
Part 2: SPL ZK-Tokens Proof of Security

Solana Labs

Last Updated: December 21, 2021

1 Introduction

This document is part 2 of the SPL ZK-Token protocol specification. It is inteded for advanced
readers who wish to verify the proofs for the ZK-Token program. We provide formal details of the
ZK-Token protocol and its rigorous security proofs.1

1.1 Organization

We divide this document into the following main sections:

• Section 3 provides a formal description of the twisted ElGamal encryption as well as the
formal correctness and security theorems.

• Section 4 provides a formal description of the zero-knowledge argument systems that are used
in the ZK-Token program.

• Section 5 provides the formal definitions of our confidential payment system abstraction.

• Section 6 provides the formal description of the ZK-Token program.

The formal proofs of the correctness and security theorems are provided in the appendices.

2 Preliminaries

Basic notation. For two integers n < m, we write [n,m] to denote the set {n, n+ 1, . . . ,m}. When
n = 1, we simply write [m] to denote the set {1, . . . ,m}. For any finite set S, we use x ←R S to
denote the process of sampling an element x ∈ S uniformly at random. Unless specified otherwise,
we use λ to denote the security parameter. We say that an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We say that a function f : N → N is
negligible if f = o(1/nc) for any positive integer c ∈ N. Throughout the exposition, we use poly(·)
and negl(·) to denote any polynomial and negligible functions respectively.

1The proofs are currently work-in-progress.

1

2.1 Cryptographic Assumptions

The security of the ZK-Token protocol relies on two standard cryptographic assumptions on a prime
order group G. The first assumption is the discrete log relation assumption, which we use for the
security of zero-knowledge proofs. It states that given a number of random group elements in G, no
efficient adversary can find a non-trivial relation on these elements.

Definition 2.1 (Discrete Log Relation). Let G = G(λ) be a group of prime order p. Then the
discrete log relation assumption on G states that for any efficient adversary A and n ≥ 2, there
exists a negligible function negl(λ) such that

Pr
[
A(G1, . . . , Gn)→ a1, . . . , an ∈ Zp : ∃ ai 6= 0 ∧

∑
i∈[n]

ai ·G = 0
]

= negl(λ),

where G1, . . . , Gn ←R G.

The second assumption is the standard Decision Diffie-Hellman (DDH) assumption on G, which we
use for the security of the twisted ElGamal encryption.

Definition 2.2 (Decision Diffie-Hellman). Let G = G(λ) be a group of prime order p. Then the
Decision Diffie-Hellman assumption on G states that for any efficient adversary A, there exists a
negligible function negl(λ) such that∣∣∣Pr[A(G, a ·G, b ·G, ab ·G) = 1]− Pr[A(G, a ·G, b ·G, u ·G) = 1]

∣∣∣ = negl(λ),

where a, b, u←R Zp.

2.2 Rewinding Lemma

To prove the security of the zero-knowledge sigma protocols in the ZK-Token program, we make use
of the rewinding lemma. For the purpose of these proofs, we do not require the rewinding lemma in
its full generality and therefore, we rely on the following simple variant from the work of Boneh et
al. [1].

Lemma 2.3 (Rewinding Lemma). Let S, R, and T be finite, non-empty sets, and let X, Y , Y ′, Z,
and Z ′ be mutually independent random variables such that

• X takes values in the set S,
• Y and Y ′ are each uniformly distributed over R,
• Z and Z ′ take values in the set T .

Then for any function f : S ×R× T → {0, 1}, we have

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2 − ε/N,

where ε = Pr[f(X,Y, Z) = 1] and N = |R|.

2

2.3 Pedersen Commitments

The ZK-Token program relies on encryption rather than commitments to encode transfer amounts
and account balances. Although the protocol can be described entirely with respect to the twisted
ElGamal encryption scheme and the corresponding zero-knowledge proofs, the concept of Pedersen
commitments is nevertheless an important object that facilitate the intuition behind the ZK-Token

protocol. Instead of formally defining the abstract concept of commitment schemes and the required
security properties, we focus primarily on Pedersen commitments themselves and the properties
that they satisfy.

Definition 2.4. Let G be a cyclic group of prime order p and let G,H be any fixed group elements
in G. Then a Pedersen commitment of a message x ∈ Zp and an opening r is defined as follows:

• Comm(x, r) = x ·G+ r ·H

Pedersen commitments satisfy the following properties:

• Computationally binding : Suppose that the discrete log relation assumption (Definition 2.1)
holds on G. Then for any efficient adversary A, we have

Pr
[
A(G,H)→ (x, r, r′) ∧ Comm(x, r) = Comm(x, r′) ∧ r 6= r′

]
= negl(λ),

where G,H ←R G.

• Perfect hiding : For any two elements x, y ∈ Zp, the distribution of Comm(x, r) and Comm(y, r′)
for r, r′ ←R Zp are identically distributed.

2.4 Cryptographic Signatures

In this section, we provide the standard definition of a digital signature scheme.

Definition 2.5 (Signatures). A signature scheme ΠS for a message space M consists of a tuple
efficient algorithms ΠS = (KeyGen,Sign,Verify) with the following syntax:

• KeyGen(1λ) → (pk, sk): On input the security parameter λ, the key generation algorithm
returns a public key pk and secret key sk.

• Sign(sk,m) → σ: On input a secret key sk and a message m ∈ M, the signing algorithm
returns a signature σ.

• Verify(pk,m, σ)→ 0/1: On input a public key pk, message m, and signature σ, the verification
algorithm either accepts (returns 1) or rejects (returns 0).

The standard correctness and the security requirements for a signature scheme are defined as follows.

Definition 2.6 (Correctness). Let ΠS be a signature scheme for a message space M. We say that
ΠS satisfies perfect correctness if for all security parameter λ ∈ N and message m ∈M, we have

Pr
[
Verify(pk, Sign(sk,m)) = 1

]
= 1,

where (pk, sk)← KeyGen(1λ).

3

Definition 2.7 (Security). Let ΠS be a signature scheme for a message space M. For a security
parameter λ ∈ N, an adversary A, we define the unforgeability security experiment EXPS[λ,A] as
follows:

1. (pk, sk)← KeyGen(1λ)
2. (m∗, σ∗)← A(pk)Sign(sk,·)

3. Output Verify(pk,m∗, σ∗)

We say that an adversary A is admissible for EXPS if it does not forge on a message m∗ that it
previously queried to the signing oracle Sign(sk, ·). We say that a signature scheme ΠS is unforgeable
if for any efficient and admissible adversary A, we have

Pr
[
EXPS[λ,A] = 1

]
= negl(λ).

3 Twisted ElGamal Encryption

In this section, we describe the twisted ElGamal encryption [3]. We first present the correctness
and security definitions of a public key encryption shceme in Section 3.1. We provide the formal
specification of the twisted ElGamal encryption in Section 3.2. We present the formal correctness
and security theorems in Section 3.3.

3.1 Public Key Encryption

In this section, we define the formal syntax for a public key encryption and its security requirements.

Definition 3.1 (Public Key Encryption). A public key encryption scheme ΠPKE for a message
space M consists of a tuple of efficient algorithms ΠPKE = (KeyGen,Encrypt,Decrypt) with the
following syntax:

• KeyGen(1λ) → (pk, sk): On input the security parameter λ, the key generation algorithm
returns a public key pk and secret key sk.

• Encrypt(pk,m) → ct: On input a public key pk and a message m ∈ M, the encryption
algorithm returns a ciphertext ct.

• Decrypt(sk, ct)→ m/⊥: On input a secret key sk and a ciphertext ct, the encryption algorithm
returns a message m or ⊥.

A public key encryption scheme must satisfy the following correctness requirement.

Definition 3.2 (Correctness). Let ΠPKE = (KeyGen,Encrypt,Decrypt) be a public key encryption
scheme for a message space M. We say that ΠPKE satisfies perfect correctness if for all security
parameter λ ∈ N and message m ∈M, we have

Pr
[
Decrypt(sk,Encrypt(pk,m)) = m

]
= 1,

where (pk, sk)← KeyGen(1λ).

The ZK-Token program relies on a public key encryption scheme that is secure against passive
adversaries. Formally, we define the standard security requirements for a public key encryption as
follows.

4

Definition 3.3 (Security). Let ΠPKE = (KeyGen,Encrypt,Decrypt) be a public key encryption
scheme for a message space M. For a security parameter λ ∈ N, an adversary A = (A1,A2), and a
bit b ∈ {0, 1}, we define the IND-CPA security experiment EXPPKE[λ,A, b] as follows:

1. (pk, sk)← KeyGen(1λ)
2. (m0,m1, st)← A1(pk)
3. ctb ← Encrypt(pk,mb)
4. Output A2(st, ctb)

We say that a public key encryption scheme ΠPKE is IND-CPA secure if for any efficient adversary A,
we have ∣∣∣Pr

[
EXPPKE[λ,A, 0] = 1

]
− Pr

[
EXPPKE[λ,A, 1] = 1

]∣∣∣ = negl(λ).

The final property that we require from a public key encryption scheme is linear homomorphism.
We require that the sum of two ciphertexts that are encrypted under the same public key produces
a ciphertext that encrypts the sum of the encrypted messages in each of the two ciphertexts.

Definition 3.4 (Linear Homomorphism). Let ΠPKE = (KeyGen,Encrypt,Decrypt) be a public key
encryption scheme for a message space M. We say that ΠPKE is linearly homomorphic if for all
security parameter λ ∈ N and messages m0,m1, we have

Pr
[
Decrypt

(
Encrypt(pk,m0) + Encrypt(pk,m1)

)
= m0 + m1

]
= 1,

where (pk, sk)← KeyGen(1λ).

3.2 Construction Specification

In this section, we describe the twisted ElGamal encryption. The twisted ElGamal encryption
was formulated in the work of Chen et al. [3]. It has an advantage over the standard ElGamal
encryption scheme in that zero-knowledge proof systems that are designed specifically for Pedersen
commitments can be used directly on the ciphertexts.

A regular ElGamal encryption is defined with respect to a fixed group element G ∈ G. Its
ciphertext consist of two group elements C = x · G + r ·H and D = r · G for a message x ∈ Zp,
randomness r ∈ Zp, and public key H ∈ G. If group elements G and H are fixed system parameters,
then proof systems such as Bulletproofs [2] that are designed for Pedersen commitments can be
used directly on C. However, as H is a user generated public key component, the soundness of
these proof systems can be violated if the prover knows a secret key that corresponds to H.

A twisted ElGamal encryption is defined with respect to two fixed group elements G,H ∈ G.
Its ciphertext consist of two group elements C = x · G + r · H and D = r · P for a message x
and randomness r, and public key P . In contrast to the standard ElGamal encryption scheme,
the component C = x ·G+ r ·H is a valid Pedersen commitment over two fixed group elements
G,H ∈ G. Therefore, proofs that are designed specifically for Pedersen commitments can be used
directly on this component of the cipehrtext. The formal specification of the twisted ElGamal
encryption scheme is as follows.

Construction 3.5 (Twisted ElGamal Encryption). Let G be a cyclic group of prime order p and
let G,H ∈ G be two group elements. Then the twisted ElGamal encryption scheme for a message
space M⊆ Zp is specified as follows:

5

• KeyGen(1λ)→ (pk, sk): The key generation algorithm samples a non-zero scalar s←R Zp. It
computes P = s−1 ·H and sets

pk = P, sk = s.

• Encrypt(pk, x) → ct: The encryption algorithm takes in a public key pk = P ∈ G and a
message x ∈ Zp to be encrypted. It samples a random scalar r ←R Zp and then computes the
following components:

1. Pedersen commitment : C = r ·H + x ·G,

2. Decryption handle: D = r · P .

It returns ct = (C,D).

Deterministic encryption: For the protocol specification in Section 6, we use Encrypt(pk, x; 0)
to denote the deterministic twisted ElGamal encryption that sets the random scalar r to
always be r = 0.

• Decrypt(sk, ct)→ x: The decryption algorithm takes in a secret key sk = s and a ciphertext
ct = (C,D) as input. It computes

V = C − s ·D ∈ G,

and then solves the discrete log problem to recover x ∈ Zp for which x ·G = V .

3.3 Correctness and Security Properties

We formally state the correctness and security properties of the twisted ElGamal encryption.

Theorem 3.6 (Correctness). Let M ⊆ Zp be any set with cardinality |M| = poly(λ). Then the
twisted ElGamal encryption scheme for the message space M satisfies correctness as specified in
Definition 3.2.

Theorem 3.7 (Security). Suppose that G is a prime order group for which the decision Diffie-
Hellman assumption (Definition 2.2) holds. Then the twisted ElGamal encryption scheme satisfies
IND-CPA security as specified in 3.3.

Theorem 3.8 (Linear Homomorphism). The twisted ElGamal encryption scheme in Construction 3.5
satisfies linear homomorphism as specified in Definition 3.4.

We refer to [3] for the formal proofs of these theorems.

3.4 Randomness Re-use

A well-known property of the standard ElGamal encryption scheme is that the encryption randomness
can be re-used for multiple ciphertexts of the same message. This property extends to the twisted
ElGamal encryption as well. Consider two twisted ElGamal ciphertexts:

ct1 = (C1 = r1 ·H + x ·G, D1 = r1 · P1),

ct2 = (C2 = r2 ·H + x ·G, D2 = r2 · P2).

6

If the random scalars r1, r2 are generated uniformly at random from Zp, the decision Diffie-
Hellman assumption guarantees that each of ct1, ct2 are computationally indistinguishable from
random elements in G2. Namely, for random elements H,P1 ←R G and r1 ←R Zp, we have
(H,P1, r1H, r1P1) ≈c (H,P1, r1H,V1) where V1 ←R Zp is a uniformly random elements in Zp. This
shows that

ct1 = (C1 = r1 ·H + x ·G, D1 = r1 · P1) ≈c (C1 = r1 ·H + x ·G, D1 = V1)

≈ (C1 = U1, D1 = V1)

where U1, V1 ←R Zp. Hence, the ciphertext ct1 is computationally indistinguishble from uniform
elements in G2. The same argument can be applied for ct2 = (C2, D2).

However, when generating two ciphertexts of the same message, one can optimize the size of the
ciphertext. Suppose that a single random scalar r ←R Zp is used for the two ciphertexts ct1 and ct2:

ct1 = (C1 = r ·H + x ·G, D1 = r · P1),

ct2 = (C2 = r ·H + x ·G, D2 = r · P2).

Here, we have C1 = C2 and therefore, we can remove duplicate components and view the two
ciphertexts as a single joint ciphertext

ct = (C = r ·H + x ·G, D1 = r · P1, D2 = r · P2).

We claim that even when r is re-used as in the ciphertext above, the message x is secure. As before,
DDH guarantees that (H,P1, rH, rP1) ≈c (H,P1, rH, V1) for V1 ←R G and therefore,

(C = r ·H + x ·G, D1 = r · P1, D2 = r · P2) ≈c

(
C = r ·H + x ·G, D1 = V1, D2 = r · P2

)
.

Now, using the DDH assumption again, (H,P2, rH, rP2) ≈c (H,P2, rH, V2) for V2 ←R G, we can
show that

(C = r ·H + x ·G, D1 = V1, D2 = r · P2) ≈c (C = r ·H + x ·G, D1 = V1, D2 = V2)

≈
(
C = U1, D1 = V1, D2 = V2

)
.

where U, V1, V2 ←R Zp. This guarantees that the joint ciphertext ct is computationally indistin-
guishable from uniform elements in G3.

In Section 6, we use this property to optimize the size of transfer instructions. The transfer
instruction in the ZK-Token program requires that the transfer amounts be encrypted under three
ElGamal public keys: the source, destination, and auditor public keys. Instead of including three
independent ciphertexts in a single transfer instruction, the ZK-Token transfer algorithm includes
only a single Pedersen commitment for the transfer amount and then generates decryption handles
with respect to each of the three ElGamal public keys.

4 Zero Knowledge Arguments

In this section, we discuss zero-knowledge arguments that are used in the ZK-Token program. We
provide the precise definitions of a zero-knowledge argument in Section 4.1. Then, in Sections 4.2, 4.3,
and 4.4, we define three public-coin sigma zero-knowledge protocols that we incorporate into the
ZK-Token program. Each of these sigma protocols can be compiled into a non-interactive argument
system via the Fiat-Shamir heuristic [4]. Finally, in Section 4.5, we describe the Bulletproofs [2]
range argument protocol, which we use in the ZK-Token program.

7

4.1 Zero-Knowledge Arguments of Knowledge

In full generality, zero-knowledge argument systems can be defined with respect to any class of
decidable languages. However, to simplify the presentation, we define argument systems with
respect to CRS-dependent languages. Specifically, let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be an efficiently
decidable ternary relation. Then a CRS-dependent language for a string ρ ∈ {0, 1}∗ is defined as

Lρ = {u | ∃ w : (ρ, u, w) ∈ R}.

We generally refer to ρ as the common reference string, u as the instance of the langauge, and w as
the witness for u.

For a class of CRS-dependent languages, an argument system consists of the following algorithms.

Definition 4.1 (Argument System). A non-interactive argument system ΠAS for a CRS-dependent
relation R consists of a tuple of efficient algorithms (Setup,Prove,Verify) with the following syntax:

• Setup(1λ)→ ρ: On input the security parameter λ, the setup algorithm returns a common
reference string ρ.

• P(σ, u, w): The prover P is an interactive algorithm that takes in as input a common reference
string σ, instance u, and witness w. It interacts with the verifier V according to the specification
of the protocol.

• V(σ, u): The verifier V is an interactive algorithm that takes in as input a common reference
string ρ and an instance x. It interacts with the prover P in the protocol and in the end, it
either accepts (returns 1) or rejects (returns 0) the instance x.

We use
〈
P(ρ, u, w),V(ρ, u)

〉
= 1 to denote the event that the verifier V accepts the instance of the

protocol. We use
〈
P(ρ, u, w),V(ρ, u)

〉
→ tr to denote the communication transacript between the

prover P and verifier V during a specific execution of the protocol.

An argument system must satisfy a correctness and two security properties. The correctness property
of an argument system is generally referred to as completeness. It states that if the prover P takes
in as input a valid instance-witness tuple (ρ, u, w) ∈ R and follows the protocol specification, then
it must be able to convince the verifier to accept.

Definition 4.2 (Completeness). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies perfect completeness if for any (u,w) ∈ R, we have

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
= 1
]

= 1,

where ρ← Setup(1λ).

The first security property that an argument system must satisfy is soundness, which can be defined
in a number of ways. In this work, we work with computational witness-extended emulation as
presented in Bulletproofs [2].

Definition 4.3 (Soundness [?, 5, 2]). Let ΠAS be a proof system for a relation R. Then we say
that ΠAS satisfies witness-extended emulation soundness if for all deterministic polynomial time P∗,

8

there exists an efficient emulator E such that for all efficient adversaries A = (A1,A2), there exists
a negligible function negl(λ) such that∣∣∣∣∣∣∣∣∣∣

Pr

[
A2(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u, st)← A1(ρ),
tr←

〈
P∗(ρ, u, st),V(ρ, u)

〉]
−

Pr

A2(tr) = 1 ∧ (tr accepting ⇒ (ρ, u, w) ∈ R)

∣∣∣∣∣∣
ρ← Setup(1λ),
(u, st)← A1(ρ),

(tr, w)← EO(ρ, u)

∣∣∣∣∣∣∣∣∣∣

= negl(λ),

where the oracle is defined as O =
〈
P∗(ρ, u, st),V(ρ, u)

〉
. The oracle O allows the emulator E to

rewind the protocol to a specific point and resume the protocol after reprogramming the verifier
with fresh randomness.

Traditionally, the soundness condition for an argument system of knowledge requires that there
exists an extractor that can use its rewinding capability to extract a valid witness from any accepting
transcript of the protocol that is produced by a dishonest prover P∗. The witness-extended emulation
strengthens this traditional definition by requiring that the extractor (emulator) not only successfully
extracts a valid witness, but also produces (emulates) a valid transcript of the protocol for which
the verifier accepts. The value st in the definition above can be viewed as the internal state of P∗,
which can also be its randomness.

The second security property that we require from an argument system is the zero-knowledge
property. All argument systems that we rely on in the ZK-Token program are public coin protocols
that we ultimately convert into a non-interactive protocol. Therefore, we rely on the standard
zero-knowledge property against honest verifiers.

Definition 4.4 (Zero-Knowledge). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies honest verifier zero-knowledge if there exists an efficient simulator S such that for all
efficient adversaries A = (A1,A2), we have

Pr

[
(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u,w, τ)← A2(ρ),
tr←

〈
P(ρ, u, w),V(ρ, u; τ)

〉]

= Pr

(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣∣∣
ρ← Setup(1λ),

(u,w, τ)← A2(ρ),
tr← S(u, τ)

 ,
where ρ is the public coin randomness used by the verifier.

4.2 Zero-Balance Argument

In this section, we specify the zero-balance sigma protocol for the twisted ElGamal encryption
scheme. Intuitively, the zero-balance protocol allows a prover to convince the verifier that a twisted
ElGamal ciphertext encrypts the value zero under a specified public key. Formally, the zero-balance
protocol captures the following language:

Lzero-balance
G,H =

{
u = (P,C,D) ∈ G3, w = s ∈ Zp

∣∣ s · P = H ∧ s ·D = C
}
.

The language is defined with respect to two fixed generators G,H that defines the twisted ElGamal
encryption scheme. The group element P corresponds to a public key in the encryption scheme

9

and the field element s corresponds to its secret key. The elements C,D correspond to a Pedersen
commitment and decryption handle that make up a single ciphertext. If the ciphertext ct = (C,D) is
a proper encryption of zero, then its decryption must produce Decrypt(s, ct) = C − s ·D = 0 ·G = 0
and hence s · D = C. The zero-balance argument system for the language LG,H is specified as
follows:

Prover(x,w) Verifier(x)

y ←R Zp

YP ← y · P
YD ← y ·D

YP , YD

c←R Zp

c

z ← c · s+ y

z

z · P ?
= c ·H + YP

z ·D ?
= c · C + YD

The protocol follows a standard sigma protocol structure where the prover first samples a random
field element y ←R Zp. It then commits to this element by sending YP = y · P and YD = y ·D to
the verifier. Upon receiving a random challenge c, it provides the verifier with the masked secret key
z = c · s+ y. Finally, the verifier tests the two relations s · P = H and s ·D = C using the masked
secret key z and the committed values YP and YD.

The zero-balance argument system above satisfies all the correctness and security properties
that are specified in Section 4.1. We formally state these properties in the following theorems.

Theorem 4.5 (Completeness). The zero-balance argument satisfies completeness 4.2.

Theorem 4.6 (Soundness). Suppose that G is a prime order group for which the discrete log
relation assumption (Definition 2.1) holds. Then the zero-balance argument satisfies witness-extended
emulation soundness 4.3.

Theorem 4.7 (Zero-Knowledge). The zero-balance argument satisfies perfect honest verifier zero-
knowledge 4.4.

We provide the formal proofs for these theorems in Section A.1.

4.3 Equality Argument

In this section, we specify the equality sigma protocol for the twisted ElGamal encryption scheme.
At the start of the protocol, the prover and verifier have access to a twisted ElGamal ciphertext

10

and a Pedersen commitment. The prover’s goal is to convince the verifier that it knows a secret
key and a Pedersen opening such that the ciphertext and commitment decode to the same message.
Formally, the language that is captured by the protocol is specified as follows:

Lequality
G,H =

{
u = (PEG, CEG, DEG, CPed) ∈ G4,

w = (s, x, r) ∈ Z3
p

∣∣∣∣ s · PEG = H ∧ CEG − s ·DEG = x ·G
∧ CPed = x ·G+ r ·H

}
.

The language Lequality
G,H is specified by two group elements G,H ∈ G that define the ElGamal

encryption and Pedersen commitments. The group element PEG corresponds to a public key in
the twisted ElGamal encryption scheme and the field element s corresponds to its secret key.
The elements CEG, DEG correspond to a twisted ElGamal ciphertext and CPed corresponds to an
additional Pedersen commitment. If ct = (CEG, DEG) and CPed encode the same message x, then we
must have CEG − s ·DEG = x ·G and CPed = x ·G+ r ·H. The argument system for the language
Lequality
G,H is specified as follows:

Prover(x,w) Verifier(x)

ys ←R Zp

yx ←R Zp

yr ←R Zp

Y0 ← ys · PEG

Y1 ← yx ·G+ ys ·DEG

Y2 ← yx ·G+ yr ·H

Y0, Y1, Y2

c←R Zp

c

zs ← c · s+ ys

zx ← c · x+ yx

zr ← c · r + yr

zs, zx, zr

zs · PEG
?
= c ·H + Y0

zx ·G+ zs ·DEG
?
= c · CEG + Y1

zx ·G+ zr ·H
?
= c · CPed + Y2

As in the zero-balance argument protocol, the equality protocol follows a standard sigma protocol
structure where the prover first samples random field eleemnts ys, yx, yr. It then commits to these
elements by sending Y0 = ys ·PEG, Y1 = yx ·G+ ys ·DEG, and Y2 = yx ·G+ yr ·H. Upon receiving a
random challenge c, it provides the verifier with the masked secret key zs = c · s+ y, zx = c · x+ yx,

11

and zr = c · r + yr. Finally, the verifier tests the three relations associated with Lequality
G,H using the

masked secret key z, and the committed values Y0, Y1, and Y2.
The equality argument system above satisfies all the correctness and security properties that are

specified in Section 4.1. We formally state these properties in the following theorems.

Theorem 4.8 (Completeness). The equality argument satisfies completeness 4.2.

Theorem 4.9 (Soundness). Suppose that G is a prime order group for which the discrete log relation
assumption (Definition 2.1) holds. Then the equality argument satisfies witness-extended emulation
soundness 4.3.

Theorem 4.10 (Zero-Knowledge). The equality argument satisfies perfect honest verifier zero-
knowledge 4.4.

We provide the formal proofs for these theorems in Section A.2.

4.4 Ciphertext Validity Argument

In this section, we specify the ciphertext-validity sigma protocol for the twisted ElGamal encryption
scheme. At the start of the protocol, the prover and verifier have access to two joint ciphertexts
ctlo = (Clo, Dlo,1, Dlo,2) and cthi = (Chi, Dhi,1, Dhi,2). The prover’s goal in the protocol is to convince
the verifier that it knows valid randomness and message pairs (rlo, xlo) and (rhi, xhi) that each
guarantee the validity of (Clo, Dlo,1, Dlo,2) and cthi = (Chi, Dhi,1, Dhi,2). Formally, the ciphertext-
validity protocol captures the following language:

Lct-validity
G,H =

u = (P1, P2, Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2) ∈ G8,

w = (rlo, xlo, rhi, xhi) ∈ Z4
p

∣∣∣∣∣∣∣∣∣∣∣∣

Clo = rlo ·H + xlo ·G
Chi = rhi ·H + xhi ·G

Dlo,1 = rlo · P1

Dlo,2 = rlo · P2

Dhi,1 = rhi · P1

Dhi,2 = rhi · P2

.

The formal specification of the protocol is given as follows:

12

Prover(x,w) Verifier(x)

w ←R Zp

t

r ← rlo + t · rhi

x← xhi + t · xhi

yr ←R Zp

yx ←R Zp

Y0 ← yr ·H + yx ·G
Y1 ← yr · P1

Y2 ← yr · P2

Y0, Y1, Y2

c←R Zp

c

zr ← c · r + yr

zx ← c · x+ yx

zr, zx

C ← Clo + t · Chi

D1 ← Dlo,1 + t ·Dhi,1

D2 ← Dlo,2 + t ·Dhi,2

zr ·H + zx ·G
?
= c · C + Y0

zr · P1
?
= c ·D1 + Y1

zr · P2
?
= c ·D2 + Y2

At the start of the protocol, the verifier sends the prover a challenge value t ←R Zp. The prover
uses t to combine its witnesses r ← rlo + t · rhi and x← xhi + t · xhi. At this point of the protocol,
the prover and the verifier proceeds in a standard sigma protocol where the prover samples random
scalar elements yr, yx and commits to them by sending Y0 = yr · H + yx · G, Y1 = yr · P1, and
Y2 = yr · P2 to the verifier. Upon receiving another challenge c, it provides the verifier with the
masked randomness and message zr = c · r + yr and zx = c · x+ yx. Finally, the verifier tests the
relations zr ·H + zx ·G = c · C + Y0, zr · P1 = c ·D1 + Y1, and zr · P2 = c ·D2 + Y2.

The ciphertext validity argument above satisfies all the correctness and security properties that
are specified in Section 4.1. We formally state these properties in the following theorems.

Theorem 4.11 (Completeness). The ciphertext validity argument satisfies completeness 4.2.

13

Theorem 4.12 (Soundness). Suppose that G is a prime order group for which the discrete log relation
assumption (Definition 2.1) holds. Then the ciphertext valdity argument satisfies witness-extended
emulation soundness 4.3.

Theorem 4.13 (Zero-Knowledge). The ciphertext validity argument satisfies perfect honest verifier
zero-knowledge 4.4.

We provide the formal proofs for these theorems in Section A.3.

4.5 Range Arguments

The final argument system that we require for the ZK-Token program is a range argument for
Pedersen commitments. Such an argument system is defined with respect to the following language:

Lrange
G,H,`,u =

{
x = C, w = (x, r)

∣∣ C = x ·G+ r ·H ∧ x ∈ [`, u]
}
.

There are a number of ways to construct a zero-knowledge argument system for the language
Lrange
G,H,`,u. In the ZK-Token program, we use the Bulletproof system by Boneh et al. [2] which have

great scalability features. When compiled using Fiat-Shamir [4] heuristic, Bulletproofs result in
a non-interactive argument system where the proof size scales logarithmically in the bit-length of
the range bounds ` and u. Furthermore, Bulletproofs supports proof aggregation, meaning that a
prover can generate a compact argument for multiple instances of the language Lrange

G,H,`,u at once.
To incorporate Bulletproofs in the protocol specification formally, we summarize the result of [2]

in the theorem below. First, we define the following extension of the language Lrange
G,H,`,u:

Lrange-agg
G,H,{`}i∈[N],{u}i∈[N],N

=

{
x = {Ci}i∈[N], w = {(xi, ri)}i∈[N]

∣∣∣∣ Ci = xi ·G+ ri ·H ∧
xi ∈ [`i, ui] ∀i ∈ [N]

}
.

Boneh et al. [2] proves the following:

Theorem 4.14 (Bulletproofs [2]). There exists a non-interactive zero-knowledge argument system
for the language Lrange that satisfies completeness (Definition 4.2), soundness (Definition 4.3), and
zero-knowledge (Definition 4.4).

In the protocol description in Section 6, we incorporate the Bulletproofs protocol in a black-box
way.

5 Confidential Payment System

5.1 Algorithm Specification

In this section, we formalize confidential payment systems for smart contract platforms. A confidential
payment system is defined with respect to a set of instructions that are processed by a designated
smart contract that lives on a blockchain. For each of the instructions, a confidential payment
protocol must specify two algorithms:

• The instruction generation algorithm that specifies how a client generates the instruction.

• The instruction processing algorithm that specifies how a contract verifies the instruction and
modifies its state accordingly.

14

The precise list of instructions for a confidential payment system may vary for different protocols.
To keep the definition as simple and general as possible, we define a confidential payment system
with respect to a minimal set of core instructions such as Deposit, Withdraw, and Transfer that
contain cryptographic components most relevant for security. Therefore, our definition excludes the
following aspects of the ZK-Token program.

• The mint configuration instructions such as ConfigureMint and UpdateAuditor that are specific
to the Solana programming model.

• The instructions ApplyPendingBalance, EnableBalanceCredits, and DisableBalanceCredits that
allows users to manage encrypted balances as pending and available ciphertexts.

We refer the readers to part 1 for more details on these instructions. Formally, we model a confidential
payment system in the following definition.

Definition 5.1 (Confidential Payment System). A confidential payment system CPS is defined
with respect to the following:

• A public key space PK, which specifies the address of accounts.

• A public key encryption scheme ΠPKE = (EncKeyGen,Encrypt,Decrypt) with an associated
encryption key space EK, message space N, and ciphertext space CT .

• A space of allowed balances for accounts B = [Bmin, Bmax] ⊆ N.

The algorithms for CPS is specified with respect to a set of instructions ICPS = {OpenAccount,
CloseAccount,Deposit,Withdraw,Transfer} that are processed by a contract program PCPS . The
contract program PCPS maintains a look-up table TCPS : PK → (EK, CT) that maps public keys to
an encryption key and ciphertext. On setup, it first initializes TCPS by sampling pkauditor ←R PK,
(ekauditor, dkauditor)← EncKeyGen(1λ) and then adding (pkauditor 7→ ekauditor, dkauditor) to TCPS .

For each instruction in ICPS , the confidential payment system CPS must specify an algorithm
that is run by the client to generate it and an algorithm that is run by the contract program PCPS
to process it.

• OpenAccount

– GenOpenAccount(pk, ek) → instOpenAccount: This is a user algorithm that takes in as
input a public key pk and an encryption key ek. It returns an open account instruction
instOpenAccount.

– ProcessOpenAccount(instOpenAccount) → 0/1: This is a PCPS algorithm that takes in as
input an open account instruction instOpenAccount. It either accepts and processes the
instruction (returns 1), or rejects and does nothing (returns 0).

• CloseAccount

– GenCloseAccount(pk, ek, dk, ctbalance)→ instCloseAccount: This is a user algorithm that takes
in as input a public key pk, encryption key ek, decryption key dk, and encrypted balance
ctbalance. It returns a close account instruction instCloseAccount.

15

– ProcessCloseAccount(instCloseAccount) → 0/1: This is a PCPS algorithm that takes in as
input a close account instruction instCloseAccount. It either accepts and processes the
instruction (returns 1) or rejects and does nothing (returns 0).

• Deposit

– GenDeposit(pk, ek, amtdeposit)→ instDeposit: This is a user algorithm that takes in as input
a public key pk, encryption key ek, and deposit amount amtdeposit. It returns a deposit
instruction instDeposit.

– ProcessDeposit(instDeposit)→ 0/1: This is a PCPS algorithms takes in as input a deposit
instruction instDeposit. It either accepts and processes the instruction (returns 1) or rejects
and does nothing (returns 0).

• Withdraw

– GenWithdraw(pk, ek, dk, amtwithdraw, ctbalance)→ instWithdraw: This is a user algorithm that
takes in as input a public key pk, encryption key ek, decryption key dk, withdraw amount
amtwithdraw, and account data ctbalance. It returns a withdraw instruction instWithdraw.

– ProcessWithdraw(instWithdraw)→ 0/1: This is a PCPS algorithm that takes in as input a
withdraw instruction instWithdraw. It either accepts and processes the instruction (returns
1) or rejects and does nothing (returns 0).

• Transfer

– GenTransfer(pksource, eksource, dksource, ctsource, pkdest, ekdest, ekauditor, amttran) → instTransfer:
This is a user algorithm that takes in as input a source public key pksource, source
encryption key eksource, source decryption key dksource, source account balance ctsource,
destination public key pkdest, destination encryption key ekdest, auditor encryption key
ekauditor, and transfer amount amttran. It returns a transfer instruction instTransfer.

– ProcessTransfer(instTransfer) → 0/1: This is a PCPS algorithm that takes in as input a
transfer instruction instTransfer. It either accepts and processes the instruction (returns 1)
or rejects and does nothing (returns 0).

In addition to the instruction algorithms above, a confidential payment system CPS must additionally
specify the following client decryption algorithms:

• DecryptBalance(dk, ctbalance)→ amtbalance: On input a public key pk, decryption key dk, and
encrypted balance ctbalance, the algorithm returns a balance amtbalance.

• DecryptTransfer(dk, instTransfer)→ amttran: On input a public key pk, decryption key dk, and
transfer instruction instTransfer, the algorithm returns a transfer amount amttran.

Discussion. We note that in the definition above, the instructions CloseAccount, Withdraw, and
Transfer instructions take in decryption keys as well as encrypted balances. As we discuss in the
soundness security requirement (Definition 5.5) below, these instructions must be processed by
the contract program only when certain state conditions are met. For instance, a close account
instruction is legal only when the associated account contains zero balance. In the ZK-Token program,
the three instructions CloseAccount, Withdraw, and Transfer instructions include zero-knowledge

16

arguments that certify the legality of these instructions. Therefore, in the definition above, we
make the generation algorithms for these instructions to take as input the decryption key and the
currently encrypted balance associated with the relevant accounts. These components are used for
generating the relevent zero-knowledge arguments for each of these instructions.

Another notable piece of the definition above is the GenTransfer algorithm. It takes as input an
additional encryption key associated with the auditor. This component captures the auditability
feature of the ZK-Token program. The decryption correctness (Definition 5.4) property below
requires that users be able to recover transfer amounts from any properly generated transfer
instructions using either the destination or auditor keys. The soundness condition (Definition 5.5)
below requires that no adversarial user can generate a transfer instruction that is not decryptable
by a designated auditor key.

5.2 Correctness

We require a confidential payment system to satisfy two correctness properties. The first property is
state correctness. This property requires that a confidential payment system behaves essentially like
a standard (non-confidential) payment system. For example, we require that if a valid GenTransfer
and ProcessTransfer algorithms are used to generate and process a transfer instruction, then this
transfer of funds must be reflected in the state TCPS that is maintained by PCPS . Although this
notion of correctness fits our most basic intuition of a confidential payment system, capturing this
property formally requires some effort. To capture state correctness cleanly, we first define the
notion of an ideal payment system IPS and use it to define correctness precisely.

Definition 5.2 (Ideal Payment Processor). An ideal payment processor PIPP for a confidential
payment system CPS with public key space PK and balance space B is a stateful program that is
defined with respect to the same public key space PK and instructions ICPS of CPS. It maintains
a look-up table TIPP : PK → B that maps public keys to account balances. PIPP processes each
instruction in ICPS as follows:

• OpenAccount(pk): On input a public key pk, the program PIPP adds an entry (pk 7→ 0) to
TIPP .

• CloseAccount(pk): On input a public key pk, the program PIPP checks if an entry (pk 7→ 0)
exists in TIPP . If so, it removes (pk 7→ 0) in TIPP .

• Deposit(pk, amtdeposit): On input a public key pk and deposit amount amtdeposit, the program
PIPP first checks if an entry (pk, amtbalance) exists in T and that amtbalance + amtdeposit ∈ B.
If so, it replaces the entry with (pk, amtbalance + amtdeposit).

• Withdraw(pk, amtwithdraw): On input a public key pk and withdraw amount amtwithdraw, the
program PIPP first checks if an entry (pk, amtbalance) exists in T and that amtbalance ≥
amtwithdraw. If so, it replaces the entry with (pk, amtbalance − amtwithdraw).

• Transfer(pksource, pkdest, amttran): On input a source public key pksource, destination public key
pkdest, and transfer amount amttran, the program PIPP first checks if entries (pksource 7→
amtbalance,source), (pkdest 7→ amtbalance,dest) exist in T and that amtbalance,source ≥ amttran. If
so, the program replaces each of these entries with (pksource, amtbalance,source − amttran) and
(pkdest, amtbalance,dest + amttran).

17

To define state correctness, we define an experiment between an adversary and challenger. The
adversary is given access to the generation oracles for each instruction in ICPS . For each call to one
of these oracles, the challenger submits corresponding instructions to both the CPS contract program
PCPS and the ideal payment processor PIPP . At the end of the experiment, the challenger compares
the state of PCPS and PIPP . If there exists an account (public key) for which the stored balances
are different, then the adversary breaks correctness and wins in the correctness experiment. We say
that a confidential payment system is correct if no adversary wins in the correctness experiment.

Definition 5.3 (State Correctness). Let CPS be a confidential payment system and let PIPP be
a corresponding ideal payment system. For a security parameter λ ∈ N and an adversary A, we
define the correctness experiment EXPcorrectness[λ,A] as follows:

1. Throughout the experiment, the adversary A is provided oracle access to a key generation
oracle:

• OKeyGen(): On its invocation, the challenger sample pk←R PK and (ek, dk)← EncKeyGen(1λ).
It stores the mapping (pk 7→ ek, dk) in Tkeys and returns (pk, ek, dk) to A.

In addition, A is provided oracle access to each of the instruction generation algorithms of
CPS as specified in Definition 5.1. For each of A’s queries to these oracles, the challenger
responds as follows:

• GenOpenAccount(pk, ek):

(a) If an entry (pk 7→ ek, dk) does not exist in Tkeys, then the challenger returns ⊥. Other-
wise, it computes instOpenAccount ← GenOpenAccount(pk, ek) and feeds instOpenAccount

to PCPS .

(b) It then submits OpenAccount(pk) to PIPP .

• GenCloseAccount(pk, ek, dk, ctbalance):

(a) If an entry (pk 7→ ek, dk) does not exist in Tkeys or (pk 7→ ek, ctbalance) does not exist
in TCPS , then the challenger returns ⊥. Otherwise, it computes instCloseAccount ←
GenCloseAccount(pk, ek, dk, ctbalance) and feeds instCloseAccount to PCPS .

(b) It then submits CloseAccount(pk) to PIPP .

• GenDeposit(pk, amtdeposit, ek)

(a) If an entry (pk 7→ ek, dk) does not exist in Tkeys, then the challenger returns ⊥.
Otherwise, it computes instDeposit ← GenDeposit(pk, amtdeposit, ek) and feeds instDeposit

to PCPS .

(b) It then submits GenDeposit(pk, amtdeposit) to PIPP .

• GenWithdraw(pk, ek, dk, amtwithdraw, ctbalance)

(a) If an entry (pk 7→ ek, dk) does not exist in Tkeys or (pk 7→ ek, ctbalance) in TCPS , then
the challenger returns ⊥. Otherwise, it computes instWithdraw ← GenWithdraw(pk, ek,
dk, amtwithdraw, ctbalance) and feeds instWithdraw to PCPS .

(b) It then submits GenWithdraw(pk, amtwithdraw) to PIPP .

• GenTransfer(pksource, eksource, dksource, ctsource, pkdest, ekdest, ekauditor, amttran)

18

(a) If any of the source and destination keys are not consistent with the previous
outputs of OKeyGen or ctsource is not consistent with TCPS , the challenger returns
⊥. Otherwise, it computes instTransfer ← GenTransfer(pksource, eksource, dksource, pkdest,
ekdest, ekauditor, amttran) and feeds instTransfer to PCPS .

(b) It then submits Transfer(pksource, pkdest, amttran) to PIPP .

2. At the end of the experiment, the challenger compares the state of PCPS and PIPP . Namely, for
each entry (pk 7→ ek, ctbalance) ∈ TCPS , it looks up the corresponding decryption key dk in Tkeys,
computes amtbalance ← DecryptBalance(dk, ctbalance), and verifies that (pk 7→ amtbalance) ∈
TIPP . If there exists an entry in TCPS for which this condition does not hold, then it returns
1. Otherwise, it returns 0.

We say that a confidential payment system CPS is correct if for any λ and adversary A, we have

Pr
[
EXPcorrectness[λ,A] = 1

]
= negl(λ).

The second correctness property that we require is the transfer decryption correctness. This property
simply requires that any properly generated transfer instruction via GenTransfer decrypts to a correct
transfer amount via DecryptTransfer. This property, for instance, is important for auditability of
the ZK-Token program.

Definition 5.4 (Decryption Correctness). Let CPS be a confidential payment system with respect
to a public key space PK, public key encryption ΠPKE, and balance space B. We say that CPS
satisfies decryption correctness if for any amttran ∈ B, we have

Pr
[
DecryptTransfer(dkdest, instTransfer) = DecryptTransfer(dkauditor, instTransfer) = amttran

]
= 1,

where pksource, pkdest ←R PK, (eksource, dksource)← EncKeyGen(1λ), (ekdest, dkdest)← EncKeyGen(1λ),
(ekauditor, dkauditor)← EncKeyGen(1λ), and instTransfer ← GenTransfer(pksource, eksource, dksource, ctsource,
pkdest, ekdest, ekauditor, amttran).

5.3 Security

For security, we require that a confidential payment system satisfy two security properties. The
first property is soundness, which prevents the contract program PCPS from accepting CloseAccount,
Withdraw, or Transfer instructions that are generated illegally. The disallowed scenarios that are
captured by the soundness condition includes the following:

• An owner of an account must not be able to close the account unless the associated encrypted
balance is zero.

• An owner of an account must not be able to withdraw or transfer an amount that is greater
than the encrypted balance in the account.

• A user must not be able to generate a transfer instruction that cannot be decrypted by the
owners of the destination account or the auditor.

19

We capture soundness using a security experiment between an adversary and challenger. Throughout
the experiment, the adversary is provided access to a number of oracles that allow the adversary to
open new accounts, submit instructions of its choosing, and read the state TCPS of the contract
program. At the end of the experiment, the adversary outputs an instruction that applies to one
of the disallowed scenarios above. The adversary wins in the experiment if the instruction that it
outputs is accepted by the contract program PCPS .

Definition 5.5 (Soundness). Let CPS be a confidential payment system with an associated public
key space PK and public key encryption scheme ΠPKE = (EncKeyGen,Encrypt,Decrypt) with EK,
M, and CT . For a security parameter λ and an adversary A, we define the soundness security
experiment EXPsoundness[λ,A] for CPS as follows:

• Throughout the experiment, the challenger maintains a look-up table Tdk. Using PCPS that it
executes internally, the challenger provides A access to the following set of oracles:

– OOpenAccount(pk, ek, dk): If an entry with pk already exists in TCPS or the encryption-
decryption key pair (ek, dk) is not a valid pair for ΠPKE, then the challenger returns
⊥ and does nothing. Otherwise, it records the mapping (ek, 7→ dk) in Tdk, computes
instOpenAccount ← GenOpenAccount(pk, ek), and submits instOpenAccount to PCPS .

– OInstruction(inst): If inst is an open account instruction, then the challenger returns ⊥ and
does nothing. Otherwise, it submits inst to PCPS and relays the output to A.

– ORead(): The challenger provides A the entire state TCPS that is maintained by PCPS .

• At the end of the experiment, the adversary A returns one of the following:

– Close account forgery : The adversary A returns a public key pk and close account instruc-
tion instCloseAccount. If an entry (pk 7→ ek, ct) does not exist in TCPS or an entry (pk 7→ dk)
does not exist in Tdk, the challenger returns 0 as the output of the experiment. Otherwise,
it checks whether Decrypt(dk, ct) > 0 and ProcessCloseAccount(instCloseAccount) = 1. If
this is the case, then it returns 1 as the output of the experiment. Otherwise, it returns 0.

– Invalid account : The adversary A specifies a public key pk. If an entry (pk 7→ ek, ct)
does not exist in TCPS or an entry (pk 7→ dk) does not exist in Tdk, the challenger returns
0 as the output of the experiment. Otherwise, it checks whether Decrypt(dk, ct) < 0 or
Decrypt(dk, ct) = ⊥. If this is the case, then it returns 1 as the output of the experiment.
Otherwise, it returns 0.

– Non-decryptable transfer instruction: The adversary A specified a transfer instruction
instTransfer and three public keys pksource, pkdest and pkauditor. If entries (pksource 7→
eksource, ctsource), (pkdest 7→ ekdest, ctdest) or (pkauditor 7→ ekauditor, ctauditor) do not exist in
Tdk, then the challenger returns 0 as the output of the experiment. Otherwise, it checks
the following:

∗ The challenger submits instTransfer to PCPS and verifies that PCPS does process
instTransfer.

∗ It calculates the change of balances in pksource and pkdest accounts and verifies that
they are equal.

∗ Let amttran be the change of balance amount in the source and destination ac-
counts. Then, the challenger verifies that DecryptTransfer(dkdest, instTransfer) =
DecryptTransfer(dkauditor, instTransfer) = amttran.

20

If any one of the conditions above fail, then the challenger returns 1 as the output of the
experiment. Otherwise, it outputs 0.

We say that a confidential payment system CPS satisfies soundness if for all efficient adversaries
A, we have

EXPsoundness[λ,A] = negl(λ).

The second security property that we require from CPS is confidentiality. Intuitively, confidentiality
requires that a transfer instruction does not reveal any information about the transfer amount.
We capture confidentiality using an experiment between an adversary and a challenger. As in
the soundness security experiment, the adversary may interact with a number of oracles that
are provided by the challenger. The main conceptual distinction between the confidentiality and
the soundness experiment is related to the adversary’s access to decryption keys. The soundness
experiment captures security even against adversarial owners of accounts. The owner of an account,
for instance, must not be able to transfer more tokens than what is allowed by its current balance.
The confidentiality security experiment captures security against adversaries that are not directly
involved in a transfer. As long as an adversary does not have decryption keys pertaining to the
source, destination, or auditor accounts, it must not learn the precise amount associated with a
transfer instruction.

Therefore, in the confidentiality experiment, the challenger maintains a list of “honest” user
accounts Thonest that the adversary does not know the corresponding decryption keys for. After
interacting with the oracles that it is provided by the challenger, the adversary outputs two transfer
amounts amt0, amt1 as well as a source, destination, and auditor accounts from Thonest. The
challenger generates a transfer instruction using one of these amounts and the specified source,
destination, and auditor keys, and provides the instruction to the adversary. The adversary wins
in the security experient if it correctly guesses which amount was used to generate the transfer
instruction.

Definition 5.6 (Confidentiality). Let CPS be a confidential payment system with an assocaited
public key space PK and public key encryption scheme ΠPKE = (EncKeyGen,Encrypt,Decrypt) with
EK, M, and CT . For a security parameter λ, adversary A, and distinguishing bit b ∈ {0, 1}, we
define the confidentiality security experiment EXPconfidentiality[λ,A, b] for CPS as follows:

• Throughout the experiment, the challenger maintains a look-up table Thonest. Using PCPS
that it executes internally, the challenger provides A access to the following set of oracles:

– OKeyGen(): On its invocation, the challenger samples pk←R PK, (ek, dk)← EncKeyGen(1λ),
and computes instOpenAccount ← GenOpenAccount(pk, ek). It keeps record of the decryp-
tion keys (pk 7→ dk) in Thonest and submits instOpenAccount to PCPS . It relays the output
to A and also returns (pk, ek) to A.

– OCorrupt(pk): On input a public key pk, the challenger checks if an entry (pk 7→ dk) exists
in Thonest. If so, then it removes the entry from Thonest and returns dk to A.

– OCloseAccount(pk): On input a public key pk, the challenger checks if an entry (pk 7→ dk)
exists in Thonest and (pk 7→ ek, ctbalance) in TCPS . If so, then it computes instCloseAccount ←
GenCloseAccount(pk, ek, dk, ctbalance), and submits instCloseAccount to PCPS . It relays the
output to A along with instCloseAccount

21

– OWithdraw(pk, amtwithdraw): On input a public key pk, the challenger checks if an entry
(pk 7→ dk) exists in Thonest and (pk 7→ ek, ctbalance) in TCPS . If so, then it computes
instWithdraw ← GenWithdraw(pk, ek, dk, amtwithdraw) and submits instWithdraw to PCPS . It
relays the output to A along with instWithdraw.

– OTransfer(pksource, pkdest, ekauditor, amttran): On input a source public key pksource, destina-
tion public key pkdest, auditor encryption key ekauditor, and transfer amount amttran, the
challenger checks the following:

∗ an entry (pksource 7→ dksource) exists in Thonest,

∗ an entry (pksource 7→ eksource, ctsource) exists in TCPS ,

∗ an entry (pkdest 7→ ekdest, ctdest) exists in TCPS .

If so, then it computes instTransfer ← GenTransfer(pksource, eksource, dksource, ctsource, pkdest,
ekdest, ekauditor, amttran) and submits instTransfer to PCPS . It relays the output to A along
with instTransfer.

– OInstruction(inst): On input an instruction, the challenger submits inst to PCPS and relays
the output to A.

– ORead(): The challenger provides A the entire state TCPS that is maintained by PCPS .

• At one point in the experiment, the adversary A specifies a challenge query: a source,
destination, and auditor public keys pksource, pkdest, pkauditor, and two transfer amounts amt0
and amt1. The challenger verifies that the keys pksource, pkdest, and pkauditor pertain to honest
user accounts:

– an entry (pksource 7→ dksource) exists in Thonest,

– an entry (pksource 7→ eksource, ctsource) exists in TCPS ,

– an entry (pkdest 7→ dkdest) exists in Thonest,

– an entry (pkdest 7→ ekdest, ctdest) exists in TCPS ,

– an entry (pkauditor 7→ dkauditor) exists in Thonest,

– an entry (pkauditor 7→ ekauditor, ctauditor) exists in TCPS .

Additionally, it decrypts amtsource ← Decrypt(dksource, ctsource) and amtdest ← Decrypt(dkdest, ctdest)
and checks that the following values are contained in B:

– amtsource − amt0,

– amtsource − amt1,

– amtdest + amt0,

– amtdest + amt1.

If these conditions are not true, then the challenger aborts the experiment and returns 0. Other-
wise, it computes instb ← GenTransfer(pksource, eksource, dksource, ctsource, pkdest, ekdest, ekauditor, amtb),
submits instb to PCPS , and relays the result along with instb.

• Throughout the rest of the experiment, challenger continues to provide A with the same set of
oracles specified above with one additional global check on the adversary’s deposit, withdraw,
and transfer oracle queries:

22

– Let amt0, amt1 be two amounts associated with the adversary’s challenge query. Let
amtsource, amtdest be amounts associated with pksource and pkdest at the time the adversary
outputs the challenge query.

– Let vsource and vdest be the net sum of amounts that are deposited, withdrawn, transferred
out, and transferred into accounts pertaining to pksource and pkdest.

– The challenger verifies that the following values are contained in the range B:

∗ amtsource − amt0 + vsource,

∗ amtsource − amt1 + vsource,

∗ amtdest + amt0 + vdest,

∗ amtdest + amt1 + vdest.

If the condition above does not hold at any point in the experiment since the adversary outputs
its challenge query, the challenger terminates the experiment and returns 0.

• Finally, at the end of the experiment, the adversary A outputs a distinguishing bit b′, which
becomes the output of the experiment.

We say that a confidential payment system CPS satisfies confidentiality if for all efficient adver-
saries A, we have∣∣∣Pr

[
EXPconfidentiality[λ,A, 0] = 1

]
− Pr

[
EXPconfidentiality[λ,A, 1] = 1

]∣∣∣ = negl(λ).

Discussion. One property that is not captured by the two security requirements above is instruction
authorization. In a confidential payment system, users mut not be able to generate a valid
CloseAccount, Withdraw or Transfer instruction for accounts that they are not the owners of. For
instance, a user must not be able to withdraw funds from another user’s account. In the actual
implementation of the ZK-Token program, the contract program processes these instructions only
if it is additionally signed by the owners of relevant accounts and hence, this security property is
satisfied straightforwardly. As this property is not unique to confidential payment systems, but
rather a general requirement for any (non-private) payment system and smart contracts in general,
we exclude it from the formal requirements to keep the definition as minimal and simple as possible.

6 Protocol Specification

In this section, we formally specify the ZK-Token protocol. The protocol is defined over the public
key space PK = {0, 1}32, Twisted ElGamal encryption scheme from Section 3, and balance space
B = [0, 264]. We refer to the construction overview in part 1 of the document for the main intuition
behind the construction.

Construction 6.1. The ZK-Token protocol is defined with respect to the following:

• PK = {0, 1}64,

• Twisted ElGamal encryption ΠPKE = (EncKeyGen,Encrypt,Decrypt) from Construction 3.5.
The encryption scheme has the encryption key space EK = G, message space M = {0, 1}64,
and ciphertext space CT = G2. As we describe in the specification of Construction 3.5, we
use Encrypt(·, ·; 0) to denote the deterministic version of encryption where the encryption
randomness is always fixed to be 0 ∈ Zp.

23

• Balance space B = [0, 264] ⊂ N.

In the construction description, we additionally rely on the following cryptographic building blocks:

• The Pedersen commitment scheme Commit of Definition 2.4.

• Non-interactive argument systems for the languages Lzero-balance
G,H , Lequality

G,H , and Lct-validity
G,H where

the group elements G and H correspond to the fixed parameter elements of the twisted ElGamal
encryption scheme ΠPKE. These arguments systems correspond to the sigma protocols defined
in Sections 4.2, 4.3 and 4.4 that are compiled via the Fiat-Shamir heuristic [4]. For language
τ ∈ {zero-balance, eq, ct-validity}, we use (Proveτ ,Verifyτ) to denote the non-interactive prover
and verifier algorithms.

• Non-interactive argument system for the langauge Lrange-agg
G,H,`,u,N in Theorem 4.14. The group

elements G and H correspond to the fixed parameter elements of the twisted ElGamal
encryption scheme ΠPKE. We use (Proverange-agg,Verifyrange-agg) to denote the prover and
verifier algorithms.

With these set of primitives, we define a confidential payment system CPS as follows:

• Instruction Algorithms. For each instruction in ICPS , we define the following generation
and processing algorithms:

– OpenAccount

∗ GenOpenAccount(pk, ek)→ instOpenAccount: On input a public key pk and an encryp-
tion key ek, the algorithm defines instOpenAccount = (pk, ek) and returns instOpenAccount.

∗ ProcessOpenAccount(instOpenAccount)→ 0/1: On input an open account instruction
instOpenAccount = (pk, ek), the instruction processor encrypts ct ← Encrypt(pk, 0; 0).
Then, it adds (pk 7→ ek, ct) in TCPS and returns 1.

– CloseAccount

∗ GenCloseAccount(pk, ek, dk, ctbalance) → instCloseAccount: On input a public key pk,
encryption key ek, decryption key dk, and encrypted balance ctbalance, the algorithm
generates a zero-balance proof πzero-balance ← Provezero-balance

(
(ek, ctbalance), dk

)
, and

returns instCloseAccount = (pk, ek, πzero-balance).

∗ ProcessCloseAccount(instCloseAccount) → 0/1: On input a close account instruction
instCloseAccount = (pk, ek, πzero-balance), the instruction processor first checks if (pk 7→
ek, ctbalance) exists in TCPS . If this is not the case, then it returns 0. Otherwise, it ver-
ifies the zero-balance proof by computing Verifyzero-balance

(
(ek, ctbalance), πzero-balance

)
.

If the verification fails, it returns 0. Otherwise, it removes the entry (pk 7→
, ek, ctbalance) from TCPS and returns 1.

– Deposit

∗ GenDeposit(pk, ek, amtdeposit) → instDeposit: On input a public key pk, encryption
key ek, and deposit amount amtdeposit ∈ [0, 264], the algorithm returns instDeposit =
(pk, ek, amtdeposit).

∗ ProcessDeposit(instDeposit) → 0/1: On input a deposit instruction instDeposit =
(pk, ek, amtdeposit), the instruction processor first checks if an entry (pk 7→ ek, ctbalance)

24

exists in TCPS . If this is not the case, then it returns 0. Otherwise, it com-
putes ctdeposit ← Encrypt(ek, amtdeposit; 0) and replaces the entry in TCPS with
(pk 7→ ek, ctbalance + ctdeposit).

– Withdraw

∗ GenWithdraw(pk, ek, dk, amtwithdraw, ctbalance) → instWithdraw: On input a public key
pk, encryption key ek, withdraw amount amtwithdraw ∈ [0, 264], and encrypted balance
ctbalance, the algorithm proceeds as follows:

1. It encrypts ctwithdraw ← Encrypt(ek, amtwithdraw; 0) and computes the ciphertext
ctrem ← ctbalance − ctwithdraw.

2. It decrypts the account balance amtbalance ← Decrypt(dk, ctbalance) and computes
the remaining balance amtrem ← amtbalance − amtwithdraw.

3. It samples a random opening r ←R Zp and creates a Pedersen commitment
commrem ← Commit(amtrem, r). It then generates a range proof πrange-agg ←
Proverange-agg

(
(ek, commrem), (dk, amtrem, r)

)
.

Finally, it sets instWithdraw = (pk, ek, amtwithdraw, commrem, πrange-agg) and returns
instWithdraw.

∗ ProcessWithdraw(instWithdraw) → 0/1: On input a withdraw instWithdraw = (pk, ek,
amtwithdraw, commrem, πrange-agg, σ), the instruction processor first checks if an entry
(pk 7→ ek, ctbalance) exists in TCPS . If this is not the case, then it returns 0. Other-
wise, it encrypts ctwithdraw ← Encrypt(ek, amtwithdraw; 0) and computes the ciphertext
ctrem ← ctbalance − ctwithdraw. It verifies the range proof Verifyrange-agg

(
(ek, commrem),

πrange-agg

)
and returns 0 if it fails. Otherwise, it replaces the entry (pk 7→ ek, ctbalance)

to (pk 7→ ek, ctrem) in TCPS .

– Transfer

∗ GenTransfer(pksource, eksource, dksource, ctsource, pkdest, ekdest, ekauditor, amttran)→ instTransfer:
On input a source public key pksource, source encryption key eksource, source decryption
key dksource, source encrypted balance ctsource, destination public key pkdest, desti-
nation encryption key ekdest, auditor encryption key ekauditor, and transfer amount
amttran ∈ [0, 264], the algorithm proceeds as follows:

1. It divides the transfer amount into two 32-bit numbers amtlo, amthi such that
amttran = amtlo + 232 · amthi.

2. It samples random scalars rlo, rhi ←R Zp and creates Pedersen commitments of
each amounts commlo ← Commit(amtlo; rlo) and commhi ← Commit(amthi; rhi).

3. It generates decryption handles for commlo under the three encryption keys

· dhlo,source ← GenHandle(eksource, rlo),

· dhlo,dest ← GenHandle(ekdest, rlo),

· dhlo,auditor ← GenHandle(ekauditor, rlo).

4. It generates decryption handles for commhi under the three encryption keys

· dhhi,source ← GenHandle(eksource, rhi),

· dhhi,dest ← GenHandle(ekdest, rhi),

· dhhi,auditor ← GenHandle(ekauditor, rhi).

25

5. It decrypts amtbalance ← Decrypt(dksource, ctbalance) and computes amtrem ←
amtbalance − amttran. Then it samples a random scalar rrem ←R Zp and cre-
ates a Pedersen commitment commrem ← Commit(amtrem, rrem).

6. It sets ctlo,source = (commlo, dhlo,source), cthi = (commhi, dhhi,source), and computes

ctrem = ctbalance − (ctlo,source + 232 · cthi,source).

Then, it creates an equality proof πeq ← Proveeq

(
(ctrem, commrem), (dksource,

rrem)
)
.

7. It creates a range proof πrange-agg ← Proverange-agg

(
{commrem, commlo, commhi},

{rrem, rlo, rhi}
)
.

8. It sets ctlo = (commlo, dhlo,dest, dhlo,auditor), cthi = (commhi, dhhi,dest, dhhi,auditor),
and generates a ciphertext validity proof πct-validity ← Provect-validity

(
(ctlo, cthi),

(rlo, amtlo, rhi, amthi)
)
.

The algorithm returns instTransfer = ({commlo, commhi}, {dhlo,source, dhlo,dest, dhlo,auditor},
{dhhi,source, dhhi,dest, dhhi,auditor}, commrem, πeq, πrange-agg, πct-validity).

∗ ProcessTransfer(instTransfer)→ 0/1: On input instTransfer = ({commlo, commhi}, {dhlo,source,
dhlo,dest, dhlo,auditor}, {dhhi,source, dhhi,dest, dhhi,auditor}, commrem, πeq, πrange-agg, πct-validity,
σ), the instruction processor first checks if entries (pksource 7→ eksource, ctsource) and
(pkdest 7→ ekdest, ctdest) exist in TCPS . If this is not the case, then it returns 0.
Otherwise, it verifies the following:

1. It sets ctlo,source = (commlo, dhlo,source), cthi,source = (commhi, dhhi,source), and com-
putes ctrem = ctsource−(ctlo,source +232 ·cthi,source). Then, it verifies Verifyeq

(
(ctrem,

commrem), πeq

)
.

2. It verifies range proof Verifyrange-agg

(
{commrem, commlo, commhi}, πrange-agg

)
.

3. It sets ctlo = (commlo, dhlo,dest, dhlo,auditor), cthi = (commhi, dhhi,dest, dhhi,auditor),
and verifies Verifyct-validity

(
(ctlo, cthi), πct-validity

)
.

If any of these conditions do not verify, then the processor returns 0. Otherwise, it
replaces the entries (pksource 7→ eksource, ctsource) and (pkdest 7→ ekdest, ctdest) in TCPS
with (pksource 7→ eksource, ctrem) and (pkdest 7→ ekdest, ctdest + (ctlo + 232 · cthi)).

• Client Algorithms

– SignKeyGen(1λ) → (pk, sk): On input the security parameter λ, the key generation
algorithm computes (pk, sk)← S.KeyGen(1λ) and returns (pk, sk).

– EncKeyGen(1λ) → (ek, dk): On input the security parameter λ, the key generation
algorithm computes (ek, dk)← E.KeyGen(1λ) and returns (ek, dk).

– DecryptTransfer(dk, instTransfer)→ amttran: On input a decryption key dk and a transfer
instruction instTransfer = ({commlo, commhi}, {dhlo,source, dhlo,dest, dhlo,auditor}, {dhhi,source,
dhhi,dest, dhhi,auditor}, commrem, πeq, πrange-agg, πct-validity), the decryption algorithm decrypts
amtlo ← Decrypt

(
dk, (commlo, dhlo)

)
, amthi ← Decrypt

(
dk, (commhi, dhhi)

)
, and returns

amt = amtlo + 232 · amthi.

– DecryptBalance(dk, databalance)→ amtbalance: On input a decryption key dk and an account
data databalance = (ek, ct), the decrytion algorithm returns the output of Decrypt(dk, ct).

26

References

[1] Boneh, D., Drijvers, M., and Neven, G. Compact multi-signatures for smaller blockchains.
In International Conference on the Theory and Application of Cryptology and Information
Security (2018), Springer, pp. 435–464.

[2] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP) (2018), IEEE, pp. 315–334.

[3] Chen, Y., Ma, X., Tang, C., and Au, M. H. Pgc: Decentralized confidential payment
system with auditability. In European Symposium on Research in Computer Security (2020),
Springer, pp. 591–610.

[4] Fiat, A., and Shamir, A. How to prove yourself: Practical solutions to identification and
signature problems. In Conference on the theory and application of cryptographic techniques
(1986), Springer, pp. 186–194.

[5] Lindell, Y. Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology 16, 3 (2003).

27

A Proofs in Section 4

In this section, we provide the missing proofs from Section 4.

A.1 Zero-Balance Argument

A.1.1 Proof of Theorem 4.5

To prove completeness, let us fix any valid instance and witness for Lzero−balance
G,H : P,C,D ∈ G and

s ∈ Zp such that s · P = H and s ·D = C. It suffices to show that after an honest execution of the
protocol by the prover, the verifier always returns 1 at the end of the protocol. Let y and c be any
elements in Zp and let YP = y · P , YD = y ·D, and z = c · s + y in an execution of the protocol.
Then we have

z · P = (c · s+ y)P = c · (s · P) + y · P = c ·H + YP ,

z ·D = (c · s+ y)D = c · (s ·D) + y ·D = c · C + YC .

As both of the algebraic relations that the verifier checks at the end of the protocol hold, the proof
is always accepted. Completeness follows.

A.1.2 Proof of Theorem 4.6

To prove soundness, we construct an emulator E that has oracle access to any malicious prover
P∗ and extracts a valid witness by rewinding P∗ and simulating two execution of the zero-balance
protocol with an honest verifier V . By the work of Lindell [?], this suffices to prove witness-extended
emulation soundness.

Let (P,C,D) be an instance of the language Lzero−balance
G,H . We construct an emulator E that uses

P∗ to extract a valid witness as follows:

• The emulator E first executes
〈
P∗(ρ, u, st),V(ρ, u)

〉
to produce a transcript tr = (YP , YD, c, z).

• Then, it rewinds the protocol to the point where the verifier V samples a random c←R Zp. It
programs V with fresh randomness such that V generates a new c′ ← Zp independently of the
previous execution of the protocol.

• The emulator completes the second execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
, producing a new

transcript tr = (YP , YD, c
′, z′).

• If c−c′ = 0, then the emulator aborts and returns ⊥. Otherwise, it computes s← (z−z′)/(c−c′)
and returns s as the extracted witness.

To complete the proof, we first bound the probability that E does not abort at the end of the two
executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if E does not abort, then the extracted

witness s = (z − z′)/(c− c′) is a valid witness.

Abort probability. The emulator E aborts only when c = c′, which is dependent on the probability
that P∗ successfully convinces V at the end of the protocol. Let εP ∗ be the probability that P∗
successfully convinces V in

〈
P∗(ρ, u, st),V(ρ, u)

〉
. We bound the probability that c = c′ with εP ∗

using the rewinding lemma 2.3. Specifically, let us define the following random variables:

• Let X be the elements (YP , YD) in the transcript of an execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

28

• Let Y and Y ′ be the values c and c′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values z and z′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let f(tr) → {0, 1} be the protocol verification function that returns 1 if tr is an accepting
transcript and 0 otherwise.

Then, the rewinding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2P ∗ − εP ∗/p.

By assumption, we have 1/p = negl(λ). Therefore, if εP ∗ is non-negligible, then the probability that
E aborts at the end of the two executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
is non-negligible.

Witness validity. Now assume that the two executions of
〈
P(ρ, u, w),V(ρ, u)

〉
returns two

accepting transcripts tr = (YP , YD, c, z), tr′ = (YP , YD, c
′, z′), and that E does not abort and returns

s = (z − z′)/(c− c′). Since tr and tr′ are accepting transcripts, we have

z · P = c ·H + YP ,

z′ · P = c′ ·H + YP .

This means that (z − z′) · P = (c− c′) = H and hence, s · P = H. Similarly, we have

z ·D = c · C + YD,

z′ ·D = c′ · C + YD.

Therefore, the relation (z − z′) ·D = (c− c′) · C holds, which means that s ·D = C.
We have shown that if P∗ successfully convinces the verifier V for an instance x = (P,C,D)

with non-negligible probability, then the emulator E successfully extracts a valid witness s. This
completes the proof of soundness.

A.1.3 Proof of Theorem 4.7

Fix any elements P,C,D ∈ G and s ∈ Zp such that s·P = H and s·D = C. Let tr∗ = (Y ∗P , Y
∗
D, c

∗, z∗)
be any accepting transcript. By the specification of the protocol, the probability that an honest
execution of the protocol by the prover and the verifier results in the transcript tr∗ is as follows:

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
→ tr ∧ tr = tr∗

]
= 1/p2.

To prove zero-knowledge, we define a simulator S that produces such distribution without knowledge
of a valid witness s.

S(P,C,D):

1. Sample c, z ←R Zp.
2. Set YP = z · P − c ·D.
3. Set YD = z ·D − c · C.
4. Return tr = (YP , YD, c, z).

The simulator S returns a transcript that is uniformly random under the condition that z · P =
YP + c ·D and z ·D = YD + c · C. As the variables YP , YD are completely determined by c, z, we
have

Pr [S(P,C,D)→ tr ∧ tr = tr∗] = 1/p2,

for any fixed transcript tr∗. Zero-knowledge follows.

29

A.2 Equality Argument

A.2.1 Proof of Theorem 4.8

to prove completeness, let us fix any valid instance and witness for Lequality
G,H : PEG, CEG, DEG, CPed ∈ G

and s, x, r ∈ Zp such that

• s · PEG = H
• CEG − s ·DEG = x ·G
• CPed = x ·G+ r ·H

Let ys, yx, yr and c be any elements in Zp, and let

• Y0 = ys · P , Y1 = yx ·G+ ys ·DEG, Y2 = yx ·G+ yr ·H

• zs = c · s+ ys, zx = c · x+ yx, zr = c · r + yr

in an execution of the protocol. Then we have

zs · P = (c · s+ ys) · P
= c · (s · P) + ys · P
= c ·H + Y0

zx ·G+ zs ·DEG = (c · x+ yx) ·G+ (c · s+ ys) ·DEG

= c · (x ·G+ s ·DEG) + (yx ·G+ ys ·DEG)

= c · CEG + Y1

zx ·G+ zr ·DEG = (c · x+ yx) ·G+ (c · r + yr) ·H
= c · (x ·G+ r ·H) + (yx ·G+ yr ·H)

= c · CPed + Y2

As all the algebraic relations that the verifier checks hold, the proof is always accepted. Completeness
follows.

A.2.2 Proof of Theorem 4.9

To prove soundness, we construct an emulator E that has oracle access to any malicious prover
P∗ and extracts a valid witness by rewinding P∗ and simulating two execution of the zero-balance
protocol with an honest verifier V.

Let (PEG, CEG, DEG, CPed) be an instance of the language Lequality
G,H . We construct an emulator E

that uses P∗ to extract a valid witness as follows:

• The emulator E first executes
〈
P∗(ρ, u, st),V(ρ, u)

〉
to produce a transcript tr = (Y0, Y1, Y2, c,

zs, zx, zr).

• Then, it rewinds the protocol to the point where the verifier V samples a random c←R Zp. It
programs V with fresh randomness such that V generates a new c′ ← Zp independently of the
previous execution of the protocol.

30

• The emulator completes the second execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
, producing a new

transcript tr = (Y0, Y1, Y2, c, z
′
s, z
′
x, z
′
r).

• If c− c′ = 0, then the emulator aborts and returns ⊥. Otherwise, it computes

– s← (zs − z′s)/(c− c′)
– x← (zx − z′x)/(c− c′)
– r ← (zr − z′r)/(c− c′)

and returns (s, x, r) as the witness.

To complete the proof, we first bound the probability that E does not abort at the end of the two
executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if E does not abort, then the extracted

witness (s, x, r) is valid.

Abort probability. The emulator E aborts only when c = c′, which is dependent on the probability
that P∗ successfully convinces V at the end of the protocol. Let εP∗ be the probability that P∗
successfully convinces V in

〈
P∗(ρ, u, st),V(ρ, u)

〉
. We bound the probability that c = c′ with εP∗

using the rewinding lemma 2.3. Specifically, let us define the following random variables:

• Let X be the elements (Y0, Y1, Y2) in the transcript of an execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Y and Y ′ be the values c and c′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values (zs, zx, zr) and (z′s, z
′
x, z
′
r) respectively in the two executions of〈

P∗(ρ, u, st),V(ρ, u)
〉
.

• Let f(tr) → {0, 1} be the protocol verification function that returns 1 if tr is an accepting
transcript and 0 otherwise.

Then, the rewiding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2P∗ − εP∗/p.

By assumption, we have 1/p = negl(λ). Therefore, if εP∗ is non-negligible, then the probability that
E aborts at the end of the two executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
is non-negligible.

Witness validity. Now assume that the two executions of
〈
P(ρ, u, w),V(ρ, u)

〉
returns two accepting

transcripts tr = (Y0, Y1, Y2, c, zs, zx, zr), tr′ = (Y0, Y1, Y2, c
′, z′s, z

′
x, z
′
r), and that E does not abort and

returns

• s← (zs − z′s)/(c− c′)
• x← (zx − z′x)/(c− c′)
• r ← (zr − z′r)/(c− c′)

Since tr and tr′ are accepting transcripts, we have

zx · PEG = c ·H + Y0,

z′x · PEG = c′ ·H + Y0,

31

This means that (zx − z′x) · PEG = (c− c′) ·H and hence, s · PEG = H. Similarly, we have

zx ·G+ zs ·DEG = c · CEG + Y1,

z′x ·G+ z′s ·DEG = c′ · CEG + Y1,

This means that (zx − z′x) ·G+ (zs − z′s) ·DEG = (c− c′) · CEG and hence, x ·G+ s ·DEG = CEG.
Finally, we have

zx ·G+ zr ·H = c · CPed + Y2,

z′x ·G+ z′r ·H = c′ · CPed + Y2,

which means that (zx − z′x) ·G+ (zr − z′r) ·H = (c− c′) · CPed and hence, x ·G+ r ·H = CPed.
We have shown that if P∗ successfully convinces the verifier V for an instance x = (PEG, CEG,

DEG, CPed) with non-negligible probability, then the emulator E successfully extracts a valid witness
(s, x, r). This completes the proof of soundness.

A.2.3 Proof of Theorem 4.10

Fix any elements PEG, CEG, DEG, CPed ∈ G and s, x, r ∈ Zp such that CEG − s · DEG = x · G and
CPed = x · G + r · H. Let tr∗ = (Y ∗0 , Y

∗
1 , Y

∗
2 , c
∗, z∗s , z

∗
x, z
∗
r) be any accepting transcript. By the

specification of the protocol, the probability that an honest execution of the protocol by the prover
and the verifier results in the transcript tr∗ is as follows:

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
→ tr ∧ tr = tr∗

]
= 1/p4.

To prove zero-knowledge, we define a simulator S that produces such distribution without knowledge
of a valid witness s, x, and r.

S(PEG, CEG, DEG, CPed):

1. Sample c, zs, zx, zr ←R Zp
2. Set Y0 = zx · PEG − c ·H
3. Set Y1 = zx ·G+ zs ·DEG − c · CEG

4. Set Y2 = zx ·G+ zr ·H − c · CPed

5. Return tr = (Y0, Y1, Y2, c, zs, zx, zr)

The simulator S returns a transcript that is uniformly random given that

• zx · PEG = c ·H + Y0,
• zx ·G+ zs ·DEG = c · CEG + Y1,
• zx ·G+ zr ·H = c · CPed + Y2.

As the variables Y0, Y1 and Y2 are completely determined by c, zs, zx, zr, we have

Pr [S(CEG, DEG, CPed)→ tr ∧ tr = tr∗] = 1/p4,

for any fixed transcript tr∗. Zero-knowledge follows.

32

A.3 Ciphertext Validity Argument

A.3.1 Proof of Theorem 4.11

To prove completeness, let us fix any valid instance and witness for Lct−validity
G,H : P1, P2, Clo, Dlo,1,

Dlo,2, Chi, Dhi,1, Dhi,2 ∈ G and rlo, xlo, rhi, xhi ∈ Zp such that

• Clo = rlo ·H + xlo ·G,
• Chi = rhi ·H + xhi ·G,
• Dlo,1 = rlo · P1,
• Dlo,2 = rlo · P2,
• Dhi,1 = rhi · P1.
• Dhi,2 = rhi · P2.

Let t, yr, yx, zr, zx be any elements in Zp and let

• Y0 = yr ·H + yx ·G,
• Y1 = yr · P1,
• Y2 = yr · P2,
• zr = c · r + yr,
• zx = c · x+ yx,

in an execution of the protocol. Then we have

zr ·H + zx ·G = (c · r + yr) ·H + (c · x+ yx) ·G
= c · (r ·H + x ·G) + (yr ·H + yx ·G)

= c ·
(
(rlo + t · rhi) ·H + (xlo + t · xhi) ·G

)
+ Y0

= c ·
(
Clo + t · Chi

)
= c · C + Y0

zr · P1 = (c · r + yr) · P1

= c · (r · P1) + yr · P1

= c ·
(
(rlo + t · rhi) · P1

)
+ yr · P1

= c · (Dlo,1 + t ·Dhi,1) + Y1

= c ·D1 + Y1

zr · P2 = (c · r + yr) · P2

= c · (r · P2) + yr · P2

= c ·
(
(rlo + t · rhi) · P2

)
+ yr · P2

= c · (Dlo,2 + t ·Dhi,2) + Y2

= c ·D2 + Y2

As all of the algebraic relations that the verifier checks at the end of the protocol hold, the proof is
always accepted. Completeness follows.

33

A.3.2 Proof of Theorem 4.12

To prove soundness, we construct an emulator E that has oracle access to any malicious prover P∗
and extracts a valid witness by rewinding P∗ and simulating four executions of the zero-balance
protocol with an honest verifier V.

Let (P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2) be an instance of the language Lct−validity
G,H . We construct

an emulator E that uses P∗ to extract a valid witness. The emulator E rewinds the protocol at
different stages. To simplify the presentation, we define a sub-emulator Einner that E uses as a
subroutine to extract a valid witness. The sub-emulator Einner works as follows:

• The emulator Einner first executes
〈
P∗(ρ, u, st),V(ρ, u)

〉
to produce a transcript tr = (w, Y0,

Y1, Y2, c, zr, zx).

• Then, it rewinds the protocol to the point where the verifier V samples a random c←R Zp. It
programs V with fresh randomness such that V generates a new c′ ← Zp independently of the
previous execution of the protocol.

• The emulator completes the second execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
, producing a new

transcript tr = (t, Y0, Y1, c
′, z′r, z

′
x).

• If c− c′ = 0, then the emulator aborts and returns ⊥. Otherwise, it computes

– r ← (zr − z′r)/(c− c′)
– x← (zx − z′x)/(c− c′)

and returns (r, x).

We first bound the probability that Einner does not abort at the end of the two executions of〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if Einner does not abort, then its output (r, x) satisfies

• C = r ·H + x ·G,
• D1 = r · P1,
• D2 = r · P2,

where C = Clo + t · Chi, D1 = Dlo,1 + t · Dhi,1, and D2 = Dlo,2 + t · Dhi,2 in an execution of the
protocol.

Abort probability of the sub-emulator. The emulator Einner aborts only when c = c′, which is
dependent on the probability that P∗ successfully convinces V at the end of the protocol. Let εP∗ be
the probability that P∗ successfully convinces V in

〈
P∗(ρ, u, st),V(ρ, u)

〉
. We bound the probability

that c = c′ with εP∗ using the rewinding lemma 2.3. Specifically, let us define the following random
variables:

• Let X be the elements (w, Y0, Y1, Y2) in the transcript of an execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Y and Y ′ be the values c and c′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values (zr, zx) and (z′r, z
′
x) respectively in the two executions of〈

P∗(ρ, u, st),V(ρ, u)
〉
.

• Let f(tr) → {0, 1} be the protocol verification function that returns 1 if tr is an accepting
transcript and 0 otherwise.

34

Then, the rewiding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2 − ε/p.

By assumption, we have 1/p = negl(λ). Therefore, if εP∗ is non-negligible, then the probability that
E aborts at the end of the two executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
is non-negligible.

Output validity of sub-emulator. Now assume that the two executions of
〈
P(ρ, u, w),V(ρ, u)

〉
returns two accepting transcripts tr = (t, Y0, Y1, Y2, c, zr, zx), tr′ = (t, Y0, Y1, Y2, c

′, z′r, z
′
x), and that

Einner does not abort and returns

• r ← (zr − z′r)/(c− c′)
• x← (zx − z′x)/(c− c′)

Since tr and tr′ are accepting transcripts, we have

zr ·H + zx ·G = c · C + Y0,

z′r ·H + z′x ·G = c′ · C + Y0,

This means that (zr − z′r) ·H + (zx − z′x) ·G = (c− c′) · C and hence, r ·H + x ·G = C. Similarly,
we have

zr · P1 = c ·D + Y1,

z′r · P1 = c′ ·D + Y1,

This means that (zr − z′r) · P1 = (c− c′) ·D1, which means that r · P1 = D1. The argument can be
used to show that r · P2 = D2.

Main emulator. For a language instance u = (P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2), the main
emulator E executes two instances of the sub-emulator Einner to obtain two outputs

• Let t be the verifier’s first message in the protocol on the first execution of Einner. The
sub-emulator returns r and x such that

– C = r ·H + x ·G,
– D1 = r · P1,
– D2 = r · P2,

where C = Clo + t · Chi, D1 = Dlo,1 + t ·Dhi,1, and D2 = Dlo,2 + t ·Dhi,2.

• Let t′ be the verifier’s first message in the protocol on the first execution of Einner. The
sub-emulator returns r′ and x′ such that

– C = r′ ·H + x′ ·G,
– D1 = r′ · P1,
– D2 = r′ · P2,

where C ′ = Clo + t′ · Chi, D1 = Dlo,1 + t′ ·Dhi,1, and D2 = Dlo,2 + t′ ·Dhi,2.

If t = t′ in the two executions, E aborts and returns ⊥. Otherwise, the emulator returns the
following:

35

• rlo = (rt′ − r′t)/(t′ − t) and xlo = (xt′ − x′t)/(t′ − t),

• rhi = (r − r′)/(t− t′) and xhi = (x− x′)/(t− t′).

To finish the proof, we bound the probability that E does not abort at the end of the two executions
of
〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if E does not abort, then its output (r, x) is a valid

witness.

Abort probability of the main emulator. The emulator E aborts only when t = t′, which
is dependent on the probability that Einner successfully returns an output (r, x). Let εEinner

be the
probability that Einner successfully returns an output (r, x). We bound the probability that t = t′

with εEinner
using the rewinding lemma. Specifically, let us define the following random variables:

• The variable X = ε is an empty variable.

• Let Y and Y ′ be the values t and t′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values in the two pairs of transcripts tr = (tr0, tr1) and tr′ = (tr′0, tr′1)
during Einner’s executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let f(tr)→ {0, 1} be the function that output 1 if Einner can successfully extract (r, x) from tr
and 0 otherwise.

Then, the rewinding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2 − ε/p.

By assumption, we have 1/p = negl(λ). Therefore, if εEinner
is non-negligible, then the probability

that E aborts at the end of the two executions of Einner is non-negligible.

Witness validity. Now assume that E does not abort after two executions of the protocol. Then it
returns we have t 6= t′ and E returns

• rlo = (rt′ − r′t)/(t′ − t) and xlo = (xt′ − x′t)/(t′ − t),

• rhi = (r − r′)/(t− t′) and xhi = (x− x′)/(t− t′).

We show that rlo, xlo, rhi, xhi make a valid witness for the ciphertext validity relation. By assumption
on Einner, the values r, x, r′, x′ satisfy the following relations:

r ·H + x ·G = C = Clo + t · Chi,

r′ ·H + x′ ·G = C = Clo + t′ · Chi.

Subtracting the two relations above, we have

(r − r′) ·H + (x− x′) ·G = (t− t′) · Chi,

and hence, we have (r − r′)/(t− t′) ·H + (x− x′)/(t− t′) ·G = Chi.
Likewise, by assumption on rlo, xlo, rhi, xhi, we have

r · P1 = D1 = Dlo,1 + t ·Dhi,1,

36

r′ · P1 = D1 = Dlo,1 + t′ ·Dhi,1.

Subtracting the two relations, we have

(r − r′) · P1 = (t− t′) ·Dhi,1,

and hence, we have (r− r′)/(t− t′) ·P1 = Dhi,1. Similar arguments shows that rlo ·H + xlo ·G = Clo,
rlo · P1 = Dlo,1, rlo · P2 = Dlo,2, and rhi · P2 = Dhi,2. Soundness follows.

A.3.3 Proof of Theorem 4.13

Fix any elements P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2 ∈ G and rlo, xlo, rhi, xhi ∈ Zp such that the
ciphertext validity relation hold. Let tr∗ = (t∗, Y ∗0 , Y

∗
1 , Y

∗
2 , c
∗, z∗r , z

∗
x) be any accepting transcript.

By the specification of the protocol, the probability that an honest execution of the protocol by the
prover and the verifier results in the transcript tr∗ is given by

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
→ tr ∧ tr = tr∗

]
= 1/p4.

To prove zero-knowledge, we define a simulator S that produces such distribution without knowledge
of a valid witness rlo, xlo, rhi, and xhi.

S(P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2):

1. Sample t, c, zr, zx,←R Zp
2. Let C = Clo + t · Chi, D1 = Dlo,1 + t ·Dhi,1, and D2 = Dlo,2 + t ·Dhi,2

3. Set Y0 = zr ·H + zx ·G− c · C
4. Set Y1 = zr · P − c ·D1

5. Set Y2 = zr · P − c ·D2

6. Return tr = (w, Y0, Y1, c, zr, zx)

The simulator S returns a transcript that is uniformly random given that

• zr ·H + zx ·G = c · C + Y0,
• zr · P1 = c ·D1 + Y1,
• zr · P2 = c ·D2 + Y1,

where C = Clo + w · Chi, D1 = Dlo,1 + w ·Dhi,1, and D2 = Dlo,2 + w ·Dhi,2. As the variables Y0, Y1,
and Y2 are completely determined by t, c, zr, zx, we have

Pr [S(P,Clo, Dlo,1, Dlo,2, Chi, Dhi,1, Dhi,2)→ tr ∧ tr = tr∗] = 1/p4,

for any fixed transcript tr∗. Zero-knowledge now follows.

37

	Introduction
	Organization

	Preliminaries
	Cryptographic Assumptions
	Rewinding Lemma
	Pedersen Commitments
	Cryptographic Signatures

	Twisted ElGamal Encryption
	Public Key Encryption
	Construction Specification
	Correctness and Security Properties
	Randomness Re-use

	Zero Knowledge Arguments
	Zero-Knowledge Arguments of Knowledge
	Zero-Balance Argument
	Equality Argument
	Ciphertext Validity Argument
	Range Arguments

	Confidential Payment System
	Algorithm Specification
	Correctness
	Security

	Protocol Specification
	Proofs in Section 4
	Zero-Balance Argument
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	Equality Argument
	Proof of Theorem 4.8
	Proof of Theorem 4.9
	Proof of Theorem 4.10

	Ciphertext Validity Argument
	Proof of Theorem 4.11
	Proof of Theorem 4.12
	Proof of Theorem 4.13

