solana/book/src/cluster.md

101 lines
5.5 KiB
Markdown
Raw Normal View History

# A Solana Cluster
A Solana cluster is a set of fullnodes working together to serve client
transactions and maintain the integrity of the ledger. Many clusters may
coexist. When two clusters share a common genesis block, they attempt to
converge. Otherwise, they simply ignore the existence of the other.
Transactions sent to the wrong one are quietly rejected. In this chapter, we'll
discuss how a cluster is created, how nodes join the cluster, how they share
the ledger, how they ensure the ledger is replicated, and how they cope with
buggy and malicious nodes.
## Creating a Cluster
Before starting any fullnodes, one first needs to create a *genesis block*.
The block contains entries referencing two public keys, a *mint* and a
*bootstrap leader*. The fullnode holding the bootstrap leader's secret key is
responsible for appending the first entries to the ledger. It initializes its
internal state with the mint's account. That account will hold the number of
native tokens defined by the genesis block. The second fullnode then contacts
the bootstrap leader to register as a *validator* or *replicator*. Additional
fullnodes then register with any registered member of the cluster.
A validator receives all entries from the leader and submits votes confirming
those entries are valid. After voting, the validator is expected to store those
entries until replicator nodes submit proofs that they have stored copies of
it. Once the validator observes a sufficient number of copies exist, it deletes
its copy.
## Joining a Cluster
Fullnodes and replicators enter the cluster via registration messages sent to
its *control plane*. The control plane is implemented using a *gossip*
protocol, meaning that a node may register with any existing node, and expect
its registration to propagate to all nodes in the cluster. The time it takes
for all nodes to synchronize is proportional to the square of the number of
nodes participating in the cluster. Algorithmically, that's considered very
slow, but in exchange for that time, a node is assured that it eventually has
all the same information as every other node, and that that information cannot
be censored by any one node.
## Sending Transactions to a Cluster
Clients send transactions to any fullnode's Transaction Processing Unit (TPU)
port. If the node is in the validator role, it forwards the transaction to the
designated leader. If in the leader role, the node bundles incoming
transactions, timestamps them creating an *entry*, and pushes them onto the
cluster's *data plane*. Once on the data plane, the transactions are validated
by validator nodes and replicated by replicator nodes, effectively appending
them to the ledger.
## Confirming Transactions
A Solana cluster is capable of subsecond *confirmation* for up to 150 nodes
with plans to scale up to hundreds of thousands of nodes. Once fully
implemented, confirmation times are expected to increase only with the
logarithm of the number of validators, where the logarithm's base is very high.
If the base is one thousand, for example, it means that for the first thousand
nodes, confirmation will be the duration of three network hops plus the time it
takes the slowest validator of a supermajority to vote. For the next million
nodes, confirmation increases by only one network hop.
Solana defines confirmation as the duration of time from when the leader
timestamps a new entry to the moment when it recognizes a supermajority of
ledger votes.
A gossip network is much too slow to achieve subsecond confirmation once the
network grows beyond a certain size. The time it takes to send messages to all
nodes is proportional to the square of the number of nodes. If a blockchain
wants to achieve low confirmation and attempts to do it using a gossip network,
it will be forced to centralize to just a handful of nodes.
Scalable confirmation can be achieved using the follow combination of
techniques:
1. Timestamp transactions with a VDF sample and sign the timestamp.
2. Split the transactions into batches, send each to separate nodes and have
each node share its batch with its peers.
3. Repeat the previous step recursively until all nodes have all batches.
Solana rotates leaders at fixed intervals, called *slots*. Each leader may only
produce entries during its allotted slot. The leader therefore timestamps
transactions so that validators may lookup the public key of the designated
leader. The leader then signs the timestamp so that a validator may verify the
signature, proving the signer is owner of the designated leader's public key.
Next, transactions are broken into batches so that a node can send transactions
to multiple parties without making multiple copies. If, for example, the leader
needed to send 60 transactions to 6 nodes, it would break that collection of 60
into batches of 10 transactions and send one to each node. This allows the
leader to put 60 transactions on the wire, not 60 transactions for each node.
Each node then shares its batch with its peers. Once the node has collected all
6 batches, it reconstructs the original set of 60 transactions.
A batch of transactions can only be split so many times before it is so small
that header information becomes the primary consumer of network bandwidth. At
the time of this writing, the approach is scaling well up to about 150
validators. To scale up to hundreds of thousands of validators, each node can
apply the same technique as the leader node to another set of nodes of equal
size. We call the technique *data plane fanout*; learn more in the [data plan
fanout](data-plane-fanout.md) section.