
Audit
Mango v4

Presented by:

OtterSec contact@osec.io

Nicola Vela nick0ve@osec.io

Harrison Green hgarrereyn@osec.io

mailto:contact@osec.io
mailto:nick0ve@osec.io
mailto:hgarrereyn@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions 6
OS-MNG-ADV-01 [low] | Inadequate Sanitization Of Token Indexes 8

05 General Findings 10
OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions 11
OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD . 13
OS-MNG-SUG-02 | Wrong Input Data Length Check For Fill_From_Str 14
OS-MNG-SUG-03 | Replace Panics With Descriptive Errors . 15
OS-MNG-SUG-04 | Improve Clarity Of Token Index Check . 16
OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading 17

Appendices

A Vulnerability Rating Scale 18

B Procedure 19

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 19

01 | Executive Summary

Overview
Mango engaged OtterSec to perform an assessment of the mango-v4 program. This assessment was con-
ducted between February 22nd andMarch 24th, 2023. Formore information on our auditingmethodology,
see Appendix B.

All the issues were communicated to the team prior to the delivery of the report to speed up remediation.
After delivering our audit report, we worked closely with the team to streamline patches and confirm
remediation. We delivered final confirmation of the patches April 2nd, 2023.

Key Findings
Over the course of this audit engagement, we produced 8 findings total.

In particular, we found an issue related to HealthRegion, which allows multiple instructions to be exe-
cuted without performing health checks. This may allowmalicious users to create debt and immediately
liquidate it in the same transaction, stealing funds from the protocol (OS-MNG-ADV-00). We also noted an
issue with token registrations that may lead to a denial of service. (OS-MNG-ADV-01).

Additionally, we discovered an issue in how the protocol handles USD to USDC conversions (OS-MNG-SUG-
01). We also made recommendations about general quality of life issues (OS-MNG-SUG-05) and returning
unclear errors to the users (OS-MNG-SUG-03).

Overall, we commend the Mango team for being responsive and knowledgeable throughout the audit.

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 19

02 | Scope
The source code was delivered to us in a git repository at github.com/blockworks-foundation/mango-v4.
This audit was performed against commit 5c7a2e3.

Mango-v4 is a decentralized exchange built on Solana, offering a variety of on-chain trading options for
cryptocurrencies.

Users can build accounts with a variety of positions, while every position has to be overcollateralized so
that the risk associated with margin trading can be managed by the protocol through permissionless
liquidations.

Its key features include:

1. Borrowing and lending capabilities, offering users to lend and earn interest based on howmany
users borrow.

2. Perpetual futures trading across a variety of assets through its own orderbook.

3. Spot trading through Openbook DEX.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/blockworks-foundation/mango-v4

03 | Findings
Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 1
High 0

Medium 0
Low 1

Informational 6

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 19

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-MNG-ADV-00 Critical Resolved Malicious users may exploit the lack of access controls
within HealthRegions to generate bad debt and imme-
diately liquidate it within a single transaction.

OS-MNG-ADV-01 Low Resolved A token may be registered with a reserved value of
token_index, leading to user token accounts being in-
terpreted as deactivated.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 19

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions

Description

HealthRegion allows multiple instructions to be executed without performing health checks, thereby
reducing gas costs, as long as the account remains in a healthy position at the end. However, this fea-
ture also introduces new attack surfaces. For instance, an attacker may bypass the limitations of the
FlashLoan implementation, which prevents users from calling Mango after receiving a flash loan.

To execute a flash loan without using FlashLoanBegin/Start, an attacker can:

1. Borrow any quantity of tokens within a HealthRegion, which would render their account in an
unchecked and unhealthy state.

2. Conduct certain operations using the borrowed tokens.

3. Deposit the tokens back to restore their account to a healthy state.

Furthermore, rather than returning the borrowed tokens to restore the health of the account, an attacker
may exploit the TokenLiqBankruptcy instruction to liquidate the bad debt. This enables the attacker
to force the protocol to cover the cost of the liquidation, resulting in the unauthorized appropriation of
funds.

Proof of Concept

To demonstrate how this attack can be carried out, let us consider a scenario where the attacker has
two accounts: A and B. Account A will serve as the liquidatee, while Account B will be the liquidator. The
attacker may execute a transaction with the following instructions:

1. HealthRegionBegin(A) - pre_init_health is zero.

2. A.TokenWithdraw(amt) - A where amt is the amount of tokens to be borrowed from the
liab_bank. As A is within the HealthRegion, it can proceed into a liquidable stage without
restriction.

3. B.TokenLiqBankruptcy(A) - B liquidates A through the token_liq_bankruptcy instruc-
tion. The protocol repays A’s liabilities, and post_init_health becomes zero.

4. HealthRegionEnd(A).

This results in the attacker stealing amt tokens from the bank.

Remediation

Harden the currentHealthRegion implementation to prevent liquidations andwithdrawals from being
executed inside it. This can be executed by leveraging the existing instruction introspection logic.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 19

Mango v4 Audit 04 | Vulnerabilities

Patch

Resolved in b22a1e7 by explicitly allowing only the instructions necessary to interact with the perp and
spot markets inside HealthRegions.

DIFF

+ let allowed_inner_ix = [
+ crate::instruction::PerpCancelAllOrders::discriminator(),
+ crate::instruction::PerpCancelAllOrdersBySide::discriminator(),
+ crate::instruction::PerpCancelOrder::discriminator(),
+

crate::instruction::PerpCancelOrderByClientOrderId::discriminator(),↪→

+ crate::instruction::PerpPlaceOrder::discriminator(),
+ crate::instruction::PerpPlaceOrderPegged::discriminator(),
+ crate::instruction::Serum3CancelAllOrders::discriminator(),
+ crate::instruction::Serum3CancelOrder::discriminator(),
+ crate::instruction::Serum3PlaceOrder::discriminator(),
+ crate::instruction::Serum3SettleFunds::discriminator(),
+ crate::instruction::Serum3SettleFundsV2::discriminator(),
+];

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 19

https://github.com/blockworks-foundation/mango-v4/commit/b22a1e7f57a76b0edf627bccfb35f3eb088d2af0

Mango v4 Audit 04 | Vulnerabilities

OS-MNG-ADV-01 [low] | Inadequate Sanitization Of Token Indexes

Description

When registering a token, the protocol does not adequately check the provided token_index. While
the value TokenIndex::MAX is reserved to represent a disabled TokenPosition, it is not explicitly
disallowed from being registered. As a result, if a token is registered with TokenIndex::MAX, all user
token accounts for that token will be interpreted as deactivated, and using themwill result in an error.

RUST

impl Default for TokenPosition {
...

TokenPosition {
...
token_index: TokenIndex::MAX,
...

}
...

}

This may lead to all user token accounts for this token being interpreted as deactivated, and the attempt
to trade themwill result in an error.

Moreover, there is inconsistent behaviour between is_active_for_token and is_active in this
context. Specifically, whentoken_index == TokenIndex::MAX, thenis_active_for_token
returns true, while is_active returns false.

RUST

impl TokenPosition {
...
pub fn is_active(&self) -> bool {

self.token_index != TokenIndex::MAX
}

pub fn is_active_for_token(&self, token_index: TokenIndex) ->
bool {↪→

self.token_index == token_index
}
...

}

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 19

Mango v4 Audit 04 | Vulnerabilities

Similar behaviour occurs for the Serum3MarketIndex and PerpMarketIndex indices which also
have a reserved MAX value that is reserved for deactivated entries.

Remediation

Disallow the reserved value TokenIndex::MAX for token registration. Additionally, modify the incon-
sistent behaviour between is_active_for_token and is_active.

DIFF

pub fn token_register(
...
token_index: TokenIndex,
...

) -> Result<()> {
...

+ require_neq!(token_index, TokenIndex::MAX);
...

}

pub fn token_register_trustless(
...
token_index: TokenIndex,
...

) -> Result<()> {
...

+ require_neq!(token_index, TokenIndex::MAX);
...

}

pub fn is_active_for_token(&self, token_index: TokenIndex) -> bool {
- self.token_index == token_index
+ self.token_index == token_index && self.token_index !=

TokenIndex::MAX↪→

}

Patch

Resolved in 99360e6.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 19

https://github.com/blockworks-foundation/mango-v4/commit/99360e69a3c03323ec2d5eadfb7727d5ef65c056

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-MNG-SUG-00 Admin-only instructions with incorrect parameters may lead to unexpected be-
haviour.

OS-MNG-SUG-01 The protocol assumes that one USDC is always pegged to one USD, which may not
always be true.

OS-MNG-SUG-02 fill_from_str uses 31 bytes out of 32 bytes.

OS-MNG-SUG-03 Multiple instances of unwrapping may cause panic for users.

OS-MNG-SUG-04 Named constants should be used instead of magic numbers to improve code clarity.

OS-MNG-SUG-05 The use of different oracle prices at different time periods may lead to misleading
net deposit calculations.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 19

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions

Description

Various admin-gated instructions to configure the protocol do not perform adequate validation on the
parameters supplied, potentially resulting in future vulnerabilities. While this may not pose an immediate
security risk, it leaves the system open to exploitation in the future.

One example is the init_base_asset_weight parameter for editing a perp market using the
perp_edit_market instruction. This parameter must be positive; however, this requirement is not
enforced when creating the perp market through the perp_create_market instruction.

RUST

pub fn perp_create_market(
...
init_base_asset_weight: f32,
...

) -> Result<()> {
...
let mut perp_market =

ctx.accounts.perp_market.load_init()?;↪→

*perp_market = PerpMarket {
...
init_base_asset_weight:

I80F48::from_num(init_base_asset_weight),↪→

...
};

}

pub fn perp_edit_market(
...
init_base_asset_weight_opt: Option<f32>,
...

) -> Result<()> {
...
require_gte!(

init_base_asset_weight,
0.0,
MangoError::InitAssetWeightCantBeNegative

);
...

}

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 19

Mango v4 Audit 05 | General Findings

Remediation

Implement additional rigorous validation checks on the parameters supplied to admin-only instructions
to prevent future vulnerabilities. Specifically, for the perp_create_market instruction, ensure that
the init_base_asset_weight parameter is positive.

Patch

Better checks will be implemented gradually.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 19

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD

Description

The protocol assumes that one USDC is always pegged to one USD. However, in exceptional events such
as market instability or other macroeconomic factors, the pegmay break down, and the value of USDC
may deviate from one USD.

To determine the value of USDC/USD, the protocol employs a StubOracle that sets the price at one.
When it comes to Token/USDC pricing, the protocol utilizes Token/USD oracles and derives the USDC
pricing directly from the USD pricing, without any intermediate conversion.

This approachmay result in potential loss of funds for users in situations where the USDC peg is not stable,
and arbitrage bots are taking advantage of the price discrepancy between USDC and USD.

Remediation

Implement amore robust and adaptable pricingmechanism for USDC that takes into account the possibil-
ity of a broken USDC peg.

Patch

The issue is acknowledged and a better solution for removing the peg is being developed.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 19

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-02 | Wrong Input Data Length Check For Fill_From_Str

Description

fill_from_str is frequently used throughout the codebase to copy string data into 32-byte-sized
buffers. However, it requires input data to be < 32 bytes instead of <= 32 bytes. As a result, the byte at
index 31 is never used.

Remediation

Require input data to be less than or equal to 32 bytes.

Patch

Resolved in 658a220.

DIFF

pub fn fill_from_str<const N: usize>(name: &str) -> Result<[u8; N]> {
let name_bytes = name.as_bytes();

- require!(name_bytes.len() < N, MangoError::SomeError);
+ require!(name_bytes.len() <= N, MangoError::SomeError);

let mut name_ = [0u8; N];
name_[..name_bytes.len()].copy_from_slice(name_bytes);
Ok(name_)

}

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 19

https://github.com/blockworks-foundation/mango-v4/commit/658a2200955a08b694cc7002ee01960cb8cedd73

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-03 | Replace Panics With Descriptive Errors

Description

The codebase contains multiple instances of unwrapping, which may cause panics that are difficult
for users to understand. For example, token_add_bankmay cause a panic when invoked while the
maximum number of banks have already been added.

Remediation

Use descriptive errors that provide clear information about what caused the error.

Patch

The issue is acknowledged; more descriptive errors will be integrated into the codebase gradually.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 19

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-04 | Improve Clarity Of Token Index Check

Description

In token_register_trustless, there is a check to ensure that the token index is not equal to zero
using the require_neq!macro. However, this check may be unclear to developers and difficult to
understand without additional context.

Remediation

Use the QUOTE_TOKEN_INDEX constant, which is more descriptive of the intended behaviour.

DIFF

pub fn token_register_trustless(
ctx: Context<TokenRegisterTrustless>,
token_index: TokenIndex,
name: String,

) -> Result<()> {
- require_neq!(token_index, 0);
+ require_neq!(token_index, QUOTE_TOKEN_INDEX);

Patch

Resolved in 99360e6.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 19

https://github.com/blockworks-foundation/mango-v4/commit/99360e69a3c03323ec2d5eadfb7727d5ef65c056

Mango v4 Audit 05 | General Findings

OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading

Description

Whendepositingandwithdrawing tokens intoabank, thenet_deposits fieldof theuser’sMangoAccount
is updated by adding or subtracting the USD value of the tokens deposited or withdrawn.

This value is calculated bymultiplying the amount of tokens by the oracle price at the time of the operation.
However, the oracle price used to calculate the value of tokens deposited or withdrawnmay not be the
same as the oracle price used in the previous operation. This may lead tomisleading net_deposits
calculations.

Consider the following scenario:
A user deposits 1 SOL when its value is $100 and later withdraws 1 SOL when its value is $10. In this case,
the net_deposits field would display a result of $90, despite the user not having made any actual
deposits into the bank.

Remediation

Ensure that the net_deposits field is zero to avoid such discrepancies.

Patch

This feature is working as intended although documentation will be improved to clarify the intent.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 19

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 19

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-MNG-ADV-00 [crit] | Inadequate Access Control Inside HealthRegions
	OS-MNG-ADV-01 [low] | Inadequate Sanitization Of Token Indexes

	General Findings
	OS-MNG-SUG-00 | Improve Safety Checks On Admin-Only Instructions
	OS-MNG-SUG-01 | Broken Assumption Of USDC Peg To USD
	OS-MNG-SUG-02 | Wrong Input Data Length Check For Fill_From_Str
	OS-MNG-SUG-03 | Replace Panics With Descriptive Errors
	OS-MNG-SUG-04 | Improve Clarity Of Token Index Check
	OS-MNG-SUG-05 | Net Deposits Calculation May Be Misleading

	Appendices
	Vulnerability Rating Scale
	Procedure

