solana/runtime/src/accounts_index.rs

1274 lines
44 KiB
Rust
Raw Normal View History

use ouroboros::self_referencing;
use solana_sdk::{clock::Slot, pubkey::Pubkey};
use std::ops::{
Bound,
Bound::{Excluded, Included, Unbounded},
};
use std::sync::atomic::{AtomicU64, Ordering};
2020-01-28 17:03:20 -08:00
use std::{
collections::{
btree_map::{self, BTreeMap},
HashMap, HashSet,
},
ops::{Range, RangeBounds},
sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard},
2020-01-28 17:03:20 -08:00
};
pub const ITER_BATCH_SIZE: usize = 1000;
pub type SlotList<T> = Vec<(Slot, T)>;
pub type SlotSlice<'s, T> = &'s [(Slot, T)];
pub type Ancestors = HashMap<Slot, usize>;
pub type RefCount = u64;
pub type AccountMap<K, V> = BTreeMap<K, V>;
type AccountMapEntry<T> = Arc<AccountMapEntryInner<T>>;
#[derive(Debug)]
pub struct AccountMapEntryInner<T> {
ref_count: AtomicU64,
pub slot_list: RwLock<SlotList<T>>,
}
#[self_referencing]
pub struct ReadAccountMapEntry<T: 'static> {
owned_entry: AccountMapEntry<T>,
#[borrows(owned_entry)]
slot_list_guard: RwLockReadGuard<'this, SlotList<T>>,
}
impl<T: Clone> ReadAccountMapEntry<T> {
pub fn from_account_map_entry(account_map_entry: AccountMapEntry<T>) -> Self {
ReadAccountMapEntryBuilder {
owned_entry: account_map_entry,
slot_list_guard_builder: |lock| lock.slot_list.read().unwrap(),
}
.build()
}
pub fn slot_list(&self) -> &SlotList<T> {
&*self.borrow_slot_list_guard()
}
pub fn ref_count(&self) -> &AtomicU64 {
&self.borrow_owned_entry_contents().ref_count
}
}
#[self_referencing]
pub struct WriteAccountMapEntry<T: 'static> {
owned_entry: AccountMapEntry<T>,
#[borrows(owned_entry)]
slot_list_guard: RwLockWriteGuard<'this, SlotList<T>>,
}
impl<T: 'static + Clone> WriteAccountMapEntry<T> {
pub fn from_account_map_entry(account_map_entry: AccountMapEntry<T>) -> Self {
WriteAccountMapEntryBuilder {
owned_entry: account_map_entry,
slot_list_guard_builder: |lock| lock.slot_list.write().unwrap(),
}
.build()
}
pub fn slot_list(&mut self) -> &SlotList<T> {
&*self.borrow_slot_list_guard()
}
pub fn slot_list_mut<RT>(
&mut self,
user: impl for<'this> FnOnce(&mut RwLockWriteGuard<'this, SlotList<T>>) -> RT,
) -> RT {
self.with_slot_list_guard_mut(user)
}
pub fn ref_count(&self) -> &AtomicU64 {
&self.borrow_owned_entry_contents().ref_count
}
// Try to update an item in the slot list the given `slot` If an item for the slot
// already exists in the list, remove the older item, add it to `reclaims`, and insert
// the new item.
pub fn update(&mut self, slot: Slot, account_info: T, reclaims: &mut SlotList<T>) {
// filter out other dirty entries from the same slot
let mut same_slot_previous_updates: Vec<(usize, &(Slot, T))> = self
.slot_list()
.iter()
.enumerate()
.filter(|(_, (s, _))| *s == slot)
.collect();
assert!(same_slot_previous_updates.len() <= 1);
if let Some((list_index, (s, previous_update_value))) = same_slot_previous_updates.pop() {
reclaims.push((*s, previous_update_value.clone()));
self.slot_list_mut(|list| list.remove(list_index));
} else {
// Only increment ref count if the account was not prevously updated in this slot
self.ref_count().fetch_add(1, Ordering::Relaxed);
}
self.slot_list_mut(|list| list.push((slot, account_info)));
}
}
#[derive(Debug, Default)]
pub struct RootsTracker {
roots: HashSet<Slot>,
max_root: Slot,
uncleaned_roots: HashSet<Slot>,
previous_uncleaned_roots: HashSet<Slot>,
}
pub struct AccountsIndexIterator<'a, T> {
account_maps: &'a RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
start_bound: Bound<Pubkey>,
end_bound: Bound<Pubkey>,
is_finished: bool,
}
impl<'a, T> AccountsIndexIterator<'a, T> {
fn clone_bound(bound: Bound<&Pubkey>) -> Bound<Pubkey> {
match bound {
Unbounded => Unbounded,
Included(k) => Included(*k),
Excluded(k) => Excluded(*k),
}
}
pub fn new<R>(
account_maps: &'a RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
range: Option<R>,
) -> Self
where
R: RangeBounds<Pubkey>,
{
Self {
start_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.start_bound()))
.unwrap_or(Unbounded),
end_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.end_bound()))
.unwrap_or(Unbounded),
account_maps,
is_finished: false,
}
}
}
impl<'a, T: 'static + Clone> Iterator for AccountsIndexIterator<'a, T> {
type Item = Vec<(Pubkey, AccountMapEntry<T>)>;
fn next(&mut self) -> Option<Self::Item> {
if self.is_finished {
return None;
}
let chunk: Vec<(Pubkey, AccountMapEntry<T>)> = self
.account_maps
.read()
.unwrap()
.range((self.start_bound, self.end_bound))
.map(|(pubkey, account_map_entry)| (*pubkey, account_map_entry.clone()))
.take(ITER_BATCH_SIZE)
.collect();
if chunk.is_empty() {
self.is_finished = true;
return None;
}
self.start_bound = Excluded(chunk.last().unwrap().0);
Some(chunk)
}
}
#[derive(Debug, Default)]
pub struct AccountsIndex<T> {
pub account_maps: RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
roots_tracker: RwLock<RootsTracker>,
ongoing_scan_roots: RwLock<BTreeMap<Slot, u64>>,
}
impl<T: 'static + Clone> AccountsIndex<T> {
fn iter<R>(&self, range: Option<R>) -> AccountsIndexIterator<T>
where
R: RangeBounds<Pubkey>,
{
AccountsIndexIterator::new(&self.account_maps, range)
}
fn do_checked_scan_accounts<'a, F, R>(
&'a self,
ancestors: &Ancestors,
func: F,
range: Option<R>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
let max_root = {
let mut w_ongoing_scan_roots = self
// This lock is also grabbed by clean_accounts(), so clean
// has at most cleaned up to the current `max_root` (since
// clean only happens *after* BankForks::set_root() which sets
// the `max_root`)
.ongoing_scan_roots
.write()
.unwrap();
// `max_root()` grabs a lock while
// the `ongoing_scan_roots` lock is held,
// make sure inverse doesn't happen to avoid
// deadlock
let max_root = self.max_root();
*w_ongoing_scan_roots.entry(max_root).or_default() += 1;
max_root
};
// First we show that for any bank `B` that is a descendant of
// the current `max_root`, it must be true that and `B.ancestors.contains(max_root)`,
// regardless of the pattern of `squash()` behavior, `where` `ancestors` is the set
// of ancestors that is tracked in each bank.
//
// Proof: At startup, if starting from a snapshot, generate_index() adds all banks
// in the snapshot to the index via `add_root()` and so `max_root` will be the
// greatest of these. Thus, so the claim holds at startup since there are no
// descendants of `max_root`.
//
// Now we proceed by induction on each `BankForks::set_root()`.
// Assume the claim holds when the `max_root` is `R`. Call the set of
// descendants of `R` present in BankForks `R_descendants`.
//
// Then for any banks `B` in `R_descendants`, it must be that `B.ancestors.contains(S)`,
// where `S` is any ancestor of `B` such that `S >= R`.
//
// For example:
// `R` -> `A` -> `C` -> `B`
// Then `B.ancestors == {R, A, C}`
//
// Next we call `BankForks::set_root()` at some descendant of `R`, `R_new`,
// where `R_new > R`.
//
// When we squash `R_new`, `max_root` in the AccountsIndex here is now set to `R_new`,
// and all nondescendants of `R_new` are pruned.
//
// Now consider any outstanding references to banks in the system that are descended from
// `max_root == R_new`. Take any one of these references and call it `B`. Because `B` is
// a descendant of `R_new`, this means `B` was also a descendant of `R`. Thus `B`
// must be a member of `R_descendants` because `B` was constructed and added to
// BankForks before the `set_root`.
//
// This means by the guarantees of `R_descendants` described above, because
// `R_new` is an ancestor of `B`, and `R < R_new < B`, then B.ancestors.contains(R_new)`.
//
// Now until the next `set_root`, any new banks constructed from `new_from_parent` will
// also have `max_root == R_new` in their ancestor set, so the claim holds for those descendants
// as well. Once the next `set_root` happens, we once again update `max_root` and the same
// inductive argument can be applied again to show the claim holds.
// Check that the `max_root` is present in `ancestors`. From the proof above, if
// `max_root` is not present in `ancestors`, this means the bank `B` with the
// given `ancestors` is not descended from `max_root, which means
// either:
// 1) `B` is on a different fork or
// 2) `B` is an ancestor of `max_root`.
// In both cases we can ignore the given ancestors and instead just rely on the roots
// present as `max_root` indicates the roots present in the index are more up to date
// than the ancestors given.
let empty = HashMap::new();
let ancestors = if ancestors.contains_key(&max_root) {
ancestors
} else {
/*
This takes of edge cases like:
Diagram 1:
slot 0
|
slot 1
/ \
slot 2 |
| slot 3 (max root)
slot 4 (scan)
By the time the scan on slot 4 is called, slot 2 may already have been
cleaned by a clean on slot 3, but slot 4 may not have been cleaned.
The state in slot 2 would have been purged and is not saved in any roots.
In this case, a scan on slot 4 wouldn't accurately reflect the state when bank 4
was frozen. In cases like this, we default to a scan on the latest roots by
removing all `ancestors`.
*/
&empty
};
/*
Now there are two cases, either `ancestors` is empty or nonempty:
1) If ancestors is empty, then this is the same as a scan on a rooted bank,
and `ongoing_scan_roots` provides protection against cleanup of roots necessary
for the scan, and passing `Some(max_root)` to `do_scan_accounts()` ensures newer
roots don't appear in the scan.
2) If ancestors is non-empty, then from the `ancestors_contains(&max_root)` above, we know
that the fork structure must look something like:
Diagram 2:
Build fork structure:
slot 0
|
slot 1 (max_root)
/ \
slot 2 |
| slot 3 (potential newer max root)
slot 4
|
slot 5 (scan)
Consider both types of ancestors, ancestor <= `max_root` and
ancestor > `max_root`, where `max_root == 1` as illustrated above.
a) The set of `ancestors <= max_root` are all rooted, which means their state
is protected by the same guarantees as 1).
b) As for the `ancestors > max_root`, those banks have at least one reference discoverable
through the chain of `Bank::BankRc::parent` starting from the calling bank. For instance
bank 5's parent reference keeps bank 4 alive, which will prevent the `Bank::drop()` from
running and cleaning up bank 4. Furthermore, no cleans can happen past the saved max_root == 1,
so a potential newer max root at 3 will not clean up any of the ancestors > 1, so slot 4
will not be cleaned in the middle of the scan either.
*/
self.do_scan_accounts(ancestors, func, range, Some(max_root));
{
let mut ongoing_scan_roots = self.ongoing_scan_roots.write().unwrap();
let count = ongoing_scan_roots.get_mut(&max_root).unwrap();
*count -= 1;
if *count == 0 {
ongoing_scan_roots.remove(&max_root);
}
}
}
fn do_unchecked_scan_accounts<'a, F, R>(
&'a self,
ancestors: &Ancestors,
func: F,
range: Option<R>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
self.do_scan_accounts(ancestors, func, range, None);
}
// Scan accounts and return latest version of each account that is either:
// 1) rooted or
// 2) present in ancestors
fn do_scan_accounts<'a, F, R>(
&'a self,
ancestors: &Ancestors,
mut func: F,
range: Option<R>,
max_root: Option<Slot>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
for pubkey_list in self.iter(range) {
for (pubkey, list) in pubkey_list {
let list_r = &list.slot_list.read().unwrap();
if let Some(index) = self.latest_slot(Some(ancestors), &list_r, max_root) {
func(&pubkey, (&list_r[index].1, list_r[index].0));
}
}
}
}
pub fn get_account_read_entry(&self, pubkey: &Pubkey) -> Option<ReadAccountMapEntry<T>> {
self.account_maps
.read()
.unwrap()
.get(pubkey)
.cloned()
.map(ReadAccountMapEntry::from_account_map_entry)
}
fn get_account_write_entry(&self, pubkey: &Pubkey) -> Option<WriteAccountMapEntry<T>> {
self.account_maps
.read()
.unwrap()
.get(pubkey)
.cloned()
.map(WriteAccountMapEntry::from_account_map_entry)
}
fn get_account_write_entry_else_create(
&self,
pubkey: &Pubkey,
) -> (WriteAccountMapEntry<T>, bool) {
let mut w_account_entry = self.get_account_write_entry(pubkey);
let mut is_newly_inserted = false;
if w_account_entry.is_none() {
let new_entry = Arc::new(AccountMapEntryInner {
ref_count: AtomicU64::new(0),
slot_list: RwLock::new(SlotList::with_capacity(32)),
});
let mut w_account_maps = self.account_maps.write().unwrap();
let account_entry = w_account_maps.entry(*pubkey).or_insert_with(|| {
is_newly_inserted = true;
new_entry
});
w_account_entry = Some(WriteAccountMapEntry::from_account_map_entry(
account_entry.clone(),
));
}
(w_account_entry.unwrap(), is_newly_inserted)
}
pub fn handle_dead_keys(&self, dead_keys: &[Pubkey]) {
if !dead_keys.is_empty() {
for key in dead_keys.iter() {
let mut w_index = self.account_maps.write().unwrap();
if let btree_map::Entry::Occupied(index_entry) = w_index.entry(*key) {
if index_entry.get().slot_list.read().unwrap().is_empty() {
index_entry.remove();
}
}
}
}
}
/// call func with every pubkey and index visible from a given set of ancestors
pub(crate) fn scan_accounts<F>(&self, ancestors: &Ancestors, func: F)
where
F: FnMut(&Pubkey, (&T, Slot)),
{
self.do_checked_scan_accounts(ancestors, func, None::<Range<Pubkey>>);
}
pub(crate) fn unchecked_scan_accounts<F>(&self, ancestors: &Ancestors, func: F)
where
F: FnMut(&Pubkey, (&T, Slot)),
{
self.do_unchecked_scan_accounts(ancestors, func, None::<Range<Pubkey>>);
}
/// call func with every pubkey and index visible from a given set of ancestors with range
pub(crate) fn range_scan_accounts<F, R>(&self, ancestors: &Ancestors, range: R, func: F)
where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
// Only the rent logic should be calling this, which doesn't need the safety checks
self.do_unchecked_scan_accounts(ancestors, func, Some(range));
}
pub fn get_rooted_entries(&self, slice: SlotSlice<T>, max: Option<Slot>) -> SlotList<T> {
slice
.iter()
.filter(|(slot, _)| self.is_root(*slot) && max.map_or(true, |max| *slot <= max))
.cloned()
.collect()
}
// returns the rooted entries and the storage ref count
pub fn roots_and_ref_count(
&self,
locked_account_entry: &ReadAccountMapEntry<T>,
max: Option<Slot>,
) -> (SlotList<T>, RefCount) {
(
self.get_rooted_entries(&locked_account_entry.slot_list(), max),
locked_account_entry.ref_count().load(Ordering::Relaxed),
)
}
// filter any rooted entries and return them along with a bool that indicates
// if this account has no more entries.
pub fn purge(&self, pubkey: &Pubkey) -> (SlotList<T>, bool) {
let mut write_account_map_entry = self.get_account_write_entry(pubkey).unwrap();
write_account_map_entry.slot_list_mut(|slot_list| {
let reclaims = self.get_rooted_entries(slot_list, None);
slot_list.retain(|(slot, _)| !self.is_root(*slot));
(reclaims, slot_list.is_empty())
})
}
pub fn purge_exact(&self, pubkey: &Pubkey, slots: HashSet<Slot>) -> (SlotList<T>, bool) {
let mut write_account_map_entry = self.get_account_write_entry(pubkey).unwrap();
write_account_map_entry.slot_list_mut(|slot_list| {
let reclaims = slot_list
.iter()
.filter(|(slot, _)| slots.contains(&slot))
.cloned()
.collect();
slot_list.retain(|(slot, _)| !slots.contains(slot));
(reclaims, slot_list.is_empty())
})
}
pub fn min_ongoing_scan_root(&self) -> Option<Slot> {
self.ongoing_scan_roots
.read()
.unwrap()
.keys()
.next()
.cloned()
}
// Given a SlotSlice `L`, a list of ancestors and a maximum slot, find the latest element
// in `L`, where the slot `S` is an ancestor or root, and if `S` is a root, then `S <= max_root`
fn latest_slot(
&self,
ancestors: Option<&Ancestors>,
slice: SlotSlice<T>,
max_root: Option<Slot>,
) -> Option<usize> {
let mut current_max = 0;
let mut rv = None;
for (i, (slot, _t)) in slice.iter().rev().enumerate() {
if *slot >= current_max && self.is_ancestor_or_root(*slot, ancestors, max_root) {
rv = Some((slice.len() - 1) - i);
current_max = *slot;
}
}
rv
}
// Checks that the given slot is either:
// 1) in the `ancestors` set
// 2) or is a root
fn is_ancestor_or_root(
&self,
slot: Slot,
ancestors: Option<&Ancestors>,
max_root: Option<Slot>,
) -> bool {
ancestors.map_or(false, |ancestors| ancestors.contains_key(&slot)) ||
// If the slot is a root, it must be less than the maximum root specified. This
// allows scans on non-rooted slots to specify and read data from
// ancestors > max_root, while not seeing rooted data update during the scan
(max_root.map_or(true, |max_root| slot <= max_root) && (self.is_root(slot)))
}
/// Get an account
/// The latest account that appears in `ancestors` or `roots` is returned.
pub(crate) fn get(
&self,
pubkey: &Pubkey,
ancestors: Option<&Ancestors>,
max_root: Option<Slot>,
) -> Option<(ReadAccountMapEntry<T>, usize)> {
self.get_account_read_entry(pubkey)
.and_then(|locked_entry| {
let found_index =
self.latest_slot(ancestors, &locked_entry.slot_list(), max_root)?;
Some((locked_entry, found_index))
})
}
// Get the maximum root <= `max_allowed_root` from the given `slice`
fn get_max_root(
roots: &HashSet<Slot>,
slice: SlotSlice<T>,
max_allowed_root: Option<Slot>,
) -> Slot {
let mut max_root = 0;
for (f, _) in slice.iter() {
if let Some(max_allowed_root) = max_allowed_root {
if *f > max_allowed_root {
continue;
}
}
if *f > max_root && roots.contains(f) {
max_root = *f;
}
}
max_root
}
// Updates the given pubkey at the given slot with the new account information.
// Returns true if the pubkey was newly inserted into the index, otherwise, if the
// pubkey updates an existing entry in the index, returns false.
pub fn upsert(
&self,
slot: Slot,
pubkey: &Pubkey,
account_info: T,
reclaims: &mut SlotList<T>,
) -> bool {
let (mut w_account_entry, is_newly_inserted) =
self.get_account_write_entry_else_create(pubkey);
w_account_entry.update(slot, account_info, reclaims);
is_newly_inserted
}
pub fn unref_from_storage(&self, pubkey: &Pubkey) {
if let Some(locked_entry) = self.get_account_read_entry(pubkey) {
locked_entry.ref_count().fetch_sub(1, Ordering::Relaxed);
}
}
pub fn ref_count_from_storage(&self, pubkey: &Pubkey) -> RefCount {
if let Some(locked_entry) = self.get_account_read_entry(pubkey) {
locked_entry.ref_count().load(Ordering::Relaxed)
} else {
0
}
}
fn purge_older_root_entries(
&self,
list: &mut SlotList<T>,
reclaims: &mut SlotList<T>,
max_clean_root: Option<Slot>,
) {
let roots_traker = &self.roots_tracker.read().unwrap();
let max_root = Self::get_max_root(&roots_traker.roots, &list, max_clean_root);
reclaims.extend(
list.iter()
.filter(|(slot, _)| Self::can_purge(max_root, *slot))
.cloned(),
);
list.retain(|(slot, _)| !Self::can_purge(max_root, *slot));
}
pub fn clean_rooted_entries(
&self,
pubkey: &Pubkey,
reclaims: &mut SlotList<T>,
max_clean_root: Option<Slot>,
) {
if let Some(mut locked_entry) = self.get_account_write_entry(pubkey) {
locked_entry.slot_list_mut(|slot_list| {
self.purge_older_root_entries(slot_list, reclaims, max_clean_root);
});
}
}
pub fn clean_unrooted_entries_by_slot(
&self,
purge_slot: Slot,
pubkey: &Pubkey,
reclaims: &mut SlotList<T>,
) {
if let Some(mut locked_entry) = self.get_account_write_entry(pubkey) {
locked_entry.slot_list_mut(|slot_list| {
slot_list.retain(|(slot, entry)| {
if *slot == purge_slot {
reclaims.push((*slot, entry.clone()));
}
*slot != purge_slot
});
});
}
}
pub fn can_purge(max_root: Slot, slot: Slot) -> bool {
slot < max_root
}
pub fn is_root(&self, slot: Slot) -> bool {
self.roots_tracker.read().unwrap().roots.contains(&slot)
}
pub fn add_root(&self, slot: Slot) {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.roots.insert(slot);
w_roots_tracker.uncleaned_roots.insert(slot);
w_roots_tracker.max_root = std::cmp::max(slot, w_roots_tracker.max_root);
}
fn max_root(&self) -> Slot {
self.roots_tracker.read().unwrap().max_root
}
/// Remove the slot when the storage for the slot is freed
/// Accounts no longer reference this slot.
pub fn clean_dead_slot(&self, slot: Slot) {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.roots.remove(&slot);
w_roots_tracker.uncleaned_roots.remove(&slot);
w_roots_tracker.previous_uncleaned_roots.remove(&slot);
}
pub fn reset_uncleaned_roots(&self, max_clean_root: Option<Slot>) -> HashSet<Slot> {
let mut cleaned_roots = HashSet::new();
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.retain(|root| {
let is_cleaned = max_clean_root
.map(|max_clean_root| *root <= max_clean_root)
.unwrap_or(true);
if is_cleaned {
cleaned_roots.insert(*root);
}
// Only keep the slots that have yet to be cleaned
!is_cleaned
});
std::mem::replace(&mut w_roots_tracker.previous_uncleaned_roots, cleaned_roots)
}
pub fn is_uncleaned_root(&self, slot: Slot) -> bool {
self.roots_tracker
.read()
.unwrap()
.uncleaned_roots
.contains(&slot)
}
pub fn all_roots(&self) -> Vec<Slot> {
self.roots_tracker
.read()
.unwrap()
.roots
.iter()
.cloned()
.collect()
}
#[cfg(test)]
pub fn clear_roots(&self) {
self.roots_tracker.write().unwrap().roots.clear()
}
#[cfg(test)]
pub fn uncleaned_roots_len(&self) -> usize {
self.roots_tracker.read().unwrap().uncleaned_roots.len()
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_sdk::signature::{Keypair, Signer};
#[test]
fn test_get_empty() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = HashMap::new();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
assert!(index.get(&key.pubkey(), None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(&ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_no_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
let ancestors = HashMap::new();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
assert!(index.get(&key.pubkey(), None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(&ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_wrong_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
let ancestors = vec![(1, 1)].into_iter().collect();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(&ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_with_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
let ancestors = vec![(0, 0)].into_iter().collect();
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts(&ancestors, |pubkey, _index| {
if pubkey == &key.pubkey() {
found_key = true
};
num += 1
});
assert_eq!(num, 1);
assert!(found_key);
}
fn setup_accounts_index_keys(num_pubkeys: usize) -> (AccountsIndex<bool>, Vec<Pubkey>) {
let index = AccountsIndex::<bool>::default();
let root_slot = 0;
let mut pubkeys: Vec<Pubkey> = std::iter::repeat_with(|| {
2020-10-19 12:23:14 -07:00
let new_pubkey = solana_sdk::pubkey::new_rand();
index.upsert(root_slot, &new_pubkey, true, &mut vec![]);
new_pubkey
})
.take(num_pubkeys.saturating_sub(1))
.collect();
if num_pubkeys != 0 {
pubkeys.push(Pubkey::default());
index.upsert(root_slot, &Pubkey::default(), true, &mut vec![]);
}
index.add_root(root_slot);
(index, pubkeys)
}
fn run_test_range(
index: &AccountsIndex<bool>,
pubkeys: &[Pubkey],
start_bound: Bound<usize>,
end_bound: Bound<usize>,
) {
// Exclusive `index_start`
let (pubkey_start, index_start) = match start_bound {
Unbounded => (Unbounded, 0),
Included(i) => (Included(pubkeys[i]), i),
Excluded(i) => (Excluded(pubkeys[i]), i + 1),
};
// Exclusive `index_end`
let (pubkey_end, index_end) = match end_bound {
Unbounded => (Unbounded, pubkeys.len()),
Included(i) => (Included(pubkeys[i]), i + 1),
Excluded(i) => (Excluded(pubkeys[i]), i),
};
let pubkey_range = (pubkey_start, pubkey_end);
let ancestors: Ancestors = HashMap::new();
let mut scanned_keys = HashSet::new();
index.range_scan_accounts(&ancestors, pubkey_range, |pubkey, _index| {
scanned_keys.insert(*pubkey);
});
let mut expected_len = 0;
for key in &pubkeys[index_start..index_end] {
expected_len += 1;
assert!(scanned_keys.contains(key));
}
assert_eq!(scanned_keys.len(), expected_len);
}
fn run_test_range_indexes(
index: &AccountsIndex<bool>,
pubkeys: &[Pubkey],
start: Option<usize>,
end: Option<usize>,
) {
let start_options = start
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
let end_options = end
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
for start in &start_options {
for end in &end_options {
run_test_range(index, pubkeys, *start, *end);
}
}
}
#[test]
fn test_range_scan_accounts() {
let (index, mut pubkeys) = setup_accounts_index_keys(3 * ITER_BATCH_SIZE);
pubkeys.sort();
run_test_range_indexes(&index, &pubkeys, None, None);
run_test_range_indexes(&index, &pubkeys, Some(ITER_BATCH_SIZE), None);
run_test_range_indexes(&index, &pubkeys, None, Some(2 * ITER_BATCH_SIZE as usize));
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE as usize),
Some(2 * ITER_BATCH_SIZE as usize),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE as usize),
Some(2 * ITER_BATCH_SIZE as usize - 1),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE - 1 as usize),
Some(2 * ITER_BATCH_SIZE as usize + 1),
);
}
fn run_test_scan_accounts(num_pubkeys: usize) {
let (index, _) = setup_accounts_index_keys(num_pubkeys);
let ancestors: Ancestors = HashMap::new();
let mut scanned_keys = HashSet::new();
index.unchecked_scan_accounts(&ancestors, |pubkey, _index| {
scanned_keys.insert(*pubkey);
});
assert_eq!(scanned_keys.len(), num_pubkeys);
}
#[test]
fn test_scan_accounts() {
run_test_scan_accounts(0);
run_test_scan_accounts(1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 - 1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 + 1);
}
#[test]
fn test_accounts_iter_finished() {
let (index, _) = setup_accounts_index_keys(0);
let mut iter = index.iter(None::<Range<Pubkey>>);
assert!(iter.next().is_none());
let mut gc = vec![];
2020-10-19 12:23:14 -07:00
index.upsert(0, &solana_sdk::pubkey::new_rand(), true, &mut gc);
assert!(iter.next().is_none());
}
#[test]
fn test_is_root() {
let index = AccountsIndex::<bool>::default();
assert!(!index.is_root(0));
index.add_root(0);
assert!(index.is_root(0));
}
#[test]
fn test_insert_with_root() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
index.add_root(0);
let (list, idx) = index.get(&key.pubkey(), None, None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
}
#[test]
fn test_clean_first() {
let index = AccountsIndex::<bool>::default();
index.add_root(0);
index.add_root(1);
index.clean_dead_slot(0);
assert!(index.is_root(1));
assert!(!index.is_root(0));
}
#[test]
fn test_clean_last() {
//this behavior might be undefined, clean up should only occur on older slots
let index = AccountsIndex::<bool>::default();
index.add_root(0);
index.add_root(1);
index.clean_dead_slot(1);
assert!(!index.is_root(1));
assert!(index.is_root(0));
}
#[test]
fn test_clean_and_unclean_slot() {
let index = AccountsIndex::<bool>::default();
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
index.add_root(0);
index.add_root(1);
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
0,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.reset_uncleaned_roots(None);
assert_eq!(2, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.add_root(2);
index.add_root(3);
assert_eq!(4, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(1);
assert_eq!(3, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(2);
assert_eq!(2, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(1, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
}
#[test]
fn test_update_last_wins() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
drop(list);
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), false, &mut gc);
assert_eq!(gc, vec![(0, true)]);
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, false));
}
#[test]
fn test_update_new_slot() {
solana_logger::setup();
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
index.upsert(1, &key.pubkey(), false, &mut gc);
assert!(gc.is_empty());
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let ancestors = vec![(1, 0)].into_iter().collect();
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (1, false));
}
#[test]
fn test_update_gc_purged_slot() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(0, &key.pubkey(), true, &mut gc);
assert!(gc.is_empty());
index.upsert(1, &key.pubkey(), false, &mut gc);
index.upsert(2, &key.pubkey(), true, &mut gc);
index.upsert(3, &key.pubkey(), true, &mut gc);
index.add_root(0);
index.add_root(1);
index.add_root(3);
index.upsert(4, &key.pubkey(), true, &mut gc);
// Updating index should not purge older roots, only purges
// previous updates within the same slot
assert_eq!(gc, vec![]);
let (list, idx) = index.get(&key.pubkey(), None, None).unwrap();
assert_eq!(list.slot_list()[idx], (3, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts(&Ancestors::new(), |pubkey, _index| {
if pubkey == &key.pubkey() {
found_key = true;
assert_eq!(_index, (&true, 3));
};
num += 1
});
assert_eq!(num, 1);
assert!(found_key);
}
#[test]
fn test_purge() {
let key = Keypair::new();
let index = AccountsIndex::<u64>::default();
let mut gc = Vec::new();
assert!(index.upsert(1, &key.pubkey(), 12, &mut gc));
assert!(!index.upsert(1, &key.pubkey(), 10, &mut gc));
let purges = index.purge(&key.pubkey());
assert_eq!(purges, (vec![], false));
index.add_root(1);
let purges = index.purge(&key.pubkey());
assert_eq!(purges, (vec![(1, 10)], true));
assert!(!index.upsert(1, &key.pubkey(), 9, &mut gc));
}
#[test]
fn test_latest_slot() {
let slot_slice = vec![(0, true), (5, true), (3, true), (7, true)];
let index = AccountsIndex::<bool>::default();
// No ancestors, no root, should return None
assert!(index.latest_slot(None, &slot_slice, None).is_none());
// Given a root, should return the root
index.add_root(5);
assert_eq!(index.latest_slot(None, &slot_slice, None).unwrap(), 1);
// Given a max_root == root, should still return the root
assert_eq!(index.latest_slot(None, &slot_slice, Some(5)).unwrap(), 1);
// Given a max_root < root, should filter out the root
assert!(index.latest_slot(None, &slot_slice, Some(4)).is_none());
// Given a max_root, should filter out roots < max_root, but specified
// ancestors should not be affected
let ancestors: HashMap<Slot, usize> = vec![(3, 1), (7, 1)].into_iter().collect();
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(4))
.unwrap(),
3
);
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(7))
.unwrap(),
3
);
// Given no max_root, should just return the greatest ancestor or root
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, None)
.unwrap(),
3
);
}
#[test]
fn test_purge_older_root_entries() {
// No roots, should be no reclaims
let index = AccountsIndex::<bool>::default();
let mut slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
let mut reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Add a later root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(1);
// Note 2 is not a root
index.add_root(5);
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Add a later root that is not in the list, should not affect the outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(6);
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root >= than any root in the slot list, should not affect
// outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(6));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(5));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root 2. This means the latest root < 2 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(2));
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root 1. This means the latest root < 3 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(1));
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root that doesn't exist in the list but is greater than
// some of the roots in the list, shouldn't return those smaller roots
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(7));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
}
}