Merge pull request #10 from garious/add-historian

Better names
This commit is contained in:
Greg Fitzgerald 2018-02-18 10:16:05 -07:00 committed by GitHub
commit a2fa60fa31
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 80 additions and 80 deletions

View File

@ -1,44 +1,44 @@
//! The `historian` crate provides a microservice for generating a Proof-of-History.
//! It logs EventData items on behalf of its users. It continuously generates
//! new hashes, only stopping to check if it has been sent an EventData item. It
//! tags each EventData with an Event and sends it back. The Event includes the
//! EventData, the latest hash, and the number of hashes since the last event.
//! The resulting Event stream represents ordered events in time.
//! It logs Event items on behalf of its users. It continuously generates
//! new hashes, only stopping to check if it has been sent an Event item. It
//! tags each Event with an Entry and sends it back. The Entry includes the
//! Event, the latest hash, and the number of hashes since the last event.
//! The resulting stream of entries represents ordered events in time.
use std::thread::JoinHandle;
use std::sync::mpsc::{Receiver, Sender};
use event::{Event, EventData};
use log::{Entry, Event};
pub struct Historian {
pub sender: Sender<EventData>,
pub receiver: Receiver<Event>,
pub thread_hdl: JoinHandle<(Event, EventThreadExitReason)>,
pub sender: Sender<Event>,
pub receiver: Receiver<Entry>,
pub thread_hdl: JoinHandle<(Entry, ExitReason)>,
}
#[derive(Debug, PartialEq, Eq)]
pub enum EventThreadExitReason {
pub enum ExitReason {
RecvDisconnected,
SendDisconnected,
}
fn drain_queue(
receiver: &Receiver<EventData>,
sender: &Sender<Event>,
fn log_events(
receiver: &Receiver<Event>,
sender: &Sender<Entry>,
num_hashes: u64,
end_hash: u64,
) -> Result<u64, (Event, EventThreadExitReason)> {
) -> Result<u64, (Entry, ExitReason)> {
use std::sync::mpsc::TryRecvError;
let mut num_hashes = num_hashes;
loop {
match receiver.try_recv() {
Ok(data) => {
let e = Event {
Ok(event) => {
let entry = Entry {
end_hash,
num_hashes,
data,
event,
};
if let Err(_) = sender.send(e.clone()) {
return Err((e, EventThreadExitReason::SendDisconnected));
if let Err(_) = sender.send(entry.clone()) {
return Err((entry, ExitReason::SendDisconnected));
}
num_hashes = 0;
}
@ -46,24 +46,24 @@ fn drain_queue(
return Ok(num_hashes);
}
Err(TryRecvError::Disconnected) => {
let e = Event {
let entry = Entry {
end_hash,
num_hashes,
data: EventData::Tick,
event: Event::Tick,
};
return Err((e, EventThreadExitReason::RecvDisconnected));
return Err((entry, ExitReason::RecvDisconnected));
}
}
}
}
/// A background thread that will continue tagging received EventData messages and
/// sending back Event messages until either the receiver or sender channel is closed.
pub fn event_stream(
/// A background thread that will continue tagging received Event messages and
/// sending back Entry messages until either the receiver or sender channel is closed.
pub fn create_logger(
start_hash: u64,
receiver: Receiver<EventData>,
sender: Sender<Event>,
) -> JoinHandle<(Event, EventThreadExitReason)> {
receiver: Receiver<Event>,
sender: Sender<Entry>,
) -> JoinHandle<(Entry, ExitReason)> {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
use std::thread;
@ -72,9 +72,9 @@ pub fn event_stream(
let mut hasher = DefaultHasher::new();
let mut num_hashes = 0;
loop {
match drain_queue(&receiver, &sender, num_hashes, end_hash) {
match log_events(&receiver, &sender, num_hashes, end_hash) {
Ok(n) => num_hashes = n,
Err(e) => return e,
Err(err) => return err,
}
end_hash.hash(&mut hasher);
end_hash = hasher.finish();
@ -86,9 +86,9 @@ pub fn event_stream(
impl Historian {
pub fn new(start_hash: u64) -> Self {
use std::sync::mpsc::channel;
let (sender, event_data_receiver) = channel();
let (event_sender, receiver) = channel();
let thread_hdl = event_stream(start_hash, event_data_receiver, event_sender);
let (sender, event_receiver) = channel();
let (entry_sender, receiver) = channel();
let thread_hdl = create_logger(start_hash, event_receiver, entry_sender);
Historian {
sender,
receiver,
@ -100,39 +100,39 @@ impl Historian {
#[cfg(test)]
mod tests {
use super::*;
use event::*;
use log::*;
#[test]
fn test_historian() {
let hist = Historian::new(0);
let data = EventData::Tick;
hist.sender.send(data.clone()).unwrap();
let e0 = hist.receiver.recv().unwrap();
assert_eq!(e0.data, data);
let event = Event::Tick;
hist.sender.send(event.clone()).unwrap();
let entry0 = hist.receiver.recv().unwrap();
assert_eq!(entry0.event, event);
let data = EventData::UserDataKey(0xdeadbeef);
hist.sender.send(data.clone()).unwrap();
let e1 = hist.receiver.recv().unwrap();
assert_eq!(e1.data, data);
let event = Event::UserDataKey(0xdeadbeef);
hist.sender.send(event.clone()).unwrap();
let entry1 = hist.receiver.recv().unwrap();
assert_eq!(entry1.event, event);
drop(hist.sender);
assert_eq!(
hist.thread_hdl.join().unwrap().1,
EventThreadExitReason::RecvDisconnected
ExitReason::RecvDisconnected
);
verify_slice(&[e0, e1], 0);
verify_slice(&[entry0, entry1], 0);
}
#[test]
fn test_historian_closed_sender() {
let hist = Historian::new(0);
drop(hist.receiver);
hist.sender.send(EventData::Tick).unwrap();
hist.sender.send(Event::Tick).unwrap();
assert_eq!(
hist.thread_hdl.join().unwrap().1,
EventThreadExitReason::SendDisconnected
ExitReason::SendDisconnected
);
}
}

View File

@ -1,5 +1,5 @@
#![cfg_attr(feature = "unstable", feature(test))]
pub mod event;
pub mod log;
pub mod historian;
extern crate itertools;
extern crate rayon;

View File

@ -1,10 +1,10 @@
//! The `event` crate provides the foundational data structures for Proof-of-History
//! The `log` crate provides the foundational data structures for Proof-of-History,
//! an ordered log of events in time.
/// A Proof-of-History is an ordered log of events in time. Each entry contains three
/// pieces of data. The 'num_hashes' field is the number of hashes performed since the previous
/// entry. The 'end_hash' field is the result of hashing 'end_hash' from the previous entry
/// 'num_hashes' times. The 'data' field is an optional foreign key (a hash) pointing to some
/// arbitrary data that a client is looking to associate with the entry.
/// Each log entry contains three pieces of data. The 'num_hashes' field is the number
/// of hashes performed since the previous entry. The 'end_hash' field is the result
/// of hashing 'end_hash' from the previous entry 'num_hashes' times. The 'event'
/// field points to an Event that took place shortly after 'end_hash' was generated.
///
/// If you divide 'num_hashes' by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last event. Since processing power increases
@ -13,32 +13,32 @@
/// fastest processor. Duration should therefore be estimated by assuming that the hash
/// was generated by the fastest processor at the time the entry was logged.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Event {
pub struct Entry {
pub num_hashes: u64,
pub end_hash: u64,
pub data: EventData,
pub event: Event,
}
/// When 'data' is Tick, the event represents a simple clock tick, and exists for the
/// When 'event' is Tick, the event represents a simple clock tick, and exists for the
/// sole purpose of improving the performance of event log verification. A tick can
/// be generated in 'num_hashes' hashes and verified in 'num_hashes' hashes. By logging
/// a hash alongside the tick, each tick and be verified in parallel using the 'end_hash'
/// of the preceding tick to seed its hashing.
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum EventData {
pub enum Event {
Tick,
UserDataKey(u64),
}
impl Event {
/// Creates an Event from the number of hashes 'num_hashes' since the previous event
impl Entry {
/// Creates a Entry from the number of hashes 'num_hashes' since the previous event
/// and that resulting 'end_hash'.
pub fn new_tick(num_hashes: u64, end_hash: u64) -> Self {
let data = EventData::Tick;
Event {
let event = Event::Tick;
Entry {
num_hashes,
end_hash,
data,
event,
}
}
@ -48,8 +48,8 @@ impl Event {
}
}
/// Creates the next Tick Event 'num_hashes' after 'start_hash'.
pub fn next_tick(start_hash: u64, num_hashes: u64) -> Event {
/// Creates the next Tick Entry 'num_hashes' after 'start_hash'.
pub fn next_tick(start_hash: u64, num_hashes: u64) -> Entry {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
let mut end_hash = start_hash;
@ -58,26 +58,26 @@ pub fn next_tick(start_hash: u64, num_hashes: u64) -> Event {
end_hash.hash(&mut hasher);
end_hash = hasher.finish();
}
Event::new_tick(num_hashes, end_hash)
Entry::new_tick(num_hashes, end_hash)
}
/// Verifies the hashes and counts of a slice of events are all consistent.
pub fn verify_slice(events: &[Event], start_hash: u64) -> bool {
pub fn verify_slice(events: &[Entry], start_hash: u64) -> bool {
use rayon::prelude::*;
let genesis = [Event::new_tick(0, start_hash)];
let genesis = [Entry::new_tick(0, start_hash)];
let event_pairs = genesis.par_iter().chain(events).zip(events);
event_pairs.all(|(x0, x1)| x1.verify(x0.end_hash))
}
/// Verifies the hashes and events serially. Exists only for reference.
pub fn verify_slice_seq(events: &[Event], start_hash: u64) -> bool {
let genesis = [Event::new_tick(0, start_hash)];
pub fn verify_slice_seq(events: &[Entry], start_hash: u64) -> bool {
let genesis = [Entry::new_tick(0, start_hash)];
let mut event_pairs = genesis.iter().chain(events).zip(events);
event_pairs.all(|(x0, x1)| x1.verify(x0.end_hash))
}
/// Create a vector of Ticks of length 'len' from 'start_hash' hash and 'num_hashes'.
pub fn create_ticks(start_hash: u64, num_hashes: u64, len: usize) -> Vec<Event> {
pub fn create_ticks(start_hash: u64, num_hashes: u64, len: usize) -> Vec<Entry> {
use itertools::unfold;
let mut events = unfold(start_hash, |state| {
let event = next_tick(*state, num_hashes);
@ -93,8 +93,8 @@ mod tests {
#[test]
fn test_event_verify() {
assert!(Event::new_tick(0, 0).verify(0)); // base case
assert!(!Event::new_tick(0, 0).verify(1)); // base case, bad
assert!(Entry::new_tick(0, 0).verify(0)); // base case
assert!(!Entry::new_tick(0, 0).verify(1)); // base case, bad
assert!(next_tick(0, 1).verify(0)); // inductive step
assert!(!next_tick(0, 1).verify(1)); // inductive step, bad
}
@ -104,10 +104,10 @@ mod tests {
assert_eq!(next_tick(0, 1).num_hashes, 1)
}
fn verify_slice_generic(verify_slice: fn(&[Event], u64) -> bool) {
fn verify_slice_generic(verify_slice: fn(&[Entry], u64) -> bool) {
assert!(verify_slice(&vec![], 0)); // base case
assert!(verify_slice(&vec![Event::new_tick(0, 0)], 0)); // singleton case 1
assert!(!verify_slice(&vec![Event::new_tick(0, 0)], 1)); // singleton case 2, bad
assert!(verify_slice(&vec![Entry::new_tick(0, 0)], 0)); // singleton case 1
assert!(!verify_slice(&vec![Entry::new_tick(0, 0)], 1)); // singleton case 2, bad
assert!(verify_slice(&create_ticks(0, 0, 2), 0)); // inductive step
let mut bad_ticks = create_ticks(0, 0, 2);
@ -131,23 +131,23 @@ mod tests {
mod bench {
extern crate test;
use self::test::Bencher;
use event;
use log::*;
#[bench]
fn event_bench(bencher: &mut Bencher) {
let start_hash = 0;
let events = event::create_ticks(start_hash, 100_000, 8);
let events = create_ticks(start_hash, 100_000, 8);
bencher.iter(|| {
assert!(event::verify_slice(&events, start_hash));
assert!(verify_slice(&events, start_hash));
});
}
#[bench]
fn event_bench_seq(bencher: &mut Bencher) {
let start_hash = 0;
let events = event::create_ticks(start_hash, 100_000, 8);
let events = create_ticks(start_hash, 100_000, 8);
bencher.iter(|| {
assert!(event::verify_slice_seq(&events, start_hash));
assert!(verify_slice_seq(&events, start_hash));
});
}
}