solana-with-rpc-optimizations/src/transaction.rs

387 lines
13 KiB
Rust

//! The `transaction` module provides functionality for creating log transactions.
use bincode::serialize;
use budget::{Budget, Condition};
use chrono::prelude::*;
use hash::Hash;
use payment_plan::{Payment, PaymentPlan, Witness};
use signature::{Keypair, KeypairUtil, Pubkey, Signature};
pub const SIGNED_DATA_OFFSET: usize = 112;
pub const SIG_OFFSET: usize = 8;
pub const PUB_KEY_OFFSET: usize = 80;
/// The type of payment plan. Each item must implement the PaymentPlan trait.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub enum Plan {
/// The builtin contract language Budget.
Budget(Budget),
}
// A proxy for the underlying DSL.
impl PaymentPlan for Plan {
fn final_payment(&self) -> Option<Payment> {
match self {
Plan::Budget(budget) => budget.final_payment(),
}
}
fn verify(&self, spendable_tokens: i64) -> bool {
match self {
Plan::Budget(budget) => budget.verify(spendable_tokens),
}
}
fn apply_witness(&mut self, witness: &Witness, from: &Pubkey) {
match self {
Plan::Budget(budget) => budget.apply_witness(witness, from),
}
}
}
/// A smart contract.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Contract {
/// The number of tokens allocated to the `Plan` and any transaction fees.
pub tokens: i64,
pub plan: Plan,
}
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Vote {
/// We send some gossip specific membership information through the vote to shortcut
/// liveness voting
/// The version of the CRDT struct that the last_id of this network voted with
pub version: u64,
/// The version of the CRDT struct that has the same network configuration as this one
pub contact_info_version: u64,
// TODO: add signature of the state here as well
}
/// An instruction to progress the smart contract.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub enum Instruction {
/// Declare and instanstansiate `Contract`.
NewContract(Contract),
/// Tell a payment plan acknowledge the given `DateTime` has past.
ApplyTimestamp(DateTime<Utc>),
/// Tell the payment plan that the `NewContract` with `Signature` has been
/// signed by the containing transaction's `Pubkey`.
ApplySignature(Signature),
/// Vote for a PoH that is equal to the lastid of this transaction
NewVote(Vote),
}
/// An instruction signed by a client with `Pubkey`.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Transaction {
/// A digital signature of `instruction`, `last_id` and `fee`, signed by `Pubkey`.
pub signature: Signature,
/// The `Pubkey` of the entity that signed the transaction data.
pub from: Pubkey,
/// The action the server should take.
pub instruction: Instruction,
/// The ID of a recent ledger entry.
pub last_id: Hash,
/// The number of tokens paid for processing and storage of this transaction.
pub fee: i64,
/// Optional user data to be stored in the account
/// TODO: This will be a required field for all contract operations including a simple spend.
/// `instruction` will be serialized into `userdata` once Budget is its own generic contract.
pub userdata: Vec<u8>,
}
impl Transaction {
/// Create a signed transaction with userdata and an instruction
fn new_with_userdata_and_instruction(
from_keypair: &Keypair,
instruction: Instruction,
last_id: Hash,
fee: i64,
userdata: Vec<u8>,
) -> Self {
let from = from_keypair.pubkey();
let mut tx = Transaction {
signature: Signature::default(),
instruction,
last_id,
from,
fee,
userdata,
};
tx.sign(from_keypair);
tx
}
/// Create a signed transaction from the given `Instruction`.
fn new_from_instruction(
from_keypair: &Keypair,
instruction: Instruction,
last_id: Hash,
fee: i64,
) -> Self {
Self::new_with_userdata_and_instruction(from_keypair, instruction, last_id, fee, vec![])
}
/// Create and sign a new Transaction. Used for unit-testing.
pub fn new_taxed(
from_keypair: &Keypair,
to: Pubkey,
tokens: i64,
fee: i64,
last_id: Hash,
) -> Self {
let payment = Payment {
tokens: tokens - fee,
to,
};
let budget = Budget::Pay(payment);
let plan = Plan::Budget(budget);
let instruction = Instruction::NewContract(Contract { plan, tokens });
Self::new_from_instruction(from_keypair, instruction, last_id, fee)
}
/// Create and sign a new Transaction. Used for unit-testing.
pub fn new(from_keypair: &Keypair, to: Pubkey, tokens: i64, last_id: Hash) -> Self {
Self::new_taxed(from_keypair, to, tokens, 0, last_id)
}
/// Create and sign a new Witness Timestamp. Used for unit-testing.
pub fn new_timestamp(from_keypair: &Keypair, dt: DateTime<Utc>, last_id: Hash) -> Self {
let instruction = Instruction::ApplyTimestamp(dt);
Self::new_from_instruction(from_keypair, instruction, last_id, 0)
}
/// Create and sign a new Witness Signature. Used for unit-testing.
pub fn new_signature(from_keypair: &Keypair, signature: Signature, last_id: Hash) -> Self {
let instruction = Instruction::ApplySignature(signature);
Self::new_from_instruction(from_keypair, instruction, last_id, 0)
}
pub fn new_vote(from_keypair: &Keypair, vote: Vote, last_id: Hash, fee: i64) -> Self {
Transaction::new_from_instruction(&from_keypair, Instruction::NewVote(vote), last_id, fee)
}
/// Create and sign a postdated Transaction. Used for unit-testing.
pub fn new_on_date(
from_keypair: &Keypair,
to: Pubkey,
dt: DateTime<Utc>,
tokens: i64,
last_id: Hash,
) -> Self {
let from = from_keypair.pubkey();
let budget = Budget::Or(
(Condition::Timestamp(dt, from), Payment { tokens, to }),
(Condition::Signature(from), Payment { tokens, to: from }),
);
let plan = Plan::Budget(budget);
let instruction = Instruction::NewContract(Contract { plan, tokens });
Self::new_from_instruction(from_keypair, instruction, last_id, 0)
}
/// Get the transaction data to sign.
fn get_sign_data(&self) -> Vec<u8> {
let mut data = serialize(&(&self.instruction)).expect("serialize Contract");
let last_id_data = serialize(&(&self.last_id)).expect("serialize last_id");
data.extend_from_slice(&last_id_data);
let fee_data = serialize(&(&self.fee)).expect("serialize last_id");
data.extend_from_slice(&fee_data);
let userdata = serialize(&(&self.userdata)).expect("serialize userdata");
data.extend_from_slice(&userdata);
data
}
/// Sign this transaction.
pub fn sign(&mut self, keypair: &Keypair) {
let sign_data = self.get_sign_data();
self.signature = Signature::new(keypair.sign(&sign_data).as_ref());
}
/// Verify only the transaction signature.
pub fn verify_signature(&self) -> bool {
warn!("transaction signature verification called");
self.signature
.verify(&self.from.as_ref(), &self.get_sign_data())
}
/// Verify only the payment plan.
pub fn verify_plan(&self) -> bool {
if let Instruction::NewContract(contract) = &self.instruction {
self.fee >= 0
&& self.fee <= contract.tokens
&& contract.plan.verify(contract.tokens - self.fee)
} else {
true
}
}
}
pub fn test_tx() -> Transaction {
let keypair1 = Keypair::new();
let pubkey1 = keypair1.pubkey();
let zero = Hash::default();
Transaction::new(&keypair1, pubkey1, 42, zero)
}
#[cfg(test)]
pub fn memfind<A: Eq>(a: &[A], b: &[A]) -> Option<usize> {
assert!(a.len() >= b.len());
let end = a.len() - b.len() + 1;
for i in 0..end {
if a[i..i + b.len()] == b[..] {
return Some(i);
}
}
None
}
#[cfg(test)]
mod tests {
use super::*;
use bincode::{deserialize, serialize};
#[test]
fn test_claim() {
let keypair = Keypair::new();
let zero = Hash::default();
let tx0 = Transaction::new(&keypair, keypair.pubkey(), 42, zero);
assert!(tx0.verify_plan());
}
#[test]
fn test_transfer() {
let zero = Hash::default();
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let pubkey1 = keypair1.pubkey();
let tx0 = Transaction::new(&keypair0, pubkey1, 42, zero);
assert!(tx0.verify_plan());
}
#[test]
fn test_transfer_with_fee() {
let zero = Hash::default();
let keypair0 = Keypair::new();
let pubkey1 = Keypair::new().pubkey();
assert!(Transaction::new_taxed(&keypair0, pubkey1, 1, 1, zero).verify_plan());
assert!(!Transaction::new_taxed(&keypair0, pubkey1, 1, 2, zero).verify_plan());
assert!(!Transaction::new_taxed(&keypair0, pubkey1, 1, -1, zero).verify_plan());
}
#[test]
fn test_serialize_claim() {
let budget = Budget::Pay(Payment {
tokens: 0,
to: Default::default(),
});
let plan = Plan::Budget(budget);
let instruction = Instruction::NewContract(Contract { plan, tokens: 0 });
let claim0 = Transaction {
instruction,
from: Default::default(),
last_id: Default::default(),
signature: Default::default(),
fee: 0,
userdata: vec![],
};
let buf = serialize(&claim0).unwrap();
let claim1: Transaction = deserialize(&buf).unwrap();
assert_eq!(claim1, claim0);
}
#[test]
fn test_token_attack() {
let zero = Hash::default();
let keypair = Keypair::new();
let pubkey = keypair.pubkey();
let mut tx = Transaction::new(&keypair, pubkey, 42, zero);
if let Instruction::NewContract(contract) = &mut tx.instruction {
contract.tokens = 1_000_000; // <-- attack, part 1!
if let Plan::Budget(Budget::Pay(ref mut payment)) = contract.plan {
payment.tokens = contract.tokens; // <-- attack, part 2!
}
}
assert!(tx.verify_plan());
assert!(!tx.verify_signature());
}
#[test]
fn test_hijack_attack() {
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let thief_keypair = Keypair::new();
let pubkey1 = keypair1.pubkey();
let zero = Hash::default();
let mut tx = Transaction::new(&keypair0, pubkey1, 42, zero);
if let Instruction::NewContract(contract) = &mut tx.instruction {
if let Plan::Budget(Budget::Pay(ref mut payment)) = contract.plan {
payment.to = thief_keypair.pubkey(); // <-- attack!
}
}
assert!(tx.verify_plan());
assert!(!tx.verify_signature());
}
#[test]
fn test_layout() {
let tx = test_tx();
let sign_data = tx.get_sign_data();
let tx_bytes = serialize(&tx).unwrap();
assert_matches!(memfind(&tx_bytes, &sign_data), Some(SIGNED_DATA_OFFSET));
assert_matches!(memfind(&tx_bytes, &tx.signature.as_ref()), Some(SIG_OFFSET));
assert_matches!(memfind(&tx_bytes, &tx.from.as_ref()), Some(PUB_KEY_OFFSET));
}
#[test]
fn test_userdata_layout() {
let mut tx0 = test_tx();
tx0.userdata = vec![1, 2, 3];
let sign_data0a = tx0.get_sign_data();
let tx_bytes = serialize(&tx0).unwrap();
assert!(tx_bytes.len() < 256);
assert_eq!(memfind(&tx_bytes, &sign_data0a), Some(SIGNED_DATA_OFFSET));
assert_eq!(
memfind(&tx_bytes, &tx0.signature.as_ref()),
Some(SIG_OFFSET)
);
assert_eq!(memfind(&tx_bytes, &tx0.from.as_ref()), Some(PUB_KEY_OFFSET));
let tx1 = deserialize(&tx_bytes).unwrap();
assert_eq!(tx0, tx1);
assert_eq!(tx1.userdata, vec![1, 2, 3]);
tx0.userdata = vec![1, 2, 4];
let sign_data0b = tx0.get_sign_data();
assert_ne!(sign_data0a, sign_data0b);
}
#[test]
fn test_overspend_attack() {
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let zero = Hash::default();
let mut tx = Transaction::new(&keypair0, keypair1.pubkey(), 1, zero);
if let Instruction::NewContract(contract) = &mut tx.instruction {
if let Plan::Budget(Budget::Pay(ref mut payment)) = contract.plan {
payment.tokens = 2; // <-- attack!
}
}
assert!(!tx.verify_plan());
// Also, ensure all branchs of the plan spend all tokens
if let Instruction::NewContract(contract) = &mut tx.instruction {
if let Plan::Budget(Budget::Pay(ref mut payment)) = contract.plan {
payment.tokens = 0; // <-- whoops!
}
}
assert!(!tx.verify_plan());
}
}