solana/runtime/src/bank.rs

1053 lines
37 KiB
Rust
Raw Normal View History

2018-11-25 21:56:48 -08:00
//! The `bank` module tracks client accounts and the progress of on-chain
//! programs. It offers a high-level API that signs transactions
2018-06-06 08:49:22 -07:00
//! on behalf of the caller, and a low-level API for when they have
2018-03-29 11:20:54 -07:00
//! already been signed and verified.
2018-02-23 13:08:19 -08:00
use crate::accounts::{Accounts, ErrorCounters, InstructionAccounts, InstructionLoaders};
use crate::last_id_queue::LastIdQueue;
use crate::runtime::{self, RuntimeError};
use crate::status_cache::StatusCache;
use bincode::{deserialize, serialize};
use log::{debug, info, Level};
use solana_metrics::counter::Counter;
use solana_sdk::account::Account;
2018-12-03 13:32:31 -08:00
use solana_sdk::bpf_loader;
2018-12-04 14:38:19 -08:00
use solana_sdk::budget_program;
use solana_sdk::genesis_block::GenesisBlock;
use solana_sdk::hash::{extend_and_hash, Hash};
use solana_sdk::native_loader;
2018-12-03 12:26:23 -08:00
use solana_sdk::native_program::ProgramError;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::signature::{Keypair, Signature};
2018-12-04 08:20:41 -08:00
use solana_sdk::storage_program;
2018-12-03 13:32:31 -08:00
use solana_sdk::system_program;
2018-12-04 20:19:48 -08:00
use solana_sdk::system_transaction::SystemTransaction;
use solana_sdk::timing::{duration_as_us, MAX_ENTRY_IDS, NUM_TICKS_PER_SECOND};
2018-12-03 22:30:52 -08:00
use solana_sdk::token_program;
2018-11-29 16:18:47 -08:00
use solana_sdk::transaction::Transaction;
use solana_sdk::vote_program::{self, VoteState};
use std::result;
use std::sync::{Arc, RwLock};
2018-06-07 19:35:38 -07:00
use std::time::Instant;
2018-06-06 08:49:22 -07:00
/// Reasons a transaction might be rejected.
#[derive(Debug, PartialEq, Eq, Clone)]
2018-05-14 14:33:11 -07:00
pub enum BankError {
/// This Pubkey is being processed in another transaction
AccountInUse,
/// Pubkey appears twice in the same transaction, typically in a pay-to-self
/// transaction.
AccountLoadedTwice,
/// Attempt to debit from `Pubkey`, but no found no record of a prior credit.
AccountNotFound,
2018-06-06 08:49:22 -07:00
/// The from `Pubkey` does not have sufficient balance to pay the fee to schedule the transaction
InsufficientFundsForFee,
2018-06-06 08:49:22 -07:00
/// The bank has seen `Signature` before. This can occur under normal operation
/// when a UDP packet is duplicated, as a user error from a client not updating
/// its `last_id`, or as a double-spend attack.
DuplicateSignature,
2018-06-06 08:49:22 -07:00
/// The bank has not seen the given `last_id` or the transaction is too old and
/// the `last_id` has been discarded.
LastIdNotFound,
2018-06-06 08:49:22 -07:00
/// Proof of History verification failed.
LedgerVerificationFailed,
2018-11-11 19:50:03 -08:00
2018-11-23 14:53:39 -08:00
/// The program returned an error
ProgramError(u8, ProgramError),
/// Recoding into PoH failed
RecordFailure,
/// Loader call chain too deep
CallChainTooDeep,
/// Transaction has a fee but has no signature present
MissingSignatureForFee,
}
2018-05-14 14:33:11 -07:00
pub type Result<T> = result::Result<T, BankError>;
type BankStatusCache = StatusCache<BankError>;
2018-11-25 21:56:48 -08:00
/// Manager for the state of all accounts and programs after processing its entries.
2019-02-19 15:35:02 -08:00
#[derive(Default)]
2018-05-14 14:33:11 -07:00
pub struct Bank {
accounts: Accounts,
/// A cache of signature statuses
status_cache: RwLock<BankStatusCache>,
/// FIFO queue of `last_id` items
last_id_queue: RwLock<LastIdQueue>,
2018-06-06 08:49:22 -07:00
2019-02-19 15:35:02 -08:00
/// Previous checkpoint of this bank
parent: Option<Arc<Bank>>,
2019-02-19 15:35:02 -08:00
/// Hash of the previous checkpoint's state
parent_hash: Hash,
2018-02-23 13:08:19 -08:00
}
impl Bank {
pub fn new(genesis_block: &GenesisBlock) -> Self {
let mut bank = Self::default();
bank.process_genesis_block(genesis_block);
bank.parent_hash = bank.hash_internal_state();
bank.add_builtin_programs();
bank
}
2019-02-19 15:35:02 -08:00
/// Create a new bank that points to an immutable checkpoint of another bank.
pub fn new_from_parent(parent: &Arc<Bank>) -> Self {
let mut bank = Self::default();
bank.last_id_queue = RwLock::new(parent.last_id_queue.read().unwrap().clone());
bank.parent_hash = parent.hash_internal_state();
bank.parent = Some(parent.clone());
bank
}
/// Return the more recent checkpoint of this bank instance.
pub fn parent(&self) -> Option<Arc<Bank>> {
self.parent.clone()
}
fn process_genesis_block(&self, genesis_block: &GenesisBlock) {
2019-01-24 12:04:04 -08:00
assert!(genesis_block.mint_id != Pubkey::default());
assert!(genesis_block.bootstrap_leader_id != Pubkey::default());
assert!(genesis_block.bootstrap_leader_vote_account_id != Pubkey::default());
2019-01-24 12:04:04 -08:00
assert!(genesis_block.tokens >= genesis_block.bootstrap_leader_tokens);
assert!(genesis_block.bootstrap_leader_tokens >= 2);
2019-01-24 12:04:04 -08:00
let mut mint_account = Account::default();
mint_account.tokens = genesis_block.tokens - genesis_block.bootstrap_leader_tokens;
self.accounts
.store_slow(true, &genesis_block.mint_id, &mint_account);
2019-01-24 12:04:04 -08:00
let mut bootstrap_leader_account = Account::default();
bootstrap_leader_account.tokens = genesis_block.bootstrap_leader_tokens - 1;
self.accounts.store_slow(
true,
&genesis_block.bootstrap_leader_id,
&bootstrap_leader_account,
);
// Construct a vote account for the bootstrap_leader such that the leader_scheduler
// will be forced to select it as the leader for height 0
let mut bootstrap_leader_vote_account = Account {
tokens: 1,
userdata: vec![0; vote_program::get_max_size() as usize],
owner: vote_program::id(),
executable: false,
};
2019-01-24 12:04:04 -08:00
let mut vote_state = VoteState::new(
genesis_block.bootstrap_leader_id,
genesis_block.bootstrap_leader_id,
);
vote_state.votes.push_back(vote_program::Vote::new(0));
vote_state
.serialize(&mut bootstrap_leader_vote_account.userdata)
.unwrap();
self.accounts.store_slow(
true,
&genesis_block.bootstrap_leader_vote_account_id,
&bootstrap_leader_vote_account,
);
self.last_id_queue
.write()
.unwrap()
.genesis_last_id(&genesis_block.last_id());
2018-04-02 12:51:44 -07:00
}
pub fn add_native_program(&self, name: &str, program_id: &Pubkey) {
let account = native_loader::create_program_account(name);
self.accounts.store_slow(true, program_id, &account);
}
2018-12-04 07:45:32 -08:00
fn add_builtin_programs(&self) {
self.add_native_program("solana_system_program", &system_program::id());
self.add_native_program("solana_vote_program", &vote_program::id());
self.add_native_program("solana_storage_program", &storage_program::id());
self.add_native_program("solana_bpf_loader", &bpf_loader::id());
self.add_native_program("solana_budget_program", &budget_program::id());
self.add_native_program("solana_erc20", &token_program::id());
2019-02-13 19:43:56 -08:00
let storage_system_account = Account::new(1, 16 * 1024, storage_program::system_id());
2019-01-17 14:41:48 -08:00
self.accounts
.store_slow(true, &storage_program::system_id(), &storage_system_account);
2018-06-07 19:35:38 -07:00
}
2018-06-06 08:49:22 -07:00
/// Return the last entry ID registered.
2018-05-03 12:24:35 -07:00
pub fn last_id(&self) -> Hash {
self.last_id_queue
.read()
.unwrap()
.last_id
.expect("no last_id has been set")
2018-05-03 12:24:35 -07:00
}
2019-01-17 14:41:48 -08:00
pub fn get_storage_entry_height(&self) -> u64 {
match self.get_account(&storage_program::system_id()) {
Some(storage_system_account) => {
let state = deserialize(&storage_system_account.userdata);
if let Ok(state) = state {
let state: storage_program::StorageProgramState = state;
return state.entry_height;
}
}
None => {
info!("error in reading entry_height");
}
}
0
}
pub fn get_storage_last_id(&self) -> Hash {
if let Some(storage_system_account) = self.get_account(&storage_program::system_id()) {
let state = deserialize(&storage_system_account.userdata);
if let Ok(state) = state {
let state: storage_program::StorageProgramState = state;
return state.id;
}
}
Hash::default()
}
/// Forget all signatures. Useful for benchmarking.
pub fn clear_signatures(&self) {
self.status_cache.write().unwrap().clear();
}
fn update_transaction_statuses(&self, txs: &[Transaction], res: &[Result<()>]) {
let mut status_cache = self.status_cache.write().unwrap();
for (i, tx) in txs.iter().enumerate() {
match &res[i] {
Ok(_) => status_cache.add(&tx.signatures[0]),
Err(BankError::LastIdNotFound) => (),
Err(BankError::DuplicateSignature) => (),
Err(BankError::AccountNotFound) => (),
Err(e) => {
status_cache.add(&tx.signatures[0]);
status_cache.save_failure_status(&tx.signatures[0], e.clone());
}
}
}
}
/// Looks through a list of tick heights and stakes, and finds the latest
/// tick that has achieved confirmation
pub fn get_confirmation_timestamp(
&self,
ticks_and_stakes: &mut [(u64, u64)],
supermajority_stake: u64,
) -> Option<u64> {
let last_ids = self.last_id_queue.read().unwrap();
last_ids.get_confirmation_timestamp(ticks_and_stakes, supermajority_stake)
}
2018-05-14 14:33:11 -07:00
/// Tell the bank which Entry IDs exist on the ledger. This function
/// assumes subsequent calls correspond to later entries, and will boot
/// the oldest ones once its internal cache is full. Once boot, the
2018-05-14 14:33:11 -07:00
/// bank will reject transactions using that `last_id`.
pub fn register_tick(&self, last_id: &Hash) {
let current_tick_height = {
//atomic register and read the tick
let mut last_id_queue = self.last_id_queue.write().unwrap();
inc_new_counter_info!("bank-register_tick-registered", 1);
last_id_queue.register_tick(last_id);
last_id_queue.tick_height
};
if current_tick_height % NUM_TICKS_PER_SECOND as u64 == 0 {
self.status_cache.write().unwrap().new_cache(last_id);
}
}
/// Process a Transaction. This is used for unit tests and simply calls the vector Bank::process_transactions method.
pub fn process_transaction(&self, tx: &Transaction) -> Result<()> {
let txs = vec![tx.clone()];
match self.process_transactions(&txs)[0] {
Err(ref e) => {
info!("process_transaction error: {:?}", e);
Err((*e).clone())
}
Ok(_) => Ok(()),
}
}
pub fn lock_accounts(&self, txs: &[Transaction]) -> Vec<Result<()>> {
self.accounts.lock_accounts(txs)
}
2019-01-04 16:39:04 -08:00
pub fn unlock_accounts(&self, txs: &[Transaction], results: &[Result<()>]) {
self.accounts.unlock_accounts(txs, results)
2018-02-23 13:08:19 -08:00
}
fn load_accounts(
&self,
txs: &[Transaction],
results: Vec<Result<()>>,
error_counters: &mut ErrorCounters,
) -> Vec<Result<(InstructionAccounts, InstructionLoaders)>> {
let parents = self.parents();
let mut accounts = vec![&self.accounts];
accounts.extend(parents.iter().map(|b| &b.accounts));
Accounts::load_accounts(&accounts, txs, results, error_counters)
}
fn check_age(
&self,
txs: &[Transaction],
lock_results: Vec<Result<()>>,
max_age: usize,
error_counters: &mut ErrorCounters,
) -> Vec<Result<()>> {
let last_ids = self.last_id_queue.read().unwrap();
txs.iter()
.zip(lock_results.into_iter())
.map(|(tx, lock_res)| {
if lock_res.is_ok() && !last_ids.check_entry_id_age(tx.last_id, max_age) {
error_counters.reserve_last_id += 1;
Err(BankError::LastIdNotFound)
} else {
lock_res
}
})
.collect()
}
fn check_signatures(
&self,
txs: &[Transaction],
lock_results: Vec<Result<()>>,
error_counters: &mut ErrorCounters,
) -> Vec<Result<()>> {
let parents = self.parents();
let mut caches = vec![self.status_cache.read().unwrap()];
caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap()));
txs.iter()
.zip(lock_results.into_iter())
.map(|(tx, lock_res)| {
if lock_res.is_ok() && StatusCache::has_signature_all(&caches, &tx.signatures[0]) {
error_counters.duplicate_signature += 1;
Err(BankError::DuplicateSignature)
} else {
lock_res
}
})
.collect()
}
#[allow(clippy::type_complexity)]
pub fn load_and_execute_transactions(
&self,
txs: &[Transaction],
lock_results: Vec<Result<()>>,
max_age: usize,
) -> (
Vec<Result<(InstructionAccounts, InstructionLoaders)>>,
Vec<Result<()>>,
) {
2018-09-18 11:31:00 -07:00
debug!("processing transactions: {}", txs.len());
let mut error_counters = ErrorCounters::default();
2018-06-07 19:35:38 -07:00
let now = Instant::now();
let age_results = self.check_age(txs, lock_results, max_age, &mut error_counters);
let sig_results = self.check_signatures(txs, age_results, &mut error_counters);
let mut loaded_accounts = self.load_accounts(txs, sig_results, &mut error_counters);
2018-11-23 18:50:24 -08:00
let tick_height = self.tick_height();
let load_elapsed = now.elapsed();
2018-06-22 10:44:31 -07:00
let now = Instant::now();
let executed: Vec<Result<()>> = loaded_accounts
.iter_mut()
.zip(txs.iter())
.map(|(accs, tx)| match accs {
Err(e) => Err(e.clone()),
Ok((ref mut accounts, ref mut loaders)) => {
runtime::execute_transaction(tx, loaders, accounts, tick_height).map_err(
|RuntimeError::ProgramError(index, err)| {
BankError::ProgramError(index, err)
},
)
}
})
.collect();
2019-01-04 16:04:31 -08:00
let execution_elapsed = now.elapsed();
2018-06-22 10:45:22 -07:00
debug!(
"load: {}us execute: {}us txs_len={}",
duration_as_us(&load_elapsed),
duration_as_us(&execution_elapsed),
txs.len(),
2018-06-22 10:45:22 -07:00
);
2018-06-22 12:11:27 -07:00
let mut tx_count = 0;
let mut err_count = 0;
for (r, tx) in executed.iter().zip(txs.iter()) {
2018-06-07 19:35:38 -07:00
if r.is_ok() {
2018-06-22 12:11:27 -07:00
tx_count += 1;
2018-06-22 10:44:31 -07:00
} else {
if err_count == 0 {
info!("tx error: {:?} {:?}", r, tx);
}
err_count += 1;
2018-06-07 19:35:38 -07:00
}
}
if err_count > 0 {
info!("{} errors of {} txs", err_count, err_count + tx_count);
inc_new_counter_info!(
"bank-process_transactions-account_not_found",
error_counters.account_not_found
);
inc_new_counter_info!("bank-process_transactions-error_count", err_count);
}
self.accounts.increment_transaction_count(tx_count);
inc_new_counter_info!("bank-process_transactions-txs", tx_count);
if 0 != error_counters.last_id_not_found {
inc_new_counter_info!(
"bank-process_transactions-error-last_id_not_found",
error_counters.last_id_not_found
);
}
if 0 != error_counters.reserve_last_id {
inc_new_counter_info!(
"bank-process_transactions-error-reserve_last_id",
error_counters.reserve_last_id
);
}
if 0 != error_counters.duplicate_signature {
inc_new_counter_info!(
"bank-process_transactions-error-duplicate_signature",
error_counters.duplicate_signature
);
}
if 0 != error_counters.insufficient_funds {
inc_new_counter_info!(
"bank-process_transactions-error-insufficient_funds",
error_counters.insufficient_funds
);
}
if 0 != error_counters.account_loaded_twice {
inc_new_counter_info!(
"bank-process_transactions-account_loaded_twice",
error_counters.account_loaded_twice
);
}
(loaded_accounts, executed)
}
pub fn commit_transactions(
&self,
txs: &[Transaction],
loaded_accounts: &[Result<(InstructionAccounts, InstructionLoaders)>],
executed: &[Result<()>],
2019-02-19 17:11:43 -08:00
) {
let now = Instant::now();
2019-02-19 17:11:43 -08:00
self.accounts
.store_accounts(true, txs, executed, loaded_accounts);
// once committed there is no way to unroll
let write_elapsed = now.elapsed();
debug!(
"store: {}us txs_len={}",
duration_as_us(&write_elapsed),
txs.len(),
);
self.update_transaction_statuses(txs, &executed);
}
/// Process a batch of transactions.
#[must_use]
pub fn load_execute_and_commit_transactions(
&self,
txs: &[Transaction],
lock_results: Vec<Result<()>>,
max_age: usize,
2019-02-19 17:11:43 -08:00
) -> Vec<Result<()>> {
let (loaded_accounts, executed) =
self.load_and_execute_transactions(txs, lock_results, max_age);
2019-02-19 17:11:43 -08:00
self.commit_transactions(txs, &loaded_accounts, &executed);
executed
}
#[must_use]
pub fn process_transactions(&self, txs: &[Transaction]) -> Vec<Result<()>> {
let lock_results = self.lock_accounts(txs);
2019-02-19 17:11:43 -08:00
let results = self.load_execute_and_commit_transactions(txs, lock_results, MAX_ENTRY_IDS);
self.unlock_accounts(txs, &results);
results
}
2018-03-29 11:20:54 -07:00
/// Create, sign, and process a Transaction from `keypair` to `to` of
/// `n` tokens where `last_id` is the last Entry ID observed by the client.
2018-02-23 13:08:19 -08:00
pub fn transfer(
&self,
n: u64,
2018-08-09 07:56:04 -07:00
keypair: &Keypair,
to: Pubkey,
2018-03-20 22:15:44 -07:00
last_id: Hash,
) -> Result<Signature> {
let tx = SystemTransaction::new_account(keypair, to, n, last_id, 0);
let signature = tx.signatures[0];
self.process_transaction(&tx).map(|_| signature)
2018-02-23 13:08:19 -08:00
}
pub fn read_balance(account: &Account) -> u64 {
2018-12-04 14:38:19 -08:00
// TODO: Re-instate budget_program special case?
/*
2018-12-03 13:32:31 -08:00
if budget_program::check_id(&account.owner) {
2018-12-04 14:38:19 -08:00
return budget_program::get_balance(account);
}
2018-12-04 14:38:19 -08:00
*/
account.tokens
}
2018-11-25 21:56:48 -08:00
/// Each program would need to be able to introspect its own state
/// this is hard-coded to the Budget language
pub fn get_balance(&self, pubkey: &Pubkey) -> u64 {
self.get_account(pubkey)
.map(|x| Self::read_balance(&x))
.unwrap_or(0)
}
/// Compute all the parents of the bank in order
fn parents(&self) -> Vec<Arc<Bank>> {
let mut parents = vec![];
let mut bank = self.parent();
while let Some(parent) = bank {
parents.push(parent.clone());
bank = parent.parent();
}
parents
}
2019-02-19 17:11:43 -08:00
pub fn deposit(&self, pubkey: &Pubkey, fee: u64) {
if let Some(mut account) = self.get_account(pubkey) {
account.tokens += fee;
self.accounts.store_slow(false, pubkey, &account);
}
}
pub fn get_account(&self, pubkey: &Pubkey) -> Option<Account> {
let parents = self.parents();
let mut accounts = vec![&self.accounts];
accounts.extend(parents.iter().map(|b| &b.accounts));
Accounts::load_slow(&accounts, pubkey)
2018-02-23 13:08:19 -08:00
}
2018-05-14 05:49:48 -07:00
2019-02-18 14:21:23 -08:00
pub fn get_account_modified_since_parent(&self, pubkey: &Pubkey) -> Option<Account> {
Accounts::load_slow(&[&self.accounts], pubkey)
}
pub fn transaction_count(&self) -> u64 {
self.accounts.transaction_count()
2018-05-14 05:49:48 -07:00
}
pub fn get_signature_status(&self, signature: &Signature) -> Option<Result<()>> {
let parents = self.parents();
let mut caches = vec![self.status_cache.read().unwrap()];
caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap()));
StatusCache::get_signature_status_all(&caches, signature)
}
pub fn has_signature(&self, signature: &Signature) -> bool {
let parents = self.parents();
let mut caches = vec![self.status_cache.read().unwrap()];
caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap()));
StatusCache::has_signature_all(&caches, signature)
}
/// Hash the `accounts` HashMap. This represents a validator's interpretation
/// of the delta of the ledger since the last vote and up to now
pub fn hash_internal_state(&self) -> Hash {
// If there are no accounts, return the same hash as we did before
// checkpointing.
let accounts = &self.accounts.accounts_db.read().unwrap().accounts;
if accounts.is_empty() {
return self.parent_hash;
}
let accounts_delta_hash = self.accounts.hash_internal_state();
extend_and_hash(&self.parent_hash, &serialize(&accounts_delta_hash).unwrap())
}
pub fn vote_states<F>(&self, cond: F) -> Vec<VoteState>
where
F: Fn(&VoteState) -> bool,
{
self.accounts
.accounts_db
.read()
.unwrap()
.accounts
.values()
.filter_map(|account| {
if vote_program::check_id(&account.owner) {
if let Ok(vote_state) = VoteState::deserialize(&account.userdata) {
if cond(&vote_state) {
return Some(vote_state);
}
}
}
None
})
.collect()
}
pub fn tick_height(&self) -> u64 {
self.last_id_queue.read().unwrap().tick_height
}
#[cfg(test)]
2019-01-31 19:47:21 -08:00
pub fn last_ids(&self) -> &RwLock<LastIdQueue> {
&self.last_id_queue
}
2018-02-23 13:08:19 -08:00
}
#[cfg(test)]
mod tests {
use super::*;
use hashbrown::HashSet;
use solana_sdk::genesis_block::BOOTSTRAP_LEADER_TOKENS;
use solana_sdk::native_program::ProgramError;
2019-02-19 15:54:38 -08:00
use solana_sdk::signature::{Keypair, KeypairUtil};
2019-01-24 12:04:04 -08:00
use solana_sdk::system_instruction::SystemInstruction;
2018-12-04 20:19:48 -08:00
use solana_sdk::system_transaction::SystemTransaction;
2018-11-29 16:18:47 -08:00
use solana_sdk::transaction::Instruction;
2018-02-23 13:08:19 -08:00
#[test]
fn test_bank_new() {
2019-01-24 12:04:04 -08:00
let (genesis_block, _) = GenesisBlock::new(10_000);
let bank = Bank::new(&genesis_block);
assert_eq!(bank.get_balance(&genesis_block.mint_id), 10_000);
}
#[test]
fn test_bank_new_with_leader() {
let dummy_leader_id = Keypair::new().pubkey();
let dummy_leader_tokens = BOOTSTRAP_LEADER_TOKENS;
2019-01-24 12:04:04 -08:00
let (genesis_block, _) =
GenesisBlock::new_with_leader(10_000, dummy_leader_id, dummy_leader_tokens);
assert_eq!(genesis_block.bootstrap_leader_tokens, dummy_leader_tokens);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
assert_eq!(
bank.get_balance(&genesis_block.mint_id),
10_000 - dummy_leader_tokens
);
assert_eq!(
bank.get_balance(&dummy_leader_id),
dummy_leader_tokens - 1 /* 1 token goes to the vote account associated with dummy_leader_tokens */
);
}
2018-02-23 13:08:19 -08:00
#[test]
2018-06-06 08:49:22 -07:00
fn test_two_payments_to_one_party() {
2019-01-24 12:04:04 -08:00
let (genesis_block, mint_keypair) = GenesisBlock::new(10_000);
2018-08-09 07:56:04 -07:00
let pubkey = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
assert_eq!(bank.last_id(), genesis_block.last_id());
2018-05-03 12:24:35 -07:00
2019-01-24 12:04:04 -08:00
bank.transfer(1_000, &mint_keypair, pubkey, genesis_block.last_id())
2018-03-20 22:15:44 -07:00
.unwrap();
assert_eq!(bank.get_balance(&pubkey), 1_000);
2018-02-23 13:08:19 -08:00
2019-01-24 12:04:04 -08:00
bank.transfer(500, &mint_keypair, pubkey, genesis_block.last_id())
2018-03-20 22:15:44 -07:00
.unwrap();
assert_eq!(bank.get_balance(&pubkey), 1_500);
2018-05-14 14:33:11 -07:00
assert_eq!(bank.transaction_count(), 2);
2018-02-23 13:08:19 -08:00
}
2018-02-27 10:28:10 -08:00
#[test]
fn test_one_source_two_tx_one_batch() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1);
let key1 = Keypair::new().pubkey();
let key2 = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
assert_eq!(bank.last_id(), genesis_block.last_id());
let t1 = SystemTransaction::new_move(&mint_keypair, key1, 1, genesis_block.last_id(), 0);
let t2 = SystemTransaction::new_move(&mint_keypair, key2, 1, genesis_block.last_id(), 0);
let res = bank.process_transactions(&vec![t1.clone(), t2.clone()]);
assert_eq!(res.len(), 2);
assert_eq!(res[0], Ok(()));
assert_eq!(res[1], Err(BankError::AccountInUse));
2019-01-24 12:04:04 -08:00
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0);
assert_eq!(bank.get_balance(&key1), 1);
assert_eq!(bank.get_balance(&key2), 0);
assert_eq!(bank.get_signature_status(&t1.signatures[0]), Some(Ok(())));
// TODO: Transactions that fail to pay a fee could be dropped silently
assert_eq!(
bank.get_signature_status(&t2.signatures[0]),
Some(Err(BankError::AccountInUse))
);
}
#[test]
fn test_one_tx_two_out_atomic_fail() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1);
let key1 = Keypair::new().pubkey();
let key2 = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
2018-11-16 08:04:46 -08:00
let spend = SystemInstruction::Move { tokens: 1 };
let instructions = vec![
Instruction {
2018-10-04 13:36:15 -07:00
program_ids_index: 0,
userdata: serialize(&spend).unwrap(),
accounts: vec![0, 1],
},
Instruction {
2018-10-04 13:36:15 -07:00
program_ids_index: 0,
userdata: serialize(&spend).unwrap(),
accounts: vec![0, 2],
},
];
let t1 = Transaction::new_with_instructions(
2019-01-24 12:04:04 -08:00
&[&mint_keypair],
&[key1, key2],
2019-01-24 12:04:04 -08:00
genesis_block.last_id(),
0,
vec![system_program::id()],
instructions,
);
let res = bank.process_transactions(&vec![t1.clone()]);
assert_eq!(res.len(), 1);
2018-11-23 14:53:39 -08:00
assert_eq!(
res[0],
Err(BankError::ProgramError(
1,
ProgramError::ResultWithNegativeTokens
))
);
2019-01-24 12:04:04 -08:00
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 1);
assert_eq!(bank.get_balance(&key1), 0);
assert_eq!(bank.get_balance(&key2), 0);
assert_eq!(
bank.get_signature_status(&t1.signatures[0]),
Some(Err(BankError::ProgramError(
2018-11-23 14:53:39 -08:00
1,
ProgramError::ResultWithNegativeTokens
)))
);
}
#[test]
fn test_one_tx_two_out_atomic_pass() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
let key1 = Keypair::new().pubkey();
let key2 = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
let t1 = SystemTransaction::new_move_many(
2019-01-24 12:04:04 -08:00
&mint_keypair,
&[(key1, 1), (key2, 1)],
2019-01-24 12:04:04 -08:00
genesis_block.last_id(),
0,
);
let res = bank.process_transactions(&vec![t1.clone()]);
assert_eq!(res.len(), 1);
assert_eq!(res[0], Ok(()));
2019-01-24 12:04:04 -08:00
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0);
assert_eq!(bank.get_balance(&key1), 1);
assert_eq!(bank.get_balance(&key2), 1);
assert_eq!(bank.get_signature_status(&t1.signatures[0]), Some(Ok(())));
}
// TODO: This test demonstrates that fees are not paid when a program fails.
// See github issue 1157 (https://github.com/solana-labs/solana/issues/1157)
#[test]
fn test_detect_failed_duplicate_transactions_issue_1157() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
let dest = Keypair::new();
2018-11-25 21:56:48 -08:00
// source with 0 program context
let tx = SystemTransaction::new_account(
2019-01-24 12:04:04 -08:00
&mint_keypair,
dest.pubkey(),
2,
genesis_block.last_id(),
1,
);
let signature = tx.signatures[0];
assert!(!bank.has_signature(&signature));
let res = bank.process_transaction(&tx);
// Result failed, but signature is registered
assert!(res.is_err());
assert!(bank.has_signature(&signature));
assert_eq!(
bank.get_signature_status(&signature),
Some(Err(BankError::ProgramError(
2018-11-23 14:53:39 -08:00
0,
ProgramError::ResultWithNegativeTokens
)))
);
// The tokens didn't move, but the from address paid the transaction fee.
assert_eq!(bank.get_balance(&dest.pubkey()), 0);
// BUG: This should be the original balance minus the transaction fee.
2019-01-24 12:04:04 -08:00
//assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0);
}
#[test]
fn test_account_not_found() {
let (genesis_block, mint_keypair) = GenesisBlock::new(0);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
2018-08-09 07:56:04 -07:00
let keypair = Keypair::new();
assert_eq!(
2019-01-24 12:04:04 -08:00
bank.transfer(1, &keypair, mint_keypair.pubkey(), genesis_block.last_id()),
Err(BankError::AccountNotFound)
);
2018-05-14 14:33:11 -07:00
assert_eq!(bank.transaction_count(), 0);
}
2018-02-27 10:28:10 -08:00
#[test]
2018-06-06 08:49:22 -07:00
fn test_insufficient_funds() {
let (genesis_block, mint_keypair) = GenesisBlock::new(11_000);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
2018-08-09 07:56:04 -07:00
let pubkey = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
bank.transfer(1_000, &mint_keypair, pubkey, genesis_block.last_id())
2018-03-20 22:15:44 -07:00
.unwrap();
2018-05-14 14:33:11 -07:00
assert_eq!(bank.transaction_count(), 1);
assert_eq!(bank.get_balance(&pubkey), 1_000);
assert_eq!(
2019-01-24 12:04:04 -08:00
bank.transfer(10_001, &mint_keypair, pubkey, genesis_block.last_id()),
2018-11-23 14:53:39 -08:00
Err(BankError::ProgramError(
0,
ProgramError::ResultWithNegativeTokens
))
);
2018-05-14 14:33:11 -07:00
assert_eq!(bank.transaction_count(), 1);
2019-01-24 12:04:04 -08:00
let mint_pubkey = mint_keypair.pubkey();
assert_eq!(bank.get_balance(&mint_pubkey), 10_000);
assert_eq!(bank.get_balance(&pubkey), 1_000);
2018-02-27 10:28:10 -08:00
}
#[test]
fn test_transfer_to_newb() {
2019-01-24 12:04:04 -08:00
let (genesis_block, mint_keypair) = GenesisBlock::new(10_000);
let bank = Bank::new(&genesis_block);
2018-08-09 07:56:04 -07:00
let pubkey = Keypair::new().pubkey();
2019-01-24 12:04:04 -08:00
bank.transfer(500, &mint_keypair, pubkey, genesis_block.last_id())
2018-03-20 22:15:44 -07:00
.unwrap();
assert_eq!(bank.get_balance(&pubkey), 500);
2018-02-27 10:28:10 -08:00
}
#[test]
fn test_debits_before_credits() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
2018-08-09 07:56:04 -07:00
let keypair = Keypair::new();
let tx0 = SystemTransaction::new_account(
&mint_keypair,
keypair.pubkey(),
2,
genesis_block.last_id(),
0,
);
let tx1 = SystemTransaction::new_account(
&keypair,
mint_keypair.pubkey(),
1,
genesis_block.last_id(),
0,
);
2018-05-29 09:12:27 -07:00
let txs = vec![tx0, tx1];
let results = bank.process_transactions(&txs);
2018-05-14 05:49:48 -07:00
assert!(results[1].is_err());
// Assert bad transactions aren't counted.
2018-05-14 14:33:11 -07:00
assert_eq!(bank.transaction_count(), 1);
}
2018-06-14 16:32:39 -07:00
2018-07-01 21:06:40 -07:00
#[test]
fn test_process_genesis() {
let dummy_leader_id = Keypair::new().pubkey();
let dummy_leader_tokens = 2;
2019-01-24 12:04:04 -08:00
let (genesis_block, _) =
GenesisBlock::new_with_leader(5, dummy_leader_id, dummy_leader_tokens);
let bank = Bank::new(&genesis_block);
assert_eq!(bank.get_balance(&genesis_block.mint_id), 3);
assert_eq!(bank.get_balance(&dummy_leader_id), 1);
2018-07-01 21:06:40 -07:00
}
#[test]
fn test_interleaving_locks() {
let (genesis_block, mint_keypair) = GenesisBlock::new(3);
2019-01-24 12:04:04 -08:00
let bank = Bank::new(&genesis_block);
let alice = Keypair::new();
let bob = Keypair::new();
let tx1 = SystemTransaction::new_account(
&mint_keypair,
alice.pubkey(),
1,
genesis_block.last_id(),
0,
);
let pay_alice = vec![tx1];
let lock_result = bank.lock_accounts(&pay_alice);
2019-02-19 17:11:43 -08:00
let results_alice =
bank.load_execute_and_commit_transactions(&pay_alice, lock_result, MAX_ENTRY_IDS);
assert_eq!(results_alice[0], Ok(()));
// try executing an interleaved transfer twice
assert_eq!(
2019-01-24 12:04:04 -08:00
bank.transfer(1, &mint_keypair, bob.pubkey(), genesis_block.last_id()),
Err(BankError::AccountInUse)
);
2019-01-04 16:04:31 -08:00
// the second time should fail as well
// this verifies that `unlock_accounts` doesn't unlock `AccountInUse` accounts
assert_eq!(
2019-01-24 12:04:04 -08:00
bank.transfer(1, &mint_keypair, bob.pubkey(), genesis_block.last_id()),
Err(BankError::AccountInUse)
);
bank.unlock_accounts(&pay_alice, &results_alice);
assert!(bank
.transfer(2, &mint_keypair, bob.pubkey(), genesis_block.last_id())
.is_ok());
}
#[test]
fn test_program_ids() {
let system = Pubkey::new(&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
]);
let native = Pubkey::new(&[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
]);
let bpf = Pubkey::new(&[
128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
let budget = Pubkey::new(&[
129, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
let storage = Pubkey::new(&[
130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
2018-12-03 22:30:52 -08:00
let token = Pubkey::new(&[
131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
let vote = Pubkey::new(&[
132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
2019-01-17 14:41:48 -08:00
let storage_system = Pubkey::new(&[
133, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
]);
assert_eq!(system_program::id(), system);
assert_eq!(native_loader::id(), native);
2018-12-03 13:32:31 -08:00
assert_eq!(bpf_loader::id(), bpf);
assert_eq!(budget_program::id(), budget);
assert_eq!(storage_program::id(), storage);
2018-12-03 22:30:52 -08:00
assert_eq!(token_program::id(), token);
assert_eq!(vote_program::id(), vote);
2019-01-17 14:41:48 -08:00
assert_eq!(storage_program::system_id(), storage_system);
}
#[test]
fn test_program_id_uniqueness() {
let mut unique = HashSet::new();
let ids = vec![
system_program::id(),
native_loader::id(),
2018-12-03 13:32:31 -08:00
bpf_loader::id(),
budget_program::id(),
storage_program::id(),
2018-12-03 22:30:52 -08:00
token_program::id(),
vote_program::id(),
2019-01-17 14:41:48 -08:00
storage_program::system_id(),
];
assert!(ids.into_iter().all(move |id| unique.insert(id)));
}
#[test]
fn test_bank_pay_to_self() {
let (genesis_block, mint_keypair) = GenesisBlock::new(1);
let key1 = Keypair::new();
let bank = Bank::new(&genesis_block);
bank.transfer(1, &mint_keypair, key1.pubkey(), genesis_block.last_id())
.unwrap();
assert_eq!(bank.get_balance(&key1.pubkey()), 1);
let tx = SystemTransaction::new_move(&key1, key1.pubkey(), 1, genesis_block.last_id(), 0);
let res = bank.process_transactions(&vec![tx.clone()]);
assert_eq!(res.len(), 1);
assert_eq!(bank.get_balance(&key1.pubkey()), 1);
res[0].clone().unwrap_err();
}
2019-02-19 15:35:02 -08:00
/// Verify that the parent's vector is computed correctly
#[test]
fn test_bank_parents() {
let (genesis_block, _) = GenesisBlock::new(1);
let parent = Arc::new(Bank::new(&genesis_block));
let bank = Bank::new_from_parent(&parent);
assert!(Arc::ptr_eq(&bank.parents()[0], &parent));
}
2019-02-19 15:35:02 -08:00
/// Verifies that last ids and status cache are correctly referenced from parent
#[test]
fn test_bank_parent_duplicate_signature() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
let key1 = Keypair::new();
let parent = Arc::new(Bank::new(&genesis_block));
let tx = SystemTransaction::new_move(
&mint_keypair,
key1.pubkey(),
1,
genesis_block.last_id(),
0,
);
assert_eq!(parent.process_transaction(&tx), Ok(()));
let bank = Bank::new_from_parent(&parent);
assert_eq!(
bank.process_transaction(&tx),
Err(BankError::DuplicateSignature)
);
}
2019-02-19 15:35:02 -08:00
/// Verifies that last ids and accounts are correctly referenced from parent
#[test]
fn test_bank_parent_account_spend() {
let (genesis_block, mint_keypair) = GenesisBlock::new(2);
let key1 = Keypair::new();
let key2 = Keypair::new();
let parent = Arc::new(Bank::new(&genesis_block));
let tx = SystemTransaction::new_move(
&mint_keypair,
key1.pubkey(),
1,
genesis_block.last_id(),
0,
);
assert_eq!(parent.process_transaction(&tx), Ok(()));
let bank = Bank::new_from_parent(&parent);
let tx = SystemTransaction::new_move(&key1, key2.pubkey(), 1, genesis_block.last_id(), 0);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(parent.get_signature_status(&tx.signatures[0]), None);
}
2018-02-23 13:08:19 -08:00
}