token-swap: Add offset curve and math (#935)
* Add offset curve * Fix for math * Add PreciseNumber * Use Balancer formulation for trading token -> pool token conversion * Add round-trip conversion testing * Add offset curve to JS * Run cargo fmt * Update JS test numbers for new calcs * Integrate review feedback * Allow for withdrawals when one side is 0 * Run cargo fmt * Disallow deposits for offset curve * Run cargo fmt * Allow for withdrawals through 0
This commit is contained in:
parent
3dcb1c5665
commit
087ae2e242
|
@ -63,9 +63,9 @@ let currentFeeAmount = 0;
|
|||
// Swap instruction constants
|
||||
// Because there is no withdraw fee in the production version, these numbers
|
||||
// need to get slightly tweaked in the two cases.
|
||||
const SWAP_AMOUNT_IN = 100000;
|
||||
const SWAP_AMOUNT_IN = 99999;
|
||||
const SWAP_AMOUNT_OUT = SWAP_PROGRAM_OWNER_FEE_ADDRESS ? 90661 : 90674;
|
||||
const SWAP_FEE = SWAP_PROGRAM_OWNER_FEE_ADDRESS ? 22272 : 22276;
|
||||
const SWAP_FEE = SWAP_PROGRAM_OWNER_FEE_ADDRESS ? 21820 : 21823;
|
||||
const HOST_SWAP_FEE = SWAP_PROGRAM_OWNER_FEE_ADDRESS
|
||||
? Math.floor((SWAP_FEE * HOST_FEE_NUMERATOR) / HOST_FEE_DENOMINATOR)
|
||||
: 0;
|
||||
|
@ -291,9 +291,9 @@ export async function deposit(): Promise<void> {
|
|||
const poolMintInfo = await tokenPool.getMintInfo();
|
||||
const supply = poolMintInfo.supply.toNumber();
|
||||
const swapTokenA = await mintA.getAccountInfo(tokenAccountA);
|
||||
const tokenA = (swapTokenA.amount.toNumber() * POOL_TOKEN_AMOUNT) / supply;
|
||||
const tokenA = Math.floor((swapTokenA.amount.toNumber() * POOL_TOKEN_AMOUNT) / (supply + POOL_TOKEN_AMOUNT));
|
||||
const swapTokenB = await mintB.getAccountInfo(tokenAccountB);
|
||||
const tokenB = (swapTokenB.amount.toNumber() * POOL_TOKEN_AMOUNT) / supply;
|
||||
const tokenB = Math.floor((swapTokenB.amount.toNumber() * POOL_TOKEN_AMOUNT) / (supply + POOL_TOKEN_AMOUNT));
|
||||
|
||||
console.log('Creating depositor token a account');
|
||||
const userAccountA = await mintA.createAccount(owner.publicKey);
|
||||
|
@ -496,7 +496,7 @@ export async function swap(): Promise<void> {
|
|||
|
||||
info = await mintA.getAccountInfo(tokenAccountA);
|
||||
assert(info.amount.toNumber() == currentSwapTokenA + SWAP_AMOUNT_IN);
|
||||
currentSwapTokenA -= SWAP_AMOUNT_IN;
|
||||
currentSwapTokenA += SWAP_AMOUNT_IN;
|
||||
|
||||
info = await mintB.getAccountInfo(tokenAccountB);
|
||||
assert(info.amount.toNumber() == currentSwapTokenB - SWAP_AMOUNT_OUT);
|
||||
|
|
|
@ -83,6 +83,7 @@ export const TokenSwapLayout: typeof BufferLayout.Structure = BufferLayout.struc
|
|||
export const CurveType = Object.freeze({
|
||||
ConstantProduct: 0, // Constant product curve, Uniswap-style
|
||||
ConstantPrice: 1, // Constant price curve, always X amount of A token for 1 B token, where X is defined at init
|
||||
Offset: 3, // Offset curve, like Uniswap, but with an additional offset on the token B side
|
||||
});
|
||||
|
||||
/**
|
||||
|
|
|
@ -10,6 +10,7 @@ use crate::curve::{
|
|||
constant_price::ConstantPriceCurve,
|
||||
constant_product::ConstantProductCurve,
|
||||
fees::Fees,
|
||||
offset::OffsetCurve,
|
||||
stable::StableCurve,
|
||||
};
|
||||
use arrayref::{array_mut_ref, array_ref, array_refs, mut_array_refs};
|
||||
|
@ -24,8 +25,10 @@ pub enum CurveType {
|
|||
ConstantProduct,
|
||||
/// Flat line, always providing 1:1 from one token to another
|
||||
ConstantPrice,
|
||||
/// Stable, Like uniswap, but with wide zone of 1:1 instead of one point
|
||||
/// Stable, like uniswap, but with wide zone of 1:1 instead of one point
|
||||
Stable,
|
||||
/// Offset curve, like Uniswap, but the token B side has a faked offset
|
||||
Offset,
|
||||
}
|
||||
|
||||
/// Encodes all results of swapping from a source token to a destination token
|
||||
|
@ -181,6 +184,7 @@ impl Pack for SwapCurve {
|
|||
Box::new(ConstantPriceCurve::unpack_from_slice(calculator)?)
|
||||
}
|
||||
CurveType::Stable => Box::new(StableCurve::unpack_from_slice(calculator)?),
|
||||
CurveType::Offset => Box::new(OffsetCurve::unpack_from_slice(calculator)?),
|
||||
},
|
||||
})
|
||||
}
|
||||
|
@ -210,6 +214,7 @@ impl TryFrom<u8> for CurveType {
|
|||
0 => Ok(CurveType::ConstantProduct),
|
||||
1 => Ok(CurveType::ConstantPrice),
|
||||
2 => Ok(CurveType::Stable),
|
||||
3 => Ok(CurveType::Offset),
|
||||
_ => Err(ProgramError::InvalidAccountData),
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
//! Swap calculations
|
||||
|
||||
use crate::error::SwapError;
|
||||
use crate::{curve::math::PreciseNumber, error::SwapError};
|
||||
use std::fmt::Debug;
|
||||
|
||||
/// Initial amount of pool tokens for swap contract, hard-coded to something
|
||||
|
@ -11,7 +11,7 @@ pub const INITIAL_SWAP_POOL_AMOUNT: u128 = 1_000_000_000;
|
|||
|
||||
/// Hardcode the number of token types in a pool, used to calculate the
|
||||
/// equivalent pool tokens for the owner trading fee.
|
||||
const TOKENS_IN_POOL: u128 = 2;
|
||||
pub const TOKENS_IN_POOL: u128 = 2;
|
||||
|
||||
/// Helper function for mapping to SwapError::CalculationFailure
|
||||
pub fn map_zero_to_none(x: u128) -> Option<u128> {
|
||||
|
@ -115,10 +115,18 @@ pub trait CurveCalculator: Debug + DynPack {
|
|||
TradeDirection::AtoB => swap_token_a_amount,
|
||||
TradeDirection::BtoA => swap_token_b_amount,
|
||||
};
|
||||
pool_supply
|
||||
.checked_mul(source_amount)?
|
||||
.checked_div(swap_source_amount)?
|
||||
.checked_div(TOKENS_IN_POOL)
|
||||
let swap_source_amount = PreciseNumber::new(swap_source_amount)?;
|
||||
let source_amount = PreciseNumber::new(source_amount)?;
|
||||
let ratio = source_amount.checked_div(&swap_source_amount)?;
|
||||
let one = PreciseNumber::new(1)?;
|
||||
let two = PreciseNumber::new(2)?;
|
||||
let base = one.checked_add(&ratio)?;
|
||||
let guess = base.checked_div(&two)?;
|
||||
let root = base
|
||||
.newtonian_root_approximation(&two, guess)?
|
||||
.checked_sub(&one)?;
|
||||
let pool_supply = PreciseNumber::new(pool_supply)?;
|
||||
pool_supply.checked_mul(&root)?.to_imprecise()
|
||||
}
|
||||
|
||||
/// Validate that the given curve has no bad parameters
|
||||
|
@ -135,4 +143,90 @@ pub trait CurveCalculator: Debug + DynPack {
|
|||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Some curves will function best and prevent attacks if we prevent
|
||||
/// deposits after initialization
|
||||
fn allows_deposits(&self) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
use super::*;
|
||||
|
||||
/// Check that two numbers are within 1 of each other
|
||||
fn almost_equal(a: u128, b: u128) {
|
||||
if a >= b {
|
||||
assert!(a - b <= 1);
|
||||
} else {
|
||||
assert!(b - a <= 1);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_pool_token_conversion(
|
||||
curve: &dyn CurveCalculator,
|
||||
swap_token_a_amount: u128,
|
||||
swap_token_b_amount: u128,
|
||||
token_a_amount: u128,
|
||||
) {
|
||||
// check that depositing token A is the same as swapping for token B
|
||||
// and depositing the result
|
||||
let swap_results = curve
|
||||
.swap_without_fees(
|
||||
token_a_amount,
|
||||
swap_token_a_amount,
|
||||
swap_token_b_amount,
|
||||
TradeDirection::AtoB,
|
||||
)
|
||||
.unwrap();
|
||||
let token_a_amount = swap_results.source_amount_swapped;
|
||||
let token_b_amount = swap_results.destination_amount_swapped;
|
||||
let pool_supply = curve.new_pool_supply();
|
||||
let pool_tokens_from_a = curve
|
||||
.trading_tokens_to_pool_tokens(
|
||||
token_a_amount,
|
||||
swap_token_a_amount + token_a_amount,
|
||||
swap_token_b_amount,
|
||||
pool_supply,
|
||||
TradeDirection::AtoB,
|
||||
)
|
||||
.unwrap();
|
||||
let pool_tokens_from_b = curve
|
||||
.trading_tokens_to_pool_tokens(
|
||||
token_b_amount,
|
||||
swap_token_a_amount + token_a_amount,
|
||||
swap_token_b_amount,
|
||||
pool_supply,
|
||||
TradeDirection::BtoA,
|
||||
)
|
||||
.unwrap();
|
||||
let deposit_token_a = curve
|
||||
.pool_tokens_to_trading_tokens(
|
||||
pool_tokens_from_a,
|
||||
pool_supply + pool_tokens_from_a,
|
||||
swap_token_a_amount,
|
||||
swap_token_b_amount,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let deposit_token_b = curve
|
||||
.pool_tokens_to_trading_tokens(
|
||||
pool_tokens_from_b,
|
||||
pool_supply + pool_tokens_from_b,
|
||||
swap_token_a_amount,
|
||||
swap_token_b_amount,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// They should be within 1 token because truncation
|
||||
almost_equal(
|
||||
deposit_token_b.token_a_amount,
|
||||
deposit_token_a.token_a_amount,
|
||||
);
|
||||
almost_equal(
|
||||
deposit_token_b.token_b_amount,
|
||||
deposit_token_b.token_b_amount,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -93,7 +93,7 @@ impl DynPack for ConstantProductCurve {
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::curve::calculator::INITIAL_SWAP_POOL_AMOUNT;
|
||||
use crate::curve::calculator::{test::check_pool_token_conversion, INITIAL_SWAP_POOL_AMOUNT};
|
||||
|
||||
#[test]
|
||||
fn initial_pool_amount() {
|
||||
|
@ -213,4 +213,24 @@ mod tests {
|
|||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pool_token_conversion() {
|
||||
let tests: &[(u128, u128, u128)] = &[
|
||||
(1_000_000, 2400112, 100_000),
|
||||
(1_000, 100, 100),
|
||||
(30, 1_288, 100_000),
|
||||
(1_000, 1_288, 100_000),
|
||||
(212, 10_000, 100_000),
|
||||
];
|
||||
for (swap_token_a_amount, swap_token_b_amount, token_a_amount) in tests.iter() {
|
||||
let curve = ConstantProductCurve {};
|
||||
check_pool_token_conversion(
|
||||
&curve,
|
||||
*swap_token_a_amount,
|
||||
*swap_token_b_amount,
|
||||
*token_a_amount,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -39,3 +39,407 @@ impl U256 {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The representation of the number one as a precise number
|
||||
pub const ONE: u128 = 10_000_000_000;
|
||||
|
||||
/// Maximum weight for token in swap. This number is meant to stay small to
|
||||
/// so that it is possible to accurately calculate x^(MAX_WEIGHT / MIN_WEIGHT).
|
||||
pub const MAX_WEIGHT: u8 = 100;
|
||||
|
||||
/// Minimum weight for token in swap
|
||||
pub const MIN_WEIGHT: u8 = 1;
|
||||
|
||||
/// Struct encapsulating a fixed-point number that allows for decimal calculations
|
||||
#[derive(Clone)]
|
||||
pub struct PreciseNumber {
|
||||
/// Wrapper over the inner value, which is multiplied by ONE
|
||||
pub value: U256,
|
||||
}
|
||||
|
||||
/// The precise-number 1 as a U256
|
||||
fn one() -> U256 {
|
||||
U256::from(ONE)
|
||||
}
|
||||
|
||||
/// The number 0 as a PreciseNumber, used for easier calculations.
|
||||
fn zero() -> U256 {
|
||||
U256::from(0)
|
||||
}
|
||||
|
||||
impl PreciseNumber {
|
||||
/// Correction to apply to avoid truncation errors on division. Since
|
||||
/// integer operations will always floor the result, we artifically bump it
|
||||
/// up by one half to get the expect result.
|
||||
fn rounding_correction() -> U256 {
|
||||
U256::from(ONE / 2)
|
||||
}
|
||||
|
||||
/// Desired precision for the correction factor applied during each
|
||||
/// iteration of checked_pow_approximation. Once the correction factor is
|
||||
/// smaller than this number, or we reach the maxmium number of iterations,
|
||||
/// the calculation ends.
|
||||
fn precision() -> U256 {
|
||||
U256::from(100)
|
||||
}
|
||||
|
||||
/// Maximum number iterations to apply on checked_pow_approximation.
|
||||
const MAX_APPROXIMATION_ITERATIONS: u128 = 100;
|
||||
|
||||
/// Minimum base allowed when calculating exponents in checked_pow_fraction
|
||||
/// and checked_pow_approximation. This simply avoids 0 as a base.
|
||||
fn min_pow_base() -> U256 {
|
||||
U256::from(1)
|
||||
}
|
||||
|
||||
/// Maximum base allowed when calculating exponents in checked_pow_fraction
|
||||
/// and checked_pow_approximation. The calculation use a Taylor Series
|
||||
/// approxmation around 1, which converges for bases between 0 and 2. See
|
||||
/// https://en.wikipedia.org/wiki/Binomial_series#Conditions_for_convergence
|
||||
/// for more information.
|
||||
fn max_pow_base() -> U256 {
|
||||
U256::from(2 * ONE)
|
||||
}
|
||||
|
||||
/// Create a precise number from an imprecise u128, should always succeed
|
||||
pub fn new(value: u128) -> Option<Self> {
|
||||
let value = U256::from(value).checked_mul(one())?;
|
||||
Some(Self { value })
|
||||
}
|
||||
|
||||
/// Convert a precise number back to u128
|
||||
pub fn to_imprecise(&self) -> Option<u128> {
|
||||
match self
|
||||
.value
|
||||
.checked_add(Self::rounding_correction())?
|
||||
.checked_div(one())
|
||||
{
|
||||
Some(v) => Some(v.as_u128()),
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Checks that two PreciseNumbers are equal within some tolerance
|
||||
pub fn almost_eq(&self, rhs: &Self, precision: U256) -> bool {
|
||||
let (difference, _) = self.unsigned_sub(rhs);
|
||||
difference.value < precision
|
||||
}
|
||||
|
||||
/// Floors a precise value to a precision of ONE
|
||||
pub fn floor(&self) -> Option<Self> {
|
||||
let value = self.value.checked_div(one())?.checked_mul(one())?;
|
||||
Some(Self { value })
|
||||
}
|
||||
|
||||
/// Performs a checked division on two precise numbers
|
||||
pub fn checked_div(&self, rhs: &Self) -> Option<Self> {
|
||||
if rhs.value == zero() {
|
||||
return None;
|
||||
}
|
||||
match self.value.checked_mul(one()) {
|
||||
Some(v) => {
|
||||
let value = v
|
||||
.checked_add(Self::rounding_correction())?
|
||||
.checked_div(rhs.value)?;
|
||||
Some(Self { value })
|
||||
}
|
||||
None => {
|
||||
let value = self
|
||||
.value
|
||||
.checked_add(Self::rounding_correction())?
|
||||
.checked_div(rhs.value)?
|
||||
.checked_mul(one())?;
|
||||
Some(Self { value })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs a multiplication on two precise numbers
|
||||
pub fn checked_mul(&self, rhs: &Self) -> Option<Self> {
|
||||
match self.value.checked_mul(rhs.value) {
|
||||
Some(v) => {
|
||||
let value = v
|
||||
.checked_add(Self::rounding_correction())?
|
||||
.checked_div(one())?;
|
||||
Some(Self { value })
|
||||
}
|
||||
None => {
|
||||
let value = if self.value >= rhs.value {
|
||||
self.value.checked_div(one())?.checked_mul(rhs.value)?
|
||||
} else {
|
||||
rhs.value.checked_div(one())?.checked_mul(self.value)?
|
||||
};
|
||||
Some(Self { value })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs addition of two precise numbers
|
||||
pub fn checked_add(&self, rhs: &Self) -> Option<Self> {
|
||||
let value = self.value.checked_add(rhs.value)?;
|
||||
Some(Self { value })
|
||||
}
|
||||
|
||||
/// Subtracts the argument from self
|
||||
pub fn checked_sub(&self, rhs: &Self) -> Option<Self> {
|
||||
let value = self.value.checked_sub(rhs.value)?;
|
||||
Some(Self { value })
|
||||
}
|
||||
|
||||
/// Performs a subtraction, returning the result and whether the result is negative
|
||||
pub fn unsigned_sub(&self, rhs: &Self) -> (Self, bool) {
|
||||
match self.value.checked_sub(rhs.value) {
|
||||
None => {
|
||||
let value = rhs.value.checked_sub(self.value).unwrap();
|
||||
(Self { value }, true)
|
||||
}
|
||||
Some(value) => (Self { value }, false),
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs pow on a precise number
|
||||
pub fn checked_pow(&self, exponent: u128) -> Option<Self> {
|
||||
// For odd powers, start with a multiplication by base since we halve the
|
||||
// exponent at the start
|
||||
let value = if exponent.checked_rem(2)? == 0 {
|
||||
one()
|
||||
} else {
|
||||
self.value
|
||||
};
|
||||
let mut result = Self { value };
|
||||
|
||||
// To minimize the number of operations, we keep squaring the base, and
|
||||
// only push to the result on odd exponents, like a binary decomposition
|
||||
// of the exponent.
|
||||
let mut squared_base = self.clone();
|
||||
let mut current_exponent = exponent.checked_div(2)?;
|
||||
while current_exponent != 0 {
|
||||
squared_base = squared_base.checked_mul(&squared_base)?;
|
||||
|
||||
// For odd exponents, "push" the base onto the value
|
||||
if current_exponent.checked_rem(2)? != 0 {
|
||||
result = result.checked_mul(&squared_base)?;
|
||||
}
|
||||
|
||||
current_exponent = current_exponent.checked_div(2)?;
|
||||
}
|
||||
Some(result)
|
||||
}
|
||||
|
||||
/// Approximate the nth root of a number using a Taylor Series around 1 on
|
||||
/// x ^ n, where 0 < n < 1, result is a precise number.
|
||||
/// Refine the guess for each term, using:
|
||||
/// 1 2
|
||||
/// f(x) = f(a) + f'(a) * (x - a) + --- * f''(a) * (x - a) + ...
|
||||
/// 2!
|
||||
/// For x ^ n, this gives:
|
||||
/// n n n-1 1 n-2 2
|
||||
/// x = a + n * a (x - a) + --- * n * (n - 1) a (x - a) + ...
|
||||
/// 2!
|
||||
///
|
||||
/// More simply, this means refining the term at each iteration with:
|
||||
///
|
||||
/// t_k+1 = t_k * (x - a) * (n + 1 - k) / k
|
||||
///
|
||||
/// where a = 1, n = power, x = precise_num
|
||||
pub fn checked_pow_approximation(&self, exponent: &Self, max_iterations: u128) -> Option<Self> {
|
||||
assert!(self.value >= Self::min_pow_base());
|
||||
assert!(self.value <= Self::max_pow_base());
|
||||
let one = Self::new(1)?;
|
||||
if exponent.value == zero() {
|
||||
return Some(one);
|
||||
}
|
||||
let mut precise_guess = one.clone();
|
||||
let mut term = precise_guess.clone();
|
||||
let (x_minus_a, x_minus_a_negative) = self.unsigned_sub(&precise_guess);
|
||||
let exponent_plus_one = exponent.checked_add(&one)?;
|
||||
let mut negative = false;
|
||||
for k in 1..max_iterations {
|
||||
let k = Self::new(k)?;
|
||||
let (current_exponent, current_exponent_negative) = exponent_plus_one.unsigned_sub(&k);
|
||||
term = term.checked_mul(¤t_exponent)?;
|
||||
term = term.checked_mul(&x_minus_a)?;
|
||||
term = term.checked_div(&k)?;
|
||||
if term.value < Self::precision() {
|
||||
break;
|
||||
}
|
||||
if x_minus_a_negative {
|
||||
negative = !negative;
|
||||
}
|
||||
if current_exponent_negative {
|
||||
negative = !negative;
|
||||
}
|
||||
if negative {
|
||||
precise_guess = precise_guess.checked_sub(&term)?;
|
||||
} else {
|
||||
precise_guess = precise_guess.checked_add(&term)?;
|
||||
}
|
||||
}
|
||||
Some(precise_guess)
|
||||
}
|
||||
|
||||
/// Get the power of a number, where the exponent is expressed as a fraction
|
||||
/// (numerator / denominator)
|
||||
pub fn checked_pow_fraction(&self, exponent: &Self) -> Option<Self> {
|
||||
assert!(self.value >= Self::min_pow_base());
|
||||
assert!(self.value <= Self::max_pow_base());
|
||||
let whole_exponent = exponent.floor()?;
|
||||
let precise_whole = self.checked_pow(whole_exponent.to_imprecise()?)?;
|
||||
let (remainder_exponent, negative) = exponent.unsigned_sub(&whole_exponent);
|
||||
assert!(!negative);
|
||||
if remainder_exponent.value == U256::from(0) {
|
||||
return Some(precise_whole);
|
||||
}
|
||||
let precise_remainder = self
|
||||
.checked_pow_approximation(&remainder_exponent, Self::MAX_APPROXIMATION_ITERATIONS)?;
|
||||
precise_whole.checked_mul(&precise_remainder)
|
||||
}
|
||||
|
||||
/// Approximate the nth root of a number using Newton's method
|
||||
/// https://en.wikipedia.org/wiki/Newton%27s_method
|
||||
pub fn newtonian_root_approximation(&self, root: &Self, mut guess: Self) -> Option<Self> {
|
||||
if root.value == zero() {
|
||||
return None;
|
||||
}
|
||||
let one = Self::new(1)?;
|
||||
let root_minus_one = root.checked_sub(&one)?;
|
||||
let root_minus_one_whole = root_minus_one.to_imprecise()?;
|
||||
let mut last_guess = guess.clone();
|
||||
let precision = Self::precision();
|
||||
for _ in 0..Self::MAX_APPROXIMATION_ITERATIONS {
|
||||
// x_k+1 = ((n - 1) * x_k + A / (x_k ^ (n - 1))) / n
|
||||
let first_term = root_minus_one.checked_mul(&guess)?;
|
||||
let power = guess.checked_pow(root_minus_one_whole);
|
||||
let second_term = match power {
|
||||
Some(num) => self.checked_div(&num)?,
|
||||
None => Self::new(0)?,
|
||||
};
|
||||
guess = first_term.checked_add(&second_term)?.checked_div(&root)?;
|
||||
if last_guess.almost_eq(&guess, precision) {
|
||||
break;
|
||||
} else {
|
||||
last_guess = guess.clone();
|
||||
}
|
||||
}
|
||||
Some(guess)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
fn check_pow_approximation(base: U256, exponent: U256, expected: U256) {
|
||||
let precision = U256::from(5_000_000); // correct to at least 3 decimal places
|
||||
let base = PreciseNumber { value: base };
|
||||
let exponent = PreciseNumber { value: exponent };
|
||||
let root = base
|
||||
.checked_pow_approximation(&exponent, PreciseNumber::MAX_APPROXIMATION_ITERATIONS)
|
||||
.unwrap();
|
||||
let expected = PreciseNumber { value: expected };
|
||||
assert!(root.almost_eq(&expected, precision));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_root_approximation() {
|
||||
let one = one();
|
||||
// square root
|
||||
check_pow_approximation(one / 4, one / 2, one / 2); // 1/2
|
||||
check_pow_approximation(one * 11 / 10, one / 2, U256::from(1_0488088481u128)); // 1.0488088481
|
||||
|
||||
// 5th root
|
||||
check_pow_approximation(one * 4 / 5, one * 2 / 5, U256::from(9146101038u128)); // 0.9146101038
|
||||
|
||||
// 10th root
|
||||
check_pow_approximation(one / 2, one * 4 / 50, U256::from(9460576467u128));
|
||||
// 0.9460576467
|
||||
}
|
||||
|
||||
fn check_pow_fraction(base: U256, exponent: U256, expected: U256, precision: U256) {
|
||||
let base = PreciseNumber { value: base };
|
||||
let exponent = PreciseNumber { value: exponent };
|
||||
let power = base.checked_pow_fraction(&exponent).unwrap();
|
||||
let expected = PreciseNumber { value: expected };
|
||||
assert!(power.almost_eq(&expected, precision));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pow_fraction() {
|
||||
let one = one();
|
||||
let precision = U256::from(5_000_000); // correct to at least 3 decimal places
|
||||
let less_precision = precision * 100; // correct to at least 1 decimal place
|
||||
check_pow_fraction(one, one, one, precision);
|
||||
check_pow_fraction(
|
||||
one * 20 / 13,
|
||||
one * 50 / 3,
|
||||
U256::from(1312_5344847391u128),
|
||||
precision,
|
||||
); // 1312.5344847391
|
||||
check_pow_fraction(one * 2 / 7, one * 49 / 4, U256::from(2163), precision);
|
||||
check_pow_fraction(
|
||||
one * 5000 / 5100,
|
||||
one / 9,
|
||||
U256::from(9978021269u128),
|
||||
precision,
|
||||
); // 0.99780212695
|
||||
// results get less accurate as the base gets further from 1, so allow
|
||||
// for a greater margin of error
|
||||
check_pow_fraction(
|
||||
one * 2,
|
||||
one * 27 / 5,
|
||||
U256::from(42_2242531447u128),
|
||||
less_precision,
|
||||
); // 42.2242531447
|
||||
check_pow_fraction(
|
||||
one * 18 / 10,
|
||||
one * 11 / 3,
|
||||
U256::from(8_6297692905u128),
|
||||
less_precision,
|
||||
); // 8.629769290
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_newtonian_approximation() {
|
||||
// square root
|
||||
let test = PreciseNumber::new(9).unwrap();
|
||||
let nth_root = PreciseNumber::new(2).unwrap();
|
||||
let guess = test.checked_div(&nth_root).unwrap();
|
||||
let root = test
|
||||
.newtonian_root_approximation(&nth_root, guess)
|
||||
.unwrap()
|
||||
.to_imprecise()
|
||||
.unwrap();
|
||||
assert_eq!(root, 3); // actually 3
|
||||
|
||||
let test = PreciseNumber::new(101).unwrap();
|
||||
let nth_root = PreciseNumber::new(2).unwrap();
|
||||
let guess = test.checked_div(&nth_root).unwrap();
|
||||
let root = test
|
||||
.newtonian_root_approximation(&nth_root, guess)
|
||||
.unwrap()
|
||||
.to_imprecise()
|
||||
.unwrap();
|
||||
assert_eq!(root, 10); // actually 10.049875
|
||||
|
||||
let test = PreciseNumber::new(1_000_000_000).unwrap();
|
||||
let nth_root = PreciseNumber::new(2).unwrap();
|
||||
let guess = test.checked_div(&nth_root).unwrap();
|
||||
let root = test
|
||||
.newtonian_root_approximation(&nth_root, guess)
|
||||
.unwrap()
|
||||
.to_imprecise()
|
||||
.unwrap();
|
||||
assert_eq!(root, 31_623); // actually 31622.7766
|
||||
|
||||
// 5th root
|
||||
let test = PreciseNumber::new(500).unwrap();
|
||||
let nth_root = PreciseNumber::new(5).unwrap();
|
||||
let guess = test.checked_div(&nth_root).unwrap();
|
||||
let root = test
|
||||
.newtonian_root_approximation(&nth_root, guess)
|
||||
.unwrap()
|
||||
.to_imprecise()
|
||||
.unwrap();
|
||||
assert_eq!(root, 3); // actually 3.46572422
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,4 +6,5 @@ pub mod constant_price;
|
|||
pub mod constant_product;
|
||||
pub mod fees;
|
||||
pub mod math;
|
||||
pub mod offset;
|
||||
pub mod stable;
|
||||
|
|
|
@ -0,0 +1,289 @@
|
|||
//! The Uniswap invariant calculator with an extra offset
|
||||
|
||||
use crate::{
|
||||
curve::{
|
||||
calculator::{
|
||||
CurveCalculator, DynPack, SwapWithoutFeesResult, TradeDirection, TradingTokenResult,
|
||||
},
|
||||
constant_product::swap,
|
||||
math::PreciseNumber,
|
||||
},
|
||||
error::SwapError,
|
||||
};
|
||||
use arrayref::{array_mut_ref, array_ref};
|
||||
use solana_program::{
|
||||
program_error::ProgramError,
|
||||
program_pack::{IsInitialized, Pack, Sealed},
|
||||
};
|
||||
|
||||
/// Offset curve, uses ConstantProduct under the hood, but adds an offset to
|
||||
/// one side on swap calculations
|
||||
#[derive(Clone, Debug, Default, PartialEq)]
|
||||
pub struct OffsetCurve {
|
||||
/// Amount to offset the token B liquidity account
|
||||
pub token_b_offset: u64,
|
||||
}
|
||||
|
||||
impl CurveCalculator for OffsetCurve {
|
||||
/// Constant product swap ensures token a * (token b + offset) = constant
|
||||
fn swap_without_fees(
|
||||
&self,
|
||||
source_amount: u128,
|
||||
swap_source_amount: u128,
|
||||
swap_destination_amount: u128,
|
||||
trade_direction: TradeDirection,
|
||||
) -> Option<SwapWithoutFeesResult> {
|
||||
let token_b_offset = self.token_b_offset as u128;
|
||||
let swap_source_amount = match trade_direction {
|
||||
TradeDirection::AtoB => swap_source_amount,
|
||||
TradeDirection::BtoA => swap_source_amount.checked_add(token_b_offset)?,
|
||||
};
|
||||
let swap_destination_amount = match trade_direction {
|
||||
TradeDirection::AtoB => swap_destination_amount.checked_add(token_b_offset)?,
|
||||
TradeDirection::BtoA => swap_destination_amount,
|
||||
};
|
||||
swap(source_amount, swap_source_amount, swap_destination_amount)
|
||||
}
|
||||
|
||||
/// The conversion for the offset curve needs to take into account the
|
||||
/// offset
|
||||
fn pool_tokens_to_trading_tokens(
|
||||
&self,
|
||||
pool_tokens: u128,
|
||||
pool_token_supply: u128,
|
||||
swap_token_a_amount: u128,
|
||||
swap_token_b_amount: u128,
|
||||
) -> Option<TradingTokenResult> {
|
||||
let token_b_offset = self.token_b_offset as u128;
|
||||
let token_a_amount = pool_tokens
|
||||
.checked_mul(swap_token_a_amount)?
|
||||
.checked_div(pool_token_supply)?;
|
||||
let token_b_amount = pool_tokens
|
||||
.checked_mul(swap_token_b_amount.checked_add(token_b_offset)?)?
|
||||
.checked_div(pool_token_supply)?;
|
||||
Some(TradingTokenResult {
|
||||
token_a_amount,
|
||||
token_b_amount,
|
||||
})
|
||||
}
|
||||
|
||||
/// Get the amount of pool tokens for the given amount of token A and B,
|
||||
/// taking into account the offset
|
||||
fn trading_tokens_to_pool_tokens(
|
||||
&self,
|
||||
source_amount: u128,
|
||||
swap_token_a_amount: u128,
|
||||
swap_token_b_amount: u128,
|
||||
pool_supply: u128,
|
||||
trade_direction: TradeDirection,
|
||||
) -> Option<u128> {
|
||||
let token_b_offset = self.token_b_offset as u128;
|
||||
let swap_source_amount = match trade_direction {
|
||||
TradeDirection::AtoB => swap_token_a_amount,
|
||||
TradeDirection::BtoA => swap_token_b_amount.checked_add(token_b_offset)?,
|
||||
};
|
||||
let swap_source_amount = PreciseNumber::new(swap_source_amount)?;
|
||||
let source_amount = PreciseNumber::new(source_amount)?;
|
||||
let ratio = source_amount.checked_div(&swap_source_amount)?;
|
||||
let one = PreciseNumber::new(1)?;
|
||||
let two = PreciseNumber::new(2)?;
|
||||
let base = one.checked_add(&ratio)?;
|
||||
let guess = base.checked_div(&two)?;
|
||||
let root = base
|
||||
.newtonian_root_approximation(&two, guess)?
|
||||
.checked_sub(&one)?;
|
||||
let pool_supply = PreciseNumber::new(pool_supply)?;
|
||||
pool_supply.checked_mul(&root)?.to_imprecise()
|
||||
}
|
||||
|
||||
fn validate(&self) -> Result<(), SwapError> {
|
||||
if self.token_b_offset == 0 {
|
||||
Err(SwapError::InvalidCurve)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn validate_supply(&self, token_a_amount: u64, _token_b_amount: u64) -> Result<(), SwapError> {
|
||||
if token_a_amount == 0 {
|
||||
return Err(SwapError::EmptySupply);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Offset curves can cause arbitrage opportunities if outside users are
|
||||
/// allowed to deposit. For example, in the offset curve, if there's swap
|
||||
/// with 1 million of token A against an offset of 2 million token B,
|
||||
/// someone else can deposit 1 million A and 2 million B for LP tokens.
|
||||
/// The pool creator can then use their LP tokens to steal the 2 million B,
|
||||
fn allows_deposits(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// IsInitialized is required to use `Pack::pack` and `Pack::unpack`
|
||||
impl IsInitialized for OffsetCurve {
|
||||
fn is_initialized(&self) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
impl Sealed for OffsetCurve {}
|
||||
impl Pack for OffsetCurve {
|
||||
const LEN: usize = 8;
|
||||
fn pack_into_slice(&self, output: &mut [u8]) {
|
||||
(self as &dyn DynPack).pack_into_slice(output);
|
||||
}
|
||||
|
||||
fn unpack_from_slice(input: &[u8]) -> Result<OffsetCurve, ProgramError> {
|
||||
let token_b_offset = array_ref![input, 0, 8];
|
||||
Ok(Self {
|
||||
token_b_offset: u64::from_le_bytes(*token_b_offset),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl DynPack for OffsetCurve {
|
||||
fn pack_into_slice(&self, output: &mut [u8]) {
|
||||
let token_b_offset = array_mut_ref![output, 0, 8];
|
||||
*token_b_offset = self.token_b_offset.to_le_bytes();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::curve::calculator::test::check_pool_token_conversion;
|
||||
|
||||
#[test]
|
||||
fn pack_curve() {
|
||||
let token_b_offset = u64::MAX;
|
||||
let curve = OffsetCurve { token_b_offset };
|
||||
|
||||
let mut packed = [0u8; OffsetCurve::LEN];
|
||||
Pack::pack_into_slice(&curve, &mut packed[..]);
|
||||
let unpacked = OffsetCurve::unpack(&packed).unwrap();
|
||||
assert_eq!(curve, unpacked);
|
||||
|
||||
let mut packed = vec![];
|
||||
packed.extend_from_slice(&token_b_offset.to_le_bytes());
|
||||
let unpacked = OffsetCurve::unpack(&packed).unwrap();
|
||||
assert_eq!(curve, unpacked);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn swap_no_offset() {
|
||||
let swap_source_amount: u128 = 1_000;
|
||||
let swap_destination_amount: u128 = 50_000;
|
||||
let source_amount: u128 = 100;
|
||||
let curve = OffsetCurve::default();
|
||||
let result = curve
|
||||
.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::AtoB,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(result.source_amount_swapped, source_amount);
|
||||
assert_eq!(result.destination_amount_swapped, 4545);
|
||||
let result = curve
|
||||
.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::BtoA,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(result.source_amount_swapped, source_amount);
|
||||
assert_eq!(result.destination_amount_swapped, 4545);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn swap_offset() {
|
||||
let swap_source_amount: u128 = 1_000_000;
|
||||
let swap_destination_amount: u128 = 0;
|
||||
let source_amount: u128 = 100;
|
||||
let token_b_offset = 1_000_000;
|
||||
let curve = OffsetCurve { token_b_offset };
|
||||
let result = curve
|
||||
.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::AtoB,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(result.source_amount_swapped, source_amount);
|
||||
assert_eq!(result.destination_amount_swapped, source_amount - 1);
|
||||
|
||||
let bad_result = curve.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::BtoA,
|
||||
);
|
||||
assert!(bad_result.is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn swap_a_to_b_max_offset() {
|
||||
let swap_source_amount: u128 = 10_000_000;
|
||||
let swap_destination_amount: u128 = 1_000;
|
||||
let source_amount: u128 = 1_000;
|
||||
let token_b_offset = u64::MAX;
|
||||
let curve = OffsetCurve { token_b_offset };
|
||||
let result = curve
|
||||
.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::AtoB,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(result.source_amount_swapped, source_amount);
|
||||
assert_eq!(result.destination_amount_swapped, 1_844_489_958_375_117);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn swap_b_to_a_max_offset() {
|
||||
let swap_source_amount: u128 = 10_000_000;
|
||||
let swap_destination_amount: u128 = 1_000;
|
||||
let source_amount: u128 = u64::MAX.into();
|
||||
let token_b_offset = u64::MAX;
|
||||
let curve = OffsetCurve { token_b_offset };
|
||||
let result = curve
|
||||
.swap_without_fees(
|
||||
source_amount,
|
||||
swap_source_amount,
|
||||
swap_destination_amount,
|
||||
TradeDirection::BtoA,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(result.source_amount_swapped, 18_373_104_376_818_475_561);
|
||||
assert_eq!(result.destination_amount_swapped, 499);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pool_token_conversion() {
|
||||
let tests: &[(u64, u128, u128, u128)] = &[
|
||||
(10_000, 1_000_000, 1, 100_000),
|
||||
(10, 1_000, 100, 100),
|
||||
(1_251, 30, 1_288, 100_000),
|
||||
(1_000_251, 1_000, 1_288, 100_000),
|
||||
(1_000_000_000_000, 212, 10_000, 100_000),
|
||||
];
|
||||
for (token_b_offset, swap_token_a_amount, swap_token_b_amount, token_a_amount) in
|
||||
tests.iter()
|
||||
{
|
||||
let curve = OffsetCurve {
|
||||
token_b_offset: *token_b_offset,
|
||||
};
|
||||
check_pool_token_conversion(
|
||||
&curve,
|
||||
*swap_token_a_amount,
|
||||
*swap_token_b_amount,
|
||||
*token_a_amount,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -88,6 +88,9 @@ pub enum SwapError {
|
|||
/// The provided curve parameters are invalid
|
||||
#[error("The provided curve parameters are invalid")]
|
||||
InvalidCurve,
|
||||
/// The operation cannot be performed on the given curve
|
||||
#[error("The operation cannot be performed on the given curve")]
|
||||
UnsupportedCurveOperation,
|
||||
}
|
||||
impl From<SwapError> for ProgramError {
|
||||
fn from(e: SwapError) -> Self {
|
||||
|
|
|
@ -448,6 +448,9 @@ impl Processor {
|
|||
return Err(ProgramError::IncorrectProgramId);
|
||||
}
|
||||
let token_swap = SwapInfo::unpack(&swap_info.data.borrow())?;
|
||||
if !token_swap.swap_curve.calculator.allows_deposits() {
|
||||
return Err(SwapError::UnsupportedCurveOperation.into());
|
||||
}
|
||||
if *authority_info.key != Self::authority_id(program_id, swap_info.key, token_swap.nonce)? {
|
||||
return Err(SwapError::InvalidProgramAddress.into());
|
||||
}
|
||||
|
@ -475,13 +478,16 @@ impl Processor {
|
|||
let pool_mint = Self::unpack_mint(pool_mint_info, &token_swap.token_program_id)?;
|
||||
let pool_token_amount = to_u128(pool_token_amount)?;
|
||||
let pool_mint_supply = to_u128(pool_mint.supply)?;
|
||||
let new_pool_mint_supply = pool_mint_supply
|
||||
.checked_add(pool_token_amount)
|
||||
.ok_or(SwapError::CalculationFailure)?;
|
||||
|
||||
let calculator = token_swap.swap_curve.calculator;
|
||||
|
||||
let results = calculator
|
||||
.pool_tokens_to_trading_tokens(
|
||||
pool_token_amount,
|
||||
pool_mint_supply,
|
||||
new_pool_mint_supply,
|
||||
to_u128(token_a.amount)?,
|
||||
to_u128(token_b.amount)?,
|
||||
)
|
||||
|
@ -612,35 +618,41 @@ impl Processor {
|
|||
if token_a_amount < minimum_token_a_amount {
|
||||
return Err(SwapError::ExceededSlippage.into());
|
||||
}
|
||||
if token_a_amount == 0 {
|
||||
if token_a_amount == 0 && token_a.amount != 0 {
|
||||
return Err(SwapError::ZeroTradingTokens.into());
|
||||
}
|
||||
let token_b_amount = to_u64(results.token_b_amount)?;
|
||||
if token_b_amount < minimum_token_b_amount {
|
||||
return Err(SwapError::ExceededSlippage.into());
|
||||
}
|
||||
if token_b_amount == 0 {
|
||||
if token_b_amount == 0 && token_b.amount != 0 {
|
||||
return Err(SwapError::ZeroTradingTokens.into());
|
||||
}
|
||||
|
||||
Self::token_transfer(
|
||||
swap_info.key,
|
||||
token_program_info.clone(),
|
||||
token_a_info.clone(),
|
||||
dest_token_a_info.clone(),
|
||||
authority_info.clone(),
|
||||
token_swap.nonce,
|
||||
token_a_amount,
|
||||
)?;
|
||||
Self::token_transfer(
|
||||
swap_info.key,
|
||||
token_program_info.clone(),
|
||||
token_b_info.clone(),
|
||||
dest_token_b_info.clone(),
|
||||
authority_info.clone(),
|
||||
token_swap.nonce,
|
||||
token_b_amount,
|
||||
)?;
|
||||
let token_a_amount = std::cmp::min(token_a.amount, token_a_amount);
|
||||
if token_a_amount > 0 {
|
||||
Self::token_transfer(
|
||||
swap_info.key,
|
||||
token_program_info.clone(),
|
||||
token_a_info.clone(),
|
||||
dest_token_a_info.clone(),
|
||||
authority_info.clone(),
|
||||
token_swap.nonce,
|
||||
token_a_amount,
|
||||
)?;
|
||||
}
|
||||
let token_b_amount = std::cmp::min(token_b.amount, token_b_amount);
|
||||
if token_b_amount > 0 {
|
||||
Self::token_transfer(
|
||||
swap_info.key,
|
||||
token_program_info.clone(),
|
||||
token_b_info.clone(),
|
||||
dest_token_b_info.clone(),
|
||||
authority_info.clone(),
|
||||
token_swap.nonce,
|
||||
token_b_amount,
|
||||
)?;
|
||||
}
|
||||
if withdraw_fee > 0 {
|
||||
Self::token_transfer(
|
||||
swap_info.key,
|
||||
|
@ -793,6 +805,9 @@ impl PrintProgramError for SwapError {
|
|||
SwapError::InvalidCurve => {
|
||||
msg!("Error: The provided curve parameters are invalid")
|
||||
}
|
||||
SwapError::UnsupportedCurveOperation => {
|
||||
msg!("Error: The operation cannot be performed on the given curve")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -812,7 +827,7 @@ mod tests {
|
|||
curve::calculator::{CurveCalculator, INITIAL_SWAP_POOL_AMOUNT},
|
||||
curve::{
|
||||
base::CurveType, constant_price::ConstantPriceCurve,
|
||||
constant_product::ConstantProductCurve,
|
||||
constant_product::ConstantProductCurve, offset::OffsetCurve,
|
||||
},
|
||||
instruction::{deposit, initialize, swap, withdraw},
|
||||
};
|
||||
|
@ -2014,6 +2029,53 @@ mod tests {
|
|||
accounts.initialize_swap().unwrap();
|
||||
}
|
||||
|
||||
// create invalid offset swap
|
||||
{
|
||||
let token_b_offset = 0;
|
||||
let fees = Fees {
|
||||
trade_fee_numerator,
|
||||
trade_fee_denominator,
|
||||
owner_trade_fee_numerator,
|
||||
owner_trade_fee_denominator,
|
||||
owner_withdraw_fee_numerator,
|
||||
owner_withdraw_fee_denominator,
|
||||
host_fee_numerator,
|
||||
host_fee_denominator,
|
||||
};
|
||||
let swap_curve = SwapCurve {
|
||||
curve_type: CurveType::Offset,
|
||||
calculator: Box::new(OffsetCurve { token_b_offset }),
|
||||
};
|
||||
let mut accounts =
|
||||
SwapAccountInfo::new(&user_key, fees, swap_curve, token_a_amount, token_b_amount);
|
||||
assert_eq!(
|
||||
Err(SwapError::InvalidCurve.into()),
|
||||
accounts.initialize_swap()
|
||||
);
|
||||
}
|
||||
|
||||
// create valid offset swap
|
||||
{
|
||||
let token_b_offset = 10;
|
||||
let fees = Fees {
|
||||
trade_fee_numerator,
|
||||
trade_fee_denominator,
|
||||
owner_trade_fee_numerator,
|
||||
owner_trade_fee_denominator,
|
||||
owner_withdraw_fee_numerator,
|
||||
owner_withdraw_fee_denominator,
|
||||
host_fee_numerator,
|
||||
host_fee_denominator,
|
||||
};
|
||||
let swap_curve = SwapCurve {
|
||||
curve_type: CurveType::Offset,
|
||||
calculator: Box::new(OffsetCurve { token_b_offset }),
|
||||
};
|
||||
let mut accounts =
|
||||
SwapAccountInfo::new(&user_key, fees, swap_curve, token_a_amount, token_b_amount);
|
||||
accounts.initialize_swap().unwrap();
|
||||
}
|
||||
|
||||
// wrong owner key in constraint
|
||||
{
|
||||
let new_key = Pubkey::new_unique();
|
||||
|
@ -2290,9 +2352,11 @@ mod tests {
|
|||
let mut accounts =
|
||||
SwapAccountInfo::new(&user_key, fees, swap_curve, token_a_amount, token_b_amount);
|
||||
|
||||
let deposit_a = token_a_amount / 10;
|
||||
let deposit_b = token_b_amount / 10;
|
||||
// depositing 10% of the current pool amount means that our share will
|
||||
// be 1 / 11 of the final pool amount
|
||||
let pool_amount = INITIAL_SWAP_POOL_AMOUNT / 10;
|
||||
let deposit_a = token_a_amount / 11;
|
||||
let deposit_b = token_b_amount / 11;
|
||||
|
||||
// swap not initialized
|
||||
{
|
||||
|
@ -2813,6 +2877,7 @@ mod tests {
|
|||
)
|
||||
);
|
||||
}
|
||||
|
||||
// correctly deposit
|
||||
{
|
||||
let (
|
||||
|
@ -3873,12 +3938,20 @@ mod tests {
|
|||
token_b_amount,
|
||||
);
|
||||
check_valid_swap_curve(
|
||||
fees,
|
||||
fees.clone(),
|
||||
CurveType::ConstantPrice,
|
||||
Box::new(ConstantPriceCurve {}),
|
||||
token_a_amount,
|
||||
token_b_amount,
|
||||
);
|
||||
let token_b_offset = 10_000_000_000;
|
||||
check_valid_swap_curve(
|
||||
fees,
|
||||
CurveType::Offset,
|
||||
Box::new(OffsetCurve { token_b_offset }),
|
||||
token_a_amount,
|
||||
token_b_amount,
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -3913,12 +3986,20 @@ mod tests {
|
|||
token_b_amount,
|
||||
);
|
||||
check_valid_swap_curve(
|
||||
fees,
|
||||
fees.clone(),
|
||||
CurveType::ConstantPrice,
|
||||
Box::new(ConstantPriceCurve {}),
|
||||
token_a_amount,
|
||||
token_b_amount,
|
||||
);
|
||||
let token_b_offset = 1;
|
||||
check_valid_swap_curve(
|
||||
fees,
|
||||
CurveType::Offset,
|
||||
Box::new(OffsetCurve { token_b_offset }),
|
||||
token_a_amount,
|
||||
token_b_amount,
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -4715,4 +4796,235 @@ mod tests {
|
|||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_overdraw_offset_curve() {
|
||||
let trade_fee_numerator = 1;
|
||||
let trade_fee_denominator = 10;
|
||||
let owner_trade_fee_numerator = 1;
|
||||
let owner_trade_fee_denominator = 30;
|
||||
let owner_withdraw_fee_numerator = 1;
|
||||
let owner_withdraw_fee_denominator = 30;
|
||||
let host_fee_numerator = 10;
|
||||
let host_fee_denominator = 100;
|
||||
|
||||
let token_a_amount = 1_000_000_000;
|
||||
let token_b_amount = 0;
|
||||
let fees = Fees {
|
||||
trade_fee_numerator,
|
||||
trade_fee_denominator,
|
||||
owner_trade_fee_numerator,
|
||||
owner_trade_fee_denominator,
|
||||
owner_withdraw_fee_numerator,
|
||||
owner_withdraw_fee_denominator,
|
||||
host_fee_numerator,
|
||||
host_fee_denominator,
|
||||
};
|
||||
|
||||
let token_b_offset = 2_000_000;
|
||||
let swap_curve = SwapCurve {
|
||||
curve_type: CurveType::Offset,
|
||||
calculator: Box::new(OffsetCurve { token_b_offset }),
|
||||
};
|
||||
let user_key = Pubkey::new_unique();
|
||||
let swapper_key = Pubkey::new_unique();
|
||||
|
||||
let mut accounts =
|
||||
SwapAccountInfo::new(&user_key, fees, swap_curve, token_a_amount, token_b_amount);
|
||||
|
||||
accounts.initialize_swap().unwrap();
|
||||
|
||||
let swap_token_a_key = accounts.token_a_key;
|
||||
let swap_token_b_key = accounts.token_b_key;
|
||||
let initial_a = 500_000;
|
||||
let initial_b = 1_000;
|
||||
|
||||
let (
|
||||
token_a_key,
|
||||
mut token_a_account,
|
||||
token_b_key,
|
||||
mut token_b_account,
|
||||
_pool_key,
|
||||
_pool_account,
|
||||
) = accounts.setup_token_accounts(&user_key, &swapper_key, initial_a, initial_b, 0);
|
||||
|
||||
// swap a to b way, fails, there's no liquidity
|
||||
let a_to_b_amount = initial_a;
|
||||
let minimum_token_b_amount = 0;
|
||||
|
||||
assert_eq!(
|
||||
Err(SwapError::ZeroTradingTokens.into()),
|
||||
accounts.swap(
|
||||
&swapper_key,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
&swap_token_a_key,
|
||||
&swap_token_b_key,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
a_to_b_amount,
|
||||
minimum_token_b_amount,
|
||||
)
|
||||
);
|
||||
|
||||
// swap b to a, succeeds at offset price
|
||||
let b_to_a_amount = initial_b;
|
||||
let minimum_token_a_amount = 0;
|
||||
accounts
|
||||
.swap(
|
||||
&swapper_key,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
&swap_token_b_key,
|
||||
&swap_token_a_key,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
b_to_a_amount,
|
||||
minimum_token_a_amount,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// try a to b again, succeeds due to new liquidity
|
||||
accounts
|
||||
.swap(
|
||||
&swapper_key,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
&swap_token_a_key,
|
||||
&swap_token_b_key,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
a_to_b_amount,
|
||||
minimum_token_b_amount,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// try a to b again, fails due to no more liquidity
|
||||
assert_eq!(
|
||||
Err(SwapError::ZeroTradingTokens.into()),
|
||||
accounts.swap(
|
||||
&swapper_key,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
&swap_token_a_key,
|
||||
&swap_token_b_key,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
a_to_b_amount,
|
||||
minimum_token_b_amount,
|
||||
)
|
||||
);
|
||||
|
||||
// Try to deposit, fails because deposits are not allowed for offset
|
||||
// curve swaps
|
||||
{
|
||||
let initial_a = 100;
|
||||
let initial_b = 100;
|
||||
let pool_amount = 100;
|
||||
let (
|
||||
token_a_key,
|
||||
mut token_a_account,
|
||||
token_b_key,
|
||||
mut token_b_account,
|
||||
pool_key,
|
||||
mut pool_account,
|
||||
) = accounts.setup_token_accounts(&user_key, &swapper_key, initial_a, initial_b, 0);
|
||||
assert_eq!(
|
||||
Err(SwapError::UnsupportedCurveOperation.into()),
|
||||
accounts.deposit(
|
||||
&swapper_key,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
&pool_key,
|
||||
&mut pool_account,
|
||||
pool_amount,
|
||||
initial_a,
|
||||
initial_b,
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_withdraw_all_offset_curve() {
|
||||
let trade_fee_numerator = 1;
|
||||
let trade_fee_denominator = 10;
|
||||
let owner_trade_fee_numerator = 1;
|
||||
let owner_trade_fee_denominator = 30;
|
||||
let owner_withdraw_fee_numerator = 0;
|
||||
let owner_withdraw_fee_denominator = 30;
|
||||
let host_fee_numerator = 10;
|
||||
let host_fee_denominator = 100;
|
||||
|
||||
let token_a_amount = 1_000_000_000;
|
||||
let token_b_amount = 10;
|
||||
let fees = Fees {
|
||||
trade_fee_numerator,
|
||||
trade_fee_denominator,
|
||||
owner_trade_fee_numerator,
|
||||
owner_trade_fee_denominator,
|
||||
owner_withdraw_fee_numerator,
|
||||
owner_withdraw_fee_denominator,
|
||||
host_fee_numerator,
|
||||
host_fee_denominator,
|
||||
};
|
||||
|
||||
let token_b_offset = 2_000_000;
|
||||
let swap_curve = SwapCurve {
|
||||
curve_type: CurveType::Offset,
|
||||
calculator: Box::new(OffsetCurve { token_b_offset }),
|
||||
};
|
||||
let total_pool = swap_curve.calculator.new_pool_supply();
|
||||
let user_key = Pubkey::new_unique();
|
||||
let withdrawer_key = Pubkey::new_unique();
|
||||
|
||||
let mut accounts =
|
||||
SwapAccountInfo::new(&user_key, fees, swap_curve, token_a_amount, token_b_amount);
|
||||
|
||||
accounts.initialize_swap().unwrap();
|
||||
|
||||
let (
|
||||
token_a_key,
|
||||
mut token_a_account,
|
||||
token_b_key,
|
||||
mut token_b_account,
|
||||
_pool_key,
|
||||
_pool_account,
|
||||
) = accounts.setup_token_accounts(&user_key, &withdrawer_key, 0, 0, 0);
|
||||
|
||||
let pool_key = accounts.pool_token_key;
|
||||
let mut pool_account = accounts.pool_token_account.clone();
|
||||
|
||||
// Withdraw takes all tokens for A and B.
|
||||
// The curve's calculation for token B will say to transfer
|
||||
// `token_b_offset + token_b_amount`, but only `token_b_amount` will be
|
||||
// moved.
|
||||
accounts
|
||||
.withdraw(
|
||||
&user_key,
|
||||
&pool_key,
|
||||
&mut pool_account,
|
||||
&token_a_key,
|
||||
&mut token_a_account,
|
||||
&token_b_key,
|
||||
&mut token_b_account,
|
||||
total_pool.try_into().unwrap(),
|
||||
0,
|
||||
0,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let token_a = spl_token::state::Account::unpack(&token_a_account.data).unwrap();
|
||||
assert_eq!(token_a.amount, token_a_amount);
|
||||
let token_b = spl_token::state::Account::unpack(&token_b_account.data).unwrap();
|
||||
assert_eq!(token_b.amount, token_b_amount);
|
||||
let swap_token_a =
|
||||
spl_token::state::Account::unpack(&accounts.token_a_account.data).unwrap();
|
||||
assert_eq!(swap_token_a.amount, 0);
|
||||
let swap_token_b =
|
||||
spl_token::state::Account::unpack(&accounts.token_b_account.data).unwrap();
|
||||
assert_eq!(swap_token_b.amount, 0);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue