pyth-crosschain/apps/fortuna/src/keeper.rs

472 lines
16 KiB
Rust

use {
crate::{
api::{
self,
BlockchainState,
},
chain::{
ethereum::SignablePythContract,
reader::{
BlockNumber,
RequestedWithCallbackEvent,
},
},
config::EthereumConfig,
},
anyhow::Result,
ethers::{
contract::ContractError,
providers::{
Middleware,
Provider,
Ws,
},
types::U256,
},
futures::StreamExt,
std::sync::Arc,
tokio::{
spawn,
sync::mpsc,
time::{
self,
Duration,
},
},
tracing::{
self,
Instrument,
},
};
#[derive(Debug)]
pub struct BlockRange {
pub from: BlockNumber,
pub to: BlockNumber,
}
/// How much to wait before retrying in case of an RPC error
const RETRY_INTERVAL: Duration = Duration::from_secs(5);
/// How many blocks to look back for events that might be missed when starting the keeper
const BACKLOG_RANGE: u64 = 1000;
/// How many blocks to fetch events for in a single rpc call
const BLOCK_BATCH_SIZE: u64 = 100;
/// How much to wait before polling the next latest block
const POLL_INTERVAL: Duration = Duration::from_secs(5);
/// Get the latest safe block number for the chain. Retry internally if there is an error.
async fn get_latest_safe_block(chain_state: &BlockchainState) -> BlockNumber {
loop {
match chain_state
.contract
.get_block_number(chain_state.confirmed_block_status)
.await
{
Ok(latest_confirmed_block) => {
return latest_confirmed_block - chain_state.reveal_delay_blocks
}
Err(e) => {
tracing::error!("error while getting block number. error: {:?}", e);
time::sleep(RETRY_INTERVAL).await;
}
}
}
}
/// Run threads to handle events for the last `BACKLOG_RANGE` blocks, watch for new blocks and
/// handle any events for the new blocks.
#[tracing::instrument(name="keeper", skip_all, fields(chain_id=chain_state.id))]
pub async fn run_keeper_threads(
private_key: String,
chain_eth_config: EthereumConfig,
chain_state: BlockchainState,
) {
tracing::info!("starting keeper");
let latest_safe_block = get_latest_safe_block(&chain_state).in_current_span().await;
tracing::info!("latest safe block: {}", &latest_safe_block);
let contract = Arc::new(
SignablePythContract::from_config(&chain_eth_config, &private_key)
.await
.expect("Chain config should be valid"),
);
// Spawn a thread to handle the events from last BACKLOG_RANGE blocks.
spawn(
process_backlog(
BlockRange {
from: latest_safe_block.saturating_sub(BACKLOG_RANGE),
to: latest_safe_block,
},
contract.clone(),
chain_eth_config.gas_limit,
chain_state.clone(),
)
.in_current_span(),
);
let (tx, rx) = mpsc::channel::<BlockRange>(1000);
// Spawn a thread to watch for new blocks and send the range of blocks for which events has not been handled to the `tx` channel.
spawn(
watch_blocks_wrapper(
chain_state.clone(),
latest_safe_block,
tx,
chain_eth_config.geth_rpc_wss.clone(),
)
.in_current_span(),
);
// Spawn a thread that listens for block ranges on the `rx` channel and processes the events for those blocks.
spawn(
process_new_blocks(
chain_state.clone(),
rx,
Arc::clone(&contract),
chain_eth_config.gas_limit,
)
.in_current_span(),
);
}
/// Process an event for a chain. It estimates the gas for the reveal with callback and
/// submits the transaction if the gas estimate is below the gas limit.
/// It will return an Error if the gas estimation failed with a provider error or if the
/// reveal with callback failed with a provider error.
pub async fn process_event(
event: RequestedWithCallbackEvent,
chain_config: &BlockchainState,
contract: &Arc<SignablePythContract>,
gas_limit: U256,
) -> Result<()> {
if chain_config.provider_address != event.provider_address {
return Ok(());
}
let provider_revelation = match chain_config.state.reveal(event.sequence_number) {
Ok(result) => result,
Err(e) => {
tracing::error!(
sequence_number = &event.sequence_number,
"Error while revealing with error: {:?}",
e
);
return Ok(());
}
};
let gas_estimate_res = chain_config
.contract
.estimate_reveal_with_callback_gas(
event.provider_address,
event.sequence_number,
event.user_random_number,
provider_revelation,
)
.in_current_span()
.await;
match gas_estimate_res {
Ok(gas_estimate_option) => match gas_estimate_option {
Some(gas_estimate) => {
// Pad the gas estimate by 33%
let (gas_estimate, _) = gas_estimate
.saturating_mul(U256::from(4))
.div_mod(U256::from(3));
if gas_estimate > gas_limit {
tracing::error!(
sequence_number = &event.sequence_number,
"Gas estimate for reveal with callback is higher than the gas limit"
);
return Ok(());
}
let contract_call = contract
.reveal_with_callback(
event.provider_address,
event.sequence_number,
event.user_random_number,
provider_revelation,
)
.gas(gas_estimate);
let res = contract_call.send().await;
let pending_tx = match res {
Ok(pending_tx) => pending_tx,
Err(e) => match e {
// If there is a provider error, we weren't able to send the transaction.
// We will return an error. So, that the caller can decide what to do (retry).
ContractError::ProviderError { e } => return Err(e.into()),
// For all the other errors, it is likely the case we won't be able to reveal for
// ever. We will return an Ok(()) to signal that we have processed this reveal
// and concluded that its Ok to not reveal.
_ => {
tracing::error!(
sequence_number = &event.sequence_number,
"Error while revealing with error: {:?}",
e
);
return Ok(());
}
},
};
match pending_tx.await {
Ok(res) => {
tracing::info!(
sequence_number = &event.sequence_number,
"Revealed with res: {:?}",
res
);
Ok(())
}
Err(e) => {
tracing::error!(
sequence_number = &event.sequence_number,
"Error while revealing with error: {:?}",
e
);
Err(e.into())
}
}
}
None => {
tracing::info!(
sequence_number = &event.sequence_number,
"Not processing event"
);
Ok(())
}
},
Err(e) => {
tracing::error!(
sequence_number = &event.sequence_number,
"Error while simulating reveal with error: {:?}",
e
);
Err(e)
}
}
}
/// Process a range of blocks in batches. It calls the `process_single_block_batch` method for each batch.
#[tracing::instrument(skip_all, fields(range_from_block=block_range.from, range_to_block=block_range.to))]
pub async fn process_block_range(
block_range: BlockRange,
contract: Arc<SignablePythContract>,
gas_limit: U256,
chain_state: api::BlockchainState,
) {
let BlockRange {
from: first_block,
to: last_block,
} = block_range;
let mut current_block = first_block;
while current_block <= last_block {
let mut to_block = current_block + BLOCK_BATCH_SIZE;
if to_block > last_block {
to_block = last_block;
}
process_single_block_batch(
BlockRange {
from: current_block,
to: to_block,
},
contract.clone(),
gas_limit,
chain_state.clone(),
)
.in_current_span()
.await;
current_block = to_block + 1;
}
}
/// Process a batch of blocks for a chain. It will fetch events for all the blocks in a single call for the provided batch
/// and then try to process them one by one. If the process fails, it will retry indefinitely.
#[tracing::instrument(name="batch", skip_all, fields(batch_from_block=block_range.from, batch_to_block=block_range.to))]
pub async fn process_single_block_batch(
block_range: BlockRange,
contract: Arc<SignablePythContract>,
gas_limit: U256,
chain_state: api::BlockchainState,
) {
loop {
let events_res = chain_state
.contract
.get_request_with_callback_events(block_range.from, block_range.to)
.await;
match events_res {
Ok(events) => {
tracing::info!(num_of_events = &events.len(), "Processing",);
for event in &events {
tracing::info!(sequence_number = &event.sequence_number, "Processing event",);
while let Err(e) =
process_event(event.clone(), &chain_state, &contract, gas_limit)
.in_current_span()
.await
{
tracing::error!(
sequence_number = &event.sequence_number,
"Error while processing event. Waiting for {} seconds before retry. error: {:?}",
RETRY_INTERVAL.as_secs(),
e
);
time::sleep(RETRY_INTERVAL).await;
}
tracing::info!(sequence_number = &event.sequence_number, "Processed event",);
}
tracing::info!(num_of_events = &events.len(), "Processed",);
break;
}
Err(e) => {
tracing::error!(
"Error while getting events. Waiting for {} seconds before retry. error: {:?}",
RETRY_INTERVAL.as_secs(),
e
);
time::sleep(RETRY_INTERVAL).await;
}
}
}
}
/// Wrapper for the `watch_blocks` method. If there was an error while watching, it will retry after a delay.
/// It retries indefinitely.
#[tracing::instrument(name="watch_blocks", skip_all, fields(initial_safe_block=latest_safe_block))]
pub async fn watch_blocks_wrapper(
chain_state: BlockchainState,
latest_safe_block: BlockNumber,
tx: mpsc::Sender<BlockRange>,
geth_rpc_wss: Option<String>,
) {
loop {
if let Err(e) = watch_blocks(
chain_state.clone(),
latest_safe_block,
tx.clone(),
geth_rpc_wss.clone(),
)
.in_current_span()
.await
{
tracing::error!("watching blocks. error: {:?}", e);
time::sleep(RETRY_INTERVAL).await;
}
}
}
/// Watch for new blocks and send the range of blocks for which events have not been handled to the `tx` channel.
/// We are subscribing to new blocks instead of events. If we miss some blocks, it will be fine as we are sending
/// block ranges to the `tx` channel. If we have subscribed to events, we could have missed those and won't even
/// know about it.
pub async fn watch_blocks(
chain_state: BlockchainState,
latest_safe_block: BlockNumber,
tx: mpsc::Sender<BlockRange>,
geth_rpc_wss: Option<String>,
) -> Result<()> {
tracing::info!("Watching blocks to handle new events");
let mut last_safe_block_processed = latest_safe_block;
let provider_option = match geth_rpc_wss {
Some(wss) => Some(match Provider::<Ws>::connect(wss.clone()).await {
Ok(provider) => provider,
Err(e) => {
tracing::error!("Error while connecting to wss: {}. error: {:?}", wss, e);
return Err(e.into());
}
}),
None => {
tracing::info!("No wss provided");
None
}
};
let mut stream_option = match provider_option {
Some(ref provider) => Some(provider.subscribe_blocks().await?),
None => None,
};
loop {
match stream_option {
Some(ref mut stream) => {
stream.next().await;
}
None => {
time::sleep(POLL_INTERVAL).await;
}
}
let latest_safe_block = get_latest_safe_block(&chain_state).in_current_span().await;
if latest_safe_block > last_safe_block_processed {
match tx
.send(BlockRange {
from: last_safe_block_processed + 1,
to: latest_safe_block,
})
.await
{
Ok(_) => {
tracing::info!(
from_block = &last_safe_block_processed + 1,
to_block = &latest_safe_block,
"Block range sent to handle events",
);
last_safe_block_processed = latest_safe_block;
}
Err(e) => {
tracing::error!(
"Error while sending block range to handle events. These will be handled in next call. error: {:?}",
e
);
}
};
}
}
}
/// It waits on rx channel to receive block ranges and then calls process_block_range to process them.
#[tracing::instrument(skip_all)]
pub async fn process_new_blocks(
chain_state: BlockchainState,
mut rx: mpsc::Receiver<BlockRange>,
contract: Arc<SignablePythContract>,
gas_limit: U256,
) {
tracing::info!("Waiting for new block ranges to process");
loop {
if let Some(block_range) = rx.recv().await {
process_block_range(
block_range,
Arc::clone(&contract),
gas_limit,
chain_state.clone(),
)
.in_current_span()
.await;
}
}
}
/// Processes the backlog_range for a chain.
#[tracing::instrument(skip_all)]
pub async fn process_backlog(
backlog_range: BlockRange,
contract: Arc<SignablePythContract>,
gas_limit: U256,
chain_state: BlockchainState,
) {
tracing::info!("Processing backlog");
process_block_range(backlog_range, contract, gas_limit, chain_state)
.in_current_span()
.await;
tracing::info!("Backlog processed");
}