
token positions. The token positions will be unlocked when the TCS is destroyed (completed or cancelled).
Therefore, this optimistic deactivation is currently dead code.

Patch

Resolved in 15537ea.

© 2024 Otter Audits LLC. All Rights Reserved. 37 / 43

https://github.com/blockworks-foundation/mango-v4/commit/15537ea841c189295fb2e738057605ae69562aea

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-14 | [0.20.0] (nit) Align Naming Convention

Most instructions that operate on two accounts simultaneously involving the transfer of funds, including
TCS trigger, use the convention of naming the signing account the liqor and the target account the
liqee.

The newly introduced TokenConditionalSwapStart instruction is used to initiate the start of a TCS
premium auction after the oracle price falls in a certain window. Accounts that call this instruction to start
the premier auction are incentivized to do so by a small fee that is paid by the user who created the TCS
auction.

Currently the instruction uses the naming convention of caller for the signing account and account
for the target account. We recommend adopting the same liqor/liqee notation as other related
instructions.

Patch

Resolved in d482650.

© 2024 Otter Audits LLC. All Rights Reserved. 38 / 43

https://github.com/blockworks-foundation/mango-v4/commit/d482650ae6a83f6fcab94f98deb08a1a0d478a3b

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-15 | [0.20.0] Defensive Assert in TCS Start

During execution of TokenConditionalSwapStart, the user who created the TCS pays a small in-
centive fee to the user who invokes the instruction. This fee is tracked as part of the total paid amount in
the TCS struct and it should not overflow the designated max_sell parameter as configured by the TCS
creator.

While it does not currently appear possible that the fee can overflow this parameter, it would be safe to
add a defensive assertion such as:

RUST

assert!(tcs.sold <= tcs.max_sell);

in order to future-proof this code against potential changes to the incentive computation.

Patch

Resolved in e531b4f.

© 2024 Otter Audits LLC. All Rights Reserved. 39 / 43

https://github.com/blockworks-foundation/mango-v4/commit/e531b4ffdfa85ffc0404b100388989034ddada14

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-16 | [0.20.0] Inconsistent Maker Fee Computation

Currently in TCS trigger, there is a discrepancy with the way themaker fee is computed for the liqee and
liqor.

Specifically, for a given premium price the instruction computes the adjustedmaker pricewhereby the
price is adjusted slightly higher. This represents the price that the liqeewill see. Given this price and the
current TCS limits, the instruction computes the maximum amount to trade via a call to trade_amount
resulting in two values:

1. buy_token_amount: amount of BUY tokens to transfer

2. sell_token_amount_with_maker_fee: amount of SELL tokens to withdraw from the liqee

In this case, the liqee transfers necessary SELL tokens to match the premium price and additionally
pays a maker fee on the top. Computing the TCS bounds with the adjustedmaker price rather than the
premium price allows the fee to be properly accounted for without exceeding limits (i.e. transferring too
much).

From the liqor’s perspective, they should receive necessary SELL tokens to match the premium price
minus a taker fee. This is currently computed by recalculating the number of sell tokens to transfer
assuming the normal premium price.

RUST

buy_token_amount, sell_token_amount_with_maker_fee = trade_amount(...);

sell_token_amount = buy_token_amount * premium_price
maker_fee = sell_token_amount * maker_rate
taker_fee = sell_token_amount * taker_rate

Finally, the amount of SELL tokens to transfer to the liqor can be computed as:

RUST

to_liqor = sell_token_amount_with_maker_fee - maker_fee - taker_fee;

The intuition is that subtracting the maker fee should cancel out the addedmaker fee as a result of the
trade_amount() call. However, these two maker fees are computed in slightly different ways and
subject to different rounding behavior. These differences result in the liqor and liqee observing
slightly different fees during the transaction.

This discrepancy does not result in mishandling of funds as the only decision happening is howmuch
of the transaction to give to the protocol (as fees) rather than transfer between liqee and liqor. The

© 2024 Otter Audits LLC. All Rights Reserved. 40 / 43

Mango v4 Audit 05 | General Findings

instruction performs correct bookkeeping on the realized fees and it is not possible for the liqor to
receive more than the liqee pays.

However, it would be advisable to change this computation logic such that the maker_fee is computed
consistently from both the liqee and liqor’s perspectives.

Patch

Resolved in 33add65.

© 2024 Otter Audits LLC. All Rights Reserved. 41 / 43

https://github.com/blockworks-foundation/mango-v4/commit/33add65647675dddf9cdd74b0b601cc2272ac993

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2024 Otter Audits LLC. All Rights Reserved. 42 / 43

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 43 / 43

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions
	OS-MNG-ADV-01 [med] | [0.22.0] Allocator Can Overflow Into Program Area
	OS-MNG-ADV-02 [low] | Inadequate Sanitization Of Token Indexes
	OS-MNG-ADV-03 [low] | [0.17.0] Insufficient Verification Of Pyth Oracle Status
	OS-MNG-ADV-04 [low] | [0.17.0] Possible Borrow In Token Force Closing
	OS-MNG-ADV-05 [low] | [0.18.0] Not Reserving TokenPositions
	OS-MNG-ADV-06 [low] | [0.19.0] Swap Fee Acts As A Rebate
	OS-MNG-ADV-07 [low] | [0.19.0] Account Resizing May Be Blocked
	OS-MNG-ADV-08 [low] | [0.20.0] TCS Premium Auction Can Leave Window
	OS-MNG-ADV-09 [low] | [0.22.0] Missing ATA Ownership Check

	General Findings
	OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions
	OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD
	OS-MNG-SUG-02 | Incorrect Check When Copying String Data
	OS-MNG-SUG-03 | Replace Panics With Descriptive Errors
	OS-MNG-SUG-04 | Improve Clarity Of Token Index Check
	OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading
	OS-MNG-SUG-06 | [0.17.0] Calculating Buyback Fees Accrued Checks
	OS-MNG-SUG-07 | [0.17.0] Consider Merging Functions
	OS-MNG-SUG-08 | [0.17.0] Address Anti-pattern In Edit Instructions
	OS-MNG-SUG-09 | [0.17.0] Improve Comment Clarity
	OS-MNG-SUG-10 | [0.17.0] Loss Of Accrued Buyback Fees
	OS-MNG-SUG-11 | [0.19.0] Swap Fee May Be Bypassed
	OS-MNG-SUG-12 | [0.20.0] (nit) Simplify TCS Assertion
	OS-MNG-SUG-13 | [0.20.0] Remove Liqee Token Account Deactivation in TCS Trigger
	OS-MNG-SUG-14 | [0.20.0] (nit) Align Naming Convention
	OS-MNG-SUG-15 | [0.20.0] Defensive Assert in TCS Start
	OS-MNG-SUG-16 | [0.20.0] Inconsistent Maker Fee Computation

	Appendices
	Vulnerability Rating Scale
	Procedure

