554 lines
19 KiB
Solidity
554 lines
19 KiB
Solidity
// SPDX-License-Identifier: Unlicense
|
|
/*
|
|
* @title Solidity Bytes Arrays Utils
|
|
* @author Gonçalo Sá <goncalo.sa@consensys.net>
|
|
*
|
|
* @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
|
|
* The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
|
|
*/
|
|
pragma solidity >=0.8.0 <0.9.0;
|
|
|
|
library BytesLib {
|
|
function concat(
|
|
bytes memory _preBytes,
|
|
bytes memory _postBytes
|
|
) internal pure returns (bytes memory) {
|
|
bytes memory tempBytes;
|
|
|
|
assembly {
|
|
// Get a location of some free memory and store it in tempBytes as
|
|
// Solidity does for memory variables.
|
|
tempBytes := mload(0x40)
|
|
|
|
// Store the length of the first bytes array at the beginning of
|
|
// the memory for tempBytes.
|
|
let length := mload(_preBytes)
|
|
mstore(tempBytes, length)
|
|
|
|
// Maintain a memory counter for the current write location in the
|
|
// temp bytes array by adding the 32 bytes for the array length to
|
|
// the starting location.
|
|
let mc := add(tempBytes, 0x20)
|
|
// Stop copying when the memory counter reaches the length of the
|
|
// first bytes array.
|
|
let end := add(mc, length)
|
|
|
|
for {
|
|
// Initialize a copy counter to the start of the _preBytes data,
|
|
// 32 bytes into its memory.
|
|
let cc := add(_preBytes, 0x20)
|
|
} lt(mc, end) {
|
|
// Increase both counters by 32 bytes each iteration.
|
|
mc := add(mc, 0x20)
|
|
cc := add(cc, 0x20)
|
|
} {
|
|
// Write the _preBytes data into the tempBytes memory 32 bytes
|
|
// at a time.
|
|
mstore(mc, mload(cc))
|
|
}
|
|
|
|
// Add the length of _postBytes to the current length of tempBytes
|
|
// and store it as the new length in the first 32 bytes of the
|
|
// tempBytes memory.
|
|
length := mload(_postBytes)
|
|
mstore(tempBytes, add(length, mload(tempBytes)))
|
|
|
|
// Move the memory counter back from a multiple of 0x20 to the
|
|
// actual end of the _preBytes data.
|
|
mc := end
|
|
// Stop copying when the memory counter reaches the new combined
|
|
// length of the arrays.
|
|
end := add(mc, length)
|
|
|
|
for {
|
|
let cc := add(_postBytes, 0x20)
|
|
} lt(mc, end) {
|
|
mc := add(mc, 0x20)
|
|
cc := add(cc, 0x20)
|
|
} {
|
|
mstore(mc, mload(cc))
|
|
}
|
|
|
|
// Update the free-memory pointer by padding our last write location
|
|
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
|
|
// next 32 byte block, then round down to the nearest multiple of
|
|
// 32. If the sum of the length of the two arrays is zero then add
|
|
// one before rounding down to leave a blank 32 bytes (the length block with 0).
|
|
mstore(
|
|
0x40,
|
|
and(
|
|
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
|
|
not(31) // Round down to the nearest 32 bytes.
|
|
)
|
|
)
|
|
}
|
|
|
|
return tempBytes;
|
|
}
|
|
|
|
function concatStorage(
|
|
bytes storage _preBytes,
|
|
bytes memory _postBytes
|
|
) internal {
|
|
assembly {
|
|
// Read the first 32 bytes of _preBytes storage, which is the length
|
|
// of the array. (We don't need to use the offset into the slot
|
|
// because arrays use the entire slot.)
|
|
let fslot := sload(_preBytes.slot)
|
|
// Arrays of 31 bytes or less have an even value in their slot,
|
|
// while longer arrays have an odd value. The actual length is
|
|
// the slot divided by two for odd values, and the lowest order
|
|
// byte divided by two for even values.
|
|
// If the slot is even, bitwise and the slot with 255 and divide by
|
|
// two to get the length. If the slot is odd, bitwise and the slot
|
|
// with -1 and divide by two.
|
|
let slength := div(
|
|
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
|
|
2
|
|
)
|
|
let mlength := mload(_postBytes)
|
|
let newlength := add(slength, mlength)
|
|
// slength can contain both the length and contents of the array
|
|
// if length < 32 bytes so let's prepare for that
|
|
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
|
|
switch add(lt(slength, 32), lt(newlength, 32))
|
|
case 2 {
|
|
// Since the new array still fits in the slot, we just need to
|
|
// update the contents of the slot.
|
|
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
|
|
sstore(
|
|
_preBytes.slot,
|
|
// all the modifications to the slot are inside this
|
|
// next block
|
|
add(
|
|
// we can just add to the slot contents because the
|
|
// bytes we want to change are the LSBs
|
|
fslot,
|
|
add(
|
|
mul(
|
|
div(
|
|
// load the bytes from memory
|
|
mload(add(_postBytes, 0x20)),
|
|
// zero all bytes to the right
|
|
exp(0x100, sub(32, mlength))
|
|
),
|
|
// and now shift left the number of bytes to
|
|
// leave space for the length in the slot
|
|
exp(0x100, sub(32, newlength))
|
|
),
|
|
// increase length by the double of the memory
|
|
// bytes length
|
|
mul(mlength, 2)
|
|
)
|
|
)
|
|
)
|
|
}
|
|
case 1 {
|
|
// The stored value fits in the slot, but the combined value
|
|
// will exceed it.
|
|
// get the keccak hash to get the contents of the array
|
|
mstore(0x0, _preBytes.slot)
|
|
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
|
|
|
|
// save new length
|
|
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
|
|
|
|
// The contents of the _postBytes array start 32 bytes into
|
|
// the structure. Our first read should obtain the `submod`
|
|
// bytes that can fit into the unused space in the last word
|
|
// of the stored array. To get this, we read 32 bytes starting
|
|
// from `submod`, so the data we read overlaps with the array
|
|
// contents by `submod` bytes. Masking the lowest-order
|
|
// `submod` bytes allows us to add that value directly to the
|
|
// stored value.
|
|
|
|
let submod := sub(32, slength)
|
|
let mc := add(_postBytes, submod)
|
|
let end := add(_postBytes, mlength)
|
|
let mask := sub(exp(0x100, submod), 1)
|
|
|
|
sstore(
|
|
sc,
|
|
add(
|
|
and(
|
|
fslot,
|
|
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
|
|
),
|
|
and(mload(mc), mask)
|
|
)
|
|
)
|
|
|
|
for {
|
|
mc := add(mc, 0x20)
|
|
sc := add(sc, 1)
|
|
} lt(mc, end) {
|
|
sc := add(sc, 1)
|
|
mc := add(mc, 0x20)
|
|
} {
|
|
sstore(sc, mload(mc))
|
|
}
|
|
|
|
mask := exp(0x100, sub(mc, end))
|
|
|
|
sstore(sc, mul(div(mload(mc), mask), mask))
|
|
}
|
|
default {
|
|
// get the keccak hash to get the contents of the array
|
|
mstore(0x0, _preBytes.slot)
|
|
// Start copying to the last used word of the stored array.
|
|
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
|
|
|
|
// save new length
|
|
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
|
|
|
|
// Copy over the first `submod` bytes of the new data as in
|
|
// case 1 above.
|
|
let slengthmod := mod(slength, 32)
|
|
let mlengthmod := mod(mlength, 32)
|
|
let submod := sub(32, slengthmod)
|
|
let mc := add(_postBytes, submod)
|
|
let end := add(_postBytes, mlength)
|
|
let mask := sub(exp(0x100, submod), 1)
|
|
|
|
sstore(sc, add(sload(sc), and(mload(mc), mask)))
|
|
|
|
for {
|
|
sc := add(sc, 1)
|
|
mc := add(mc, 0x20)
|
|
} lt(mc, end) {
|
|
sc := add(sc, 1)
|
|
mc := add(mc, 0x20)
|
|
} {
|
|
sstore(sc, mload(mc))
|
|
}
|
|
|
|
mask := exp(0x100, sub(mc, end))
|
|
|
|
sstore(sc, mul(div(mload(mc), mask), mask))
|
|
}
|
|
}
|
|
}
|
|
|
|
function slice(
|
|
bytes memory _bytes,
|
|
uint256 _start,
|
|
uint256 _length
|
|
) internal pure returns (bytes memory) {
|
|
require(_length + 31 >= _length, "slice_overflow");
|
|
require(_bytes.length >= _start + _length, "slice_outOfBounds");
|
|
|
|
bytes memory tempBytes;
|
|
|
|
assembly {
|
|
switch iszero(_length)
|
|
case 0 {
|
|
// Get a location of some free memory and store it in tempBytes as
|
|
// Solidity does for memory variables.
|
|
tempBytes := mload(0x40)
|
|
|
|
// The first word of the slice result is potentially a partial
|
|
// word read from the original array. To read it, we calculate
|
|
// the length of that partial word and start copying that many
|
|
// bytes into the array. The first word we copy will start with
|
|
// data we don't care about, but the last `lengthmod` bytes will
|
|
// land at the beginning of the contents of the new array. When
|
|
// we're done copying, we overwrite the full first word with
|
|
// the actual length of the slice.
|
|
let lengthmod := and(_length, 31)
|
|
|
|
// The multiplication in the next line is necessary
|
|
// because when slicing multiples of 32 bytes (lengthmod == 0)
|
|
// the following copy loop was copying the origin's length
|
|
// and then ending prematurely not copying everything it should.
|
|
let mc := add(
|
|
add(tempBytes, lengthmod),
|
|
mul(0x20, iszero(lengthmod))
|
|
)
|
|
let end := add(mc, _length)
|
|
|
|
for {
|
|
// The multiplication in the next line has the same exact purpose
|
|
// as the one above.
|
|
let cc := add(
|
|
add(
|
|
add(_bytes, lengthmod),
|
|
mul(0x20, iszero(lengthmod))
|
|
),
|
|
_start
|
|
)
|
|
} lt(mc, end) {
|
|
mc := add(mc, 0x20)
|
|
cc := add(cc, 0x20)
|
|
} {
|
|
mstore(mc, mload(cc))
|
|
}
|
|
|
|
mstore(tempBytes, _length)
|
|
|
|
//update free-memory pointer
|
|
//allocating the array padded to 32 bytes like the compiler does now
|
|
mstore(0x40, and(add(mc, 31), not(31)))
|
|
}
|
|
//if we want a zero-length slice let's just return a zero-length array
|
|
default {
|
|
tempBytes := mload(0x40)
|
|
//zero out the 32 bytes slice we are about to return
|
|
//we need to do it because Solidity does not garbage collect
|
|
mstore(tempBytes, 0)
|
|
|
|
mstore(0x40, add(tempBytes, 0x20))
|
|
}
|
|
}
|
|
|
|
return tempBytes;
|
|
}
|
|
|
|
function toAddress(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (address) {
|
|
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
|
|
address tempAddress;
|
|
|
|
assembly {
|
|
tempAddress := div(
|
|
mload(add(add(_bytes, 0x20), _start)),
|
|
0x1000000000000000000000000
|
|
)
|
|
}
|
|
|
|
return tempAddress;
|
|
}
|
|
|
|
function toUint8(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint8) {
|
|
require(_bytes.length >= _start + 1, "toUint8_outOfBounds");
|
|
uint8 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x1), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint16(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint16) {
|
|
require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
|
|
uint16 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x2), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint32(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint32) {
|
|
require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
|
|
uint32 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x4), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint64(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint64) {
|
|
require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
|
|
uint64 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x8), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint96(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint96) {
|
|
require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
|
|
uint96 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0xc), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint128(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint128) {
|
|
require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
|
|
uint128 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x10), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toUint256(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (uint256) {
|
|
require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
|
|
uint256 tempUint;
|
|
|
|
assembly {
|
|
tempUint := mload(add(add(_bytes, 0x20), _start))
|
|
}
|
|
|
|
return tempUint;
|
|
}
|
|
|
|
function toBytes32(
|
|
bytes memory _bytes,
|
|
uint256 _start
|
|
) internal pure returns (bytes32) {
|
|
require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
|
|
bytes32 tempBytes32;
|
|
|
|
assembly {
|
|
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
|
|
}
|
|
|
|
return tempBytes32;
|
|
}
|
|
|
|
function equal(
|
|
bytes memory _preBytes,
|
|
bytes memory _postBytes
|
|
) internal pure returns (bool) {
|
|
bool success = true;
|
|
|
|
assembly {
|
|
let length := mload(_preBytes)
|
|
|
|
// if lengths don't match the arrays are not equal
|
|
switch eq(length, mload(_postBytes))
|
|
case 1 {
|
|
// cb is a circuit breaker in the for loop since there's
|
|
// no said feature for inline assembly loops
|
|
// cb = 1 - don't breaker
|
|
// cb = 0 - break
|
|
let cb := 1
|
|
|
|
let mc := add(_preBytes, 0x20)
|
|
let end := add(mc, length)
|
|
|
|
for {
|
|
let cc := add(_postBytes, 0x20)
|
|
// the next line is the loop condition:
|
|
// while(uint256(mc < end) + cb == 2)
|
|
} eq(add(lt(mc, end), cb), 2) {
|
|
mc := add(mc, 0x20)
|
|
cc := add(cc, 0x20)
|
|
} {
|
|
// if any of these checks fails then arrays are not equal
|
|
if iszero(eq(mload(mc), mload(cc))) {
|
|
// unsuccess:
|
|
success := 0
|
|
cb := 0
|
|
}
|
|
}
|
|
}
|
|
default {
|
|
// unsuccess:
|
|
success := 0
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
function equalStorage(
|
|
bytes storage _preBytes,
|
|
bytes memory _postBytes
|
|
) internal view returns (bool) {
|
|
bool success = true;
|
|
|
|
assembly {
|
|
// we know _preBytes_offset is 0
|
|
let fslot := sload(_preBytes.slot)
|
|
// Decode the length of the stored array like in concatStorage().
|
|
let slength := div(
|
|
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
|
|
2
|
|
)
|
|
let mlength := mload(_postBytes)
|
|
|
|
// if lengths don't match the arrays are not equal
|
|
switch eq(slength, mlength)
|
|
case 1 {
|
|
// slength can contain both the length and contents of the array
|
|
// if length < 32 bytes so let's prepare for that
|
|
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
|
|
if iszero(iszero(slength)) {
|
|
switch lt(slength, 32)
|
|
case 1 {
|
|
// blank the last byte which is the length
|
|
fslot := mul(div(fslot, 0x100), 0x100)
|
|
|
|
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
|
|
// unsuccess:
|
|
success := 0
|
|
}
|
|
}
|
|
default {
|
|
// cb is a circuit breaker in the for loop since there's
|
|
// no said feature for inline assembly loops
|
|
// cb = 1 - don't breaker
|
|
// cb = 0 - break
|
|
let cb := 1
|
|
|
|
// get the keccak hash to get the contents of the array
|
|
mstore(0x0, _preBytes.slot)
|
|
let sc := keccak256(0x0, 0x20)
|
|
|
|
let mc := add(_postBytes, 0x20)
|
|
let end := add(mc, mlength)
|
|
|
|
// the next line is the loop condition:
|
|
// while(uint256(mc < end) + cb == 2)
|
|
for {
|
|
|
|
} eq(add(lt(mc, end), cb), 2) {
|
|
sc := add(sc, 1)
|
|
mc := add(mc, 0x20)
|
|
} {
|
|
if iszero(eq(sload(sc), mload(mc))) {
|
|
// unsuccess:
|
|
success := 0
|
|
cb := 0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default {
|
|
// unsuccess:
|
|
success := 0
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
}
|