solana/program-runtime/src/loaded_programs.rs

1068 lines
39 KiB
Rust
Raw Normal View History

use {
crate::{invoke_context::InvokeContext, timings::ExecuteDetailsTimings},
itertools::Itertools,
solana_measure::measure::Measure,
solana_rbpf::{
elf::Executable,
error::EbpfError,
verifier::RequisiteVerifier,
vm::{BuiltInProgram, VerifiedExecutable},
},
solana_sdk::{
bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable, clock::Slot, loader_v3,
pubkey::Pubkey, saturating_add_assign,
},
std::{
collections::HashMap,
fmt::{Debug, Formatter},
sync::{
atomic::{AtomicU64, Ordering},
Arc,
},
},
};
const MAX_CACHE_ENTRIES: usize = 100; // TODO: Tune to size
/// Relationship between two fork IDs
#[derive(Copy, Clone, PartialEq)]
pub enum BlockRelation {
/// The slot is on the same fork and is an ancestor of the other slot
Ancestor,
/// The two slots are equal and are on the same fork
Equal,
/// The slot is on the same fork and is a descendant of the other slot
Descendant,
/// The slots are on two different forks and may have had a common ancestor at some point
Unrelated,
/// Either one or both of the slots are either older than the latest root, or are in future
Unknown,
}
/// Maps relationship between two slots.
pub trait ForkGraph {
/// Returns the BlockRelation of A to B
fn relationship(&self, a: Slot, b: Slot) -> BlockRelation;
}
/// Provides information about current working slot, and its ancestors
pub trait WorkingSlot {
/// Returns the current slot value
fn current_slot(&self) -> Slot;
/// Returns true if the `other` slot is an ancestor of self, false otherwise
fn is_ancestor(&self, other: Slot) -> bool;
}
#[derive(Default)]
pub enum LoadedProgramType {
/// Tombstone for undeployed, closed or unloadable programs
#[default]
FailedVerification,
Closed,
DelayVisibility,
LegacyV0(VerifiedExecutable<RequisiteVerifier, InvokeContext<'static>>),
LegacyV1(VerifiedExecutable<RequisiteVerifier, InvokeContext<'static>>),
Typed(VerifiedExecutable<RequisiteVerifier, InvokeContext<'static>>),
BuiltIn(BuiltInProgram<InvokeContext<'static>>),
}
impl Debug for LoadedProgramType {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
LoadedProgramType::FailedVerification => {
write!(f, "LoadedProgramType::FailedVerification")
}
LoadedProgramType::Closed => write!(f, "LoadedProgramType::Closed"),
LoadedProgramType::DelayVisibility => write!(f, "LoadedProgramType::DelayVisibility"),
LoadedProgramType::LegacyV0(_) => write!(f, "LoadedProgramType::LegacyV0"),
LoadedProgramType::LegacyV1(_) => write!(f, "LoadedProgramType::LegacyV1"),
LoadedProgramType::Typed(_) => write!(f, "LoadedProgramType::Typed"),
LoadedProgramType::BuiltIn(_) => write!(f, "LoadedProgramType::BuiltIn"),
}
}
}
#[derive(Debug, Default)]
pub struct LoadedProgram {
/// The program of this entry
pub program: LoadedProgramType,
/// Size of account that stores the program and program data
pub account_size: usize,
/// Slot in which the program was (re)deployed
pub deployment_slot: Slot,
/// Slot in which this entry will become active (can be in the future)
pub effective_slot: Slot,
/// How often this entry was used
pub usage_counter: AtomicU64,
}
#[derive(Debug, Default)]
pub struct LoadProgramMetrics {
pub program_id: String,
pub register_syscalls_us: u64,
pub load_elf_us: u64,
pub verify_code_us: u64,
pub jit_compile_us: u64,
}
impl LoadProgramMetrics {
pub fn submit_datapoint(&self, timings: &mut ExecuteDetailsTimings) {
saturating_add_assign!(
timings.create_executor_register_syscalls_us,
self.register_syscalls_us
);
saturating_add_assign!(timings.create_executor_load_elf_us, self.load_elf_us);
saturating_add_assign!(timings.create_executor_verify_code_us, self.verify_code_us);
saturating_add_assign!(timings.create_executor_jit_compile_us, self.jit_compile_us);
datapoint_trace!(
"create_executor_trace",
("program_id", self.program_id, String),
("register_syscalls_us", self.register_syscalls_us, i64),
("load_elf_us", self.load_elf_us, i64),
("verify_code_us", self.verify_code_us, i64),
("jit_compile_us", self.jit_compile_us, i64),
);
}
}
impl LoadedProgram {
/// Creates a new user program
pub fn new(
loader_key: &Pubkey,
loader: Arc<BuiltInProgram<InvokeContext<'static>>>,
deployment_slot: Slot,
effective_slot: Slot,
elf_bytes: &[u8],
account_size: usize,
use_jit: bool,
metrics: &mut LoadProgramMetrics,
) -> Result<Self, Box<dyn std::error::Error>> {
let mut load_elf_time = Measure::start("load_elf_time");
let executable = Executable::load(elf_bytes, loader.clone())?;
load_elf_time.stop();
metrics.load_elf_us = load_elf_time.as_us();
let mut verify_code_time = Measure::start("verify_code_time");
// Allowing mut here, since it may be needed for jit compile, which is under a config flag
#[allow(unused_mut)]
let mut program = if bpf_loader_deprecated::check_id(loader_key) {
LoadedProgramType::LegacyV0(VerifiedExecutable::from_executable(executable)?)
} else if bpf_loader::check_id(loader_key) || bpf_loader_upgradeable::check_id(loader_key) {
LoadedProgramType::LegacyV1(VerifiedExecutable::from_executable(executable)?)
} else if loader_v3::check_id(loader_key) {
LoadedProgramType::Typed(VerifiedExecutable::from_executable(executable)?)
} else {
panic!();
};
verify_code_time.stop();
metrics.verify_code_us = verify_code_time.as_us();
if use_jit {
#[cfg(all(not(target_os = "windows"), target_arch = "x86_64"))]
{
let mut jit_compile_time = Measure::start("jit_compile_time");
match &mut program {
LoadedProgramType::LegacyV0(executable) => executable.jit_compile(),
LoadedProgramType::LegacyV1(executable) => executable.jit_compile(),
LoadedProgramType::Typed(executable) => executable.jit_compile(),
_ => Err(EbpfError::JitNotCompiled),
}?;
jit_compile_time.stop();
metrics.jit_compile_us = jit_compile_time.as_us();
}
}
Ok(Self {
deployment_slot,
account_size,
effective_slot,
usage_counter: AtomicU64::new(0),
program,
})
}
/// Creates a new built-in program
pub fn new_built_in(
deployment_slot: Slot,
program: BuiltInProgram<InvokeContext<'static>>,
) -> Self {
Self {
deployment_slot,
account_size: 0,
effective_slot: deployment_slot.saturating_add(1),
usage_counter: AtomicU64::new(0),
program: LoadedProgramType::BuiltIn(program),
}
}
pub fn new_tombstone(slot: Slot, reason: LoadedProgramType) -> Self {
let tombstone = Self {
program: reason,
account_size: 0,
deployment_slot: slot,
effective_slot: slot,
usage_counter: AtomicU64::default(),
};
debug_assert!(tombstone.is_tombstone());
tombstone
}
pub fn is_tombstone(&self) -> bool {
matches!(
self.program,
LoadedProgramType::FailedVerification
| LoadedProgramType::Closed
| LoadedProgramType::DelayVisibility
)
}
}
#[derive(Debug, Default)]
pub struct LoadedPrograms {
/// A two level index:
///
/// Pubkey is the address of a program, multiple versions can coexists simultaneously under the same address (in different slots).
entries: HashMap<Pubkey, Vec<Arc<LoadedProgram>>>,
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl solana_frozen_abi::abi_example::AbiExample for LoadedPrograms {
fn example() -> Self {
// Delegate AbiExample impl to Default before going deep and stuck with
// not easily impl-able Arc<dyn Executor> due to rust's coherence issue
// This is safe because LoadedPrograms isn't serializable by definition.
Self::default()
}
}
impl LoadedPrograms {
/// Refill the cache with a single entry. It's typically called during transaction loading,
/// when the cache doesn't contain the entry corresponding to program `key`.
/// The function dedupes the cache, in case some other thread replenished the entry in parallel.
pub fn replenish(
&mut self,
key: Pubkey,
entry: Arc<LoadedProgram>,
) -> (bool, Arc<LoadedProgram>) {
let second_level = self.entries.entry(key).or_insert_with(Vec::new);
let index = second_level
.iter()
.position(|at| at.effective_slot >= entry.effective_slot);
if let Some(existing) = index.and_then(|index| second_level.get(index)) {
if existing.deployment_slot == entry.deployment_slot
&& existing.effective_slot == entry.effective_slot
{
return (true, existing.clone());
}
}
second_level.insert(index.unwrap_or(second_level.len()), entry.clone());
(false, entry)
}
/// Assign the program `entry` to the given `key` in the cache.
/// This is typically called when a deployed program is managed (un-/re-/deployed) via
/// loader instructions. Because of the cooldown, entires can not have the same
/// deployment_slot and effective_slot.
pub fn assign_program(&mut self, key: Pubkey, entry: Arc<LoadedProgram>) -> Arc<LoadedProgram> {
let (was_occupied, entry) = self.replenish(key, entry);
debug_assert!(!was_occupied);
entry
}
/// Before rerooting the blockstore this removes all programs of orphan forks
pub fn prune<F: ForkGraph>(&mut self, fork_graph: &F, new_root: Slot) {
self.entries.retain(|_key, second_level| {
let mut first_ancestor = true;
*second_level = second_level
.iter()
.rev()
.filter(|entry| {
let relation = fork_graph.relationship(entry.deployment_slot, new_root);
if entry.deployment_slot >= new_root {
matches!(relation, BlockRelation::Equal | BlockRelation::Descendant)
} else if first_ancestor {
first_ancestor = false;
matches!(relation, BlockRelation::Ancestor)
} else {
false
}
})
.cloned()
.collect();
second_level.reverse();
!second_level.is_empty()
});
}
/// Extracts a subset of the programs relevant to a transaction batch
/// and returns which program accounts the accounts DB needs to load.
pub fn extract<S: WorkingSlot>(
&self,
working_slot: &S,
keys: impl Iterator<Item = Pubkey>,
) -> (HashMap<Pubkey, Arc<LoadedProgram>>, Vec<Pubkey>) {
let mut missing = Vec::new();
let found = keys
.filter_map(|key| {
if let Some(second_level) = self.entries.get(&key) {
for entry in second_level.iter().rev() {
if working_slot.current_slot() >= entry.effective_slot
&& working_slot.is_ancestor(entry.deployment_slot)
{
return Some((key, entry.clone()));
}
}
}
missing.push(key);
None
})
.collect();
(found, missing)
}
/// Evicts programs which were used infrequently
pub fn sort_and_evict(&mut self, max_cache_entries: Option<usize>) {
// Find eviction candidates and sort by their usage counters
let mut num_cache_entries: usize = 0;
let sorted_candidates = self
.entries
.iter()
.filter(|(_key, programs)| {
num_cache_entries = num_cache_entries.saturating_add(programs.len());
programs.len() == 1
})
.sorted_by_cached_key(|(_key, programs)| {
programs
.get(0)
.unwrap()
.usage_counter
.load(Ordering::Relaxed)
})
.map(|(key, _programs)| *key)
.collect::<Vec<Pubkey>>();
// Calculate how many to remove
let num_to_remove = std::cmp::min(
num_cache_entries.saturating_sub(max_cache_entries.unwrap_or(MAX_CACHE_ENTRIES)),
sorted_candidates.len(),
);
// Remove selected entries
if num_to_remove != 0 {
self.remove_entries(sorted_candidates.into_iter().take(num_to_remove))
}
}
/// Removes the entries at the given keys, if they exist
pub fn remove_entries(&mut self, keys: impl Iterator<Item = Pubkey>) {
for k in keys {
self.entries.remove(&k);
}
}
}
#[cfg(test)]
mod tests {
use {
crate::loaded_programs::{
BlockRelation, ForkGraph, LoadedProgram, LoadedProgramType, LoadedPrograms, WorkingSlot,
},
solana_rbpf::vm::BuiltInProgram,
solana_sdk::{clock::Slot, pubkey::Pubkey},
std::{
collections::HashMap,
ops::ControlFlow,
sync::{
atomic::{AtomicU64, Ordering},
Arc,
},
},
};
fn new_test_builtin_program(deployment_slot: Slot, effective_slot: Slot) -> Arc<LoadedProgram> {
Arc::new(LoadedProgram {
program: LoadedProgramType::BuiltIn(BuiltInProgram::default()),
account_size: 0,
deployment_slot,
effective_slot,
usage_counter: AtomicU64::default(),
})
}
fn set_tombstone(cache: &mut LoadedPrograms, key: Pubkey, slot: Slot) -> Arc<LoadedProgram> {
cache.assign_program(
key,
Arc::new(LoadedProgram::new_tombstone(
slot,
LoadedProgramType::FailedVerification,
)),
)
}
#[test]
fn test_eviction() {
// Fork graph created for the test
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20, 22]);
fork_graph.insert_fork(&[0, 5, 11, 15, 16]);
fork_graph.insert_fork(&[0, 5, 11, 25, 27]);
let possible_slots: Vec<u64> = vec![0, 5, 10, 11, 15, 16, 20, 22, 25, 27];
let usage_counters: Vec<u64> = vec![43, 10, 1128, 1, 0, 67, 212, 322, 29, 21];
let mut programs = HashMap::<Pubkey, Vec<(u64, u64)>>::new();
let mut num_total_programs: usize = 0;
let mut cache = LoadedPrograms::default();
let program1 = Pubkey::new_unique();
let program1_deployment_slots = vec![0, 10, 20];
let program1_usage_counters = vec![1, 5, 25];
program1_deployment_slots
.iter()
.enumerate()
.for_each(|(i, deployment_slot)| {
cache.replenish(
program1,
new_test_loaded_program_with_usage(
*deployment_slot,
(*deployment_slot) + 2,
AtomicU64::new(*program1_usage_counters.get(i).unwrap_or(&0)),
),
);
num_total_programs += 1;
programs
.entry(program1)
.and_modify(|entries| {
entries.push((
*deployment_slot,
*program1_usage_counters.get(i).unwrap_or(&0),
))
})
.or_insert_with(|| {
Vec::<(u64, u64)>::from([(
*deployment_slot,
*program1_usage_counters.get(i).unwrap_or(&0),
)])
});
});
let program2 = Pubkey::new_unique();
let program2_deployment_slots = vec![5, 11];
let program2_usage_counters = vec![0, 10];
program2_deployment_slots
.iter()
.enumerate()
.for_each(|(i, deployment_slot)| {
cache.replenish(
program2,
new_test_loaded_program_with_usage(
*deployment_slot,
(*deployment_slot) + 2,
AtomicU64::new(*program2_usage_counters.get(i).unwrap_or(&0)),
),
);
num_total_programs += 1;
programs
.entry(program2)
.and_modify(|entries| {
entries.push((
*deployment_slot,
*program2_usage_counters.get(i).unwrap_or(&0),
))
})
.or_insert_with(|| {
Vec::<(u64, u64)>::from([(
*deployment_slot,
*program2_usage_counters.get(i).unwrap_or(&0),
)])
});
});
let program3 = Pubkey::new_unique();
let program3_deployment_slots = vec![0, 5, 15];
let program3_usage_counters = vec![100, 3, 20];
program3_deployment_slots
.iter()
.enumerate()
.for_each(|(i, deployment_slot)| {
cache.replenish(
program3,
new_test_loaded_program_with_usage(
*deployment_slot,
(*deployment_slot) + 2,
AtomicU64::new(*program3_usage_counters.get(i).unwrap_or(&0)),
),
);
num_total_programs += 1;
programs
.entry(program3)
.and_modify(|entries| {
entries.push((
*deployment_slot,
*program3_usage_counters.get(i).unwrap_or(&0),
))
})
.or_insert_with(|| {
Vec::<(u64, u64)>::from([(
*deployment_slot,
*program3_usage_counters.get(i).unwrap_or(&0),
)])
});
});
// Add random set of used programs (with no redeploys) on each possible slot
// in the fork graph
let mut eviction_candidates = possible_slots
.into_iter()
.enumerate()
.map(|(i, slot)| {
(
Pubkey::new_unique(),
slot,
*usage_counters.get(i).unwrap_or(&0),
)
})
.collect::<Vec<_>>();
eviction_candidates
.iter()
.for_each(|(key, deployment_slot, usage_counter)| {
cache.replenish(
*key,
new_test_loaded_program_with_usage(
*deployment_slot,
(*deployment_slot) + 2,
AtomicU64::new(*usage_counter),
),
);
num_total_programs += 1;
programs
.entry(*key)
.and_modify(|entries| entries.push((*deployment_slot, *usage_counter)))
.or_insert_with(|| {
Vec::<(u64, u64)>::from([(*deployment_slot, *usage_counter)])
});
});
eviction_candidates.sort_by_key(|(_key, _deplyment_slot, usage_counter)| *usage_counter);
// Try to remove no programs.
cache.sort_and_evict(Some(num_total_programs));
// Check that every program is still in the cache.
programs.iter().for_each(|entry| {
assert!(cache.entries.get(entry.0).is_some());
});
// Try to remove less than max programs.
let max_cache_entries = 12_usize;
// Guarantee you won't evict all eviction candidates
let num_to_remove = num_total_programs - max_cache_entries;
assert!(eviction_candidates.len() > num_to_remove);
let removals = eviction_candidates
.drain(0..num_to_remove)
.map(|(key, _, _)| key)
.collect::<Vec<_>>();
cache.sort_and_evict(Some(max_cache_entries));
// Make sure removed entries are gone
removals.iter().for_each(|key| {
assert!(cache.entries.get(key).is_none());
});
// Make sure the other entries are still present in the cache
programs
.iter()
.filter(|(key, _)| !removals.contains(key))
.for_each(
// For every entry not removed
|(key, val)| {
let program_in_cache = cache.entries.get(key);
assert!(program_in_cache.is_some()); // Make sure it's entry exists
let values_in_cache = program_in_cache
.unwrap()
.iter()
.map(|x| (x.deployment_slot, x.usage_counter.load(Ordering::Relaxed)))
.collect::<Vec<_>>();
val.iter().for_each(|entry| {
// make sure the exact slot and usage counter remain
// for the entry
assert!(values_in_cache.contains(entry));
});
},
);
// Remove entries from you local cache tracker
removals.iter().for_each(|key| {
programs.remove(key);
num_total_programs -= 1;
});
// Try to remove all programs.
let max_num_removals = eviction_candidates.len();
// Make sure total programs is greater than number of eviction candidates
assert!(num_total_programs > max_num_removals);
cache.sort_and_evict(Some(0));
// Make sure all candidate removals were removed
let removals = eviction_candidates
.iter()
.map(|(key, _, _)| key)
.collect::<Vec<_>>();
removals.iter().for_each(|key| {
assert!(cache.entries.get(*key).is_none());
});
// Make sure all non-candidate removals remain
programs
.iter()
.filter(|(key, _)| !removals.contains(key))
.for_each(
// For every entry not removed
|(key, val)| {
let program_in_cache = cache.entries.get(key);
assert!(program_in_cache.is_some()); // Make sure it's entry exists
let values_in_cache = program_in_cache
.unwrap()
.iter()
.map(|x| (x.deployment_slot, x.usage_counter.load(Ordering::Relaxed)))
.collect::<Vec<_>>();
val.iter().for_each(|entry| {
// make sure the exact slot and usage counter remain
// for the entry
assert!(values_in_cache.contains(entry));
});
},
);
}
#[test]
fn test_tombstone() {
let tombstone = LoadedProgram::new_tombstone(0, LoadedProgramType::FailedVerification);
assert!(matches!(
tombstone.program,
LoadedProgramType::FailedVerification
));
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 0);
assert_eq!(tombstone.effective_slot, 0);
let tombstone = LoadedProgram::new_tombstone(100, LoadedProgramType::Closed);
assert!(matches!(tombstone.program, LoadedProgramType::Closed));
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 100);
assert_eq!(tombstone.effective_slot, 100);
let mut cache = LoadedPrograms::default();
let program1 = Pubkey::new_unique();
let tombstone = set_tombstone(&mut cache, program1, 10);
let second_level = &cache
.entries
.get(&program1)
.expect("Failed to find the entry");
assert_eq!(second_level.len(), 1);
assert!(second_level.get(0).unwrap().is_tombstone());
assert_eq!(tombstone.deployment_slot, 10);
assert_eq!(tombstone.effective_slot, 10);
// Add a program at slot 50, and a tombstone for the program at slot 60
let program2 = Pubkey::new_unique();
assert!(
!cache
.replenish(program2, new_test_builtin_program(50, 51))
.0
);
let second_level = &cache
.entries
.get(&program2)
.expect("Failed to find the entry");
assert_eq!(second_level.len(), 1);
assert!(!second_level.get(0).unwrap().is_tombstone());
let tombstone = set_tombstone(&mut cache, program2, 60);
let second_level = &cache
.entries
.get(&program2)
.expect("Failed to find the entry");
assert_eq!(second_level.len(), 2);
assert!(!second_level.get(0).unwrap().is_tombstone());
assert!(second_level.get(1).unwrap().is_tombstone());
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 60);
assert_eq!(tombstone.effective_slot, 60);
}
struct TestForkGraph {
relation: BlockRelation,
}
impl ForkGraph for TestForkGraph {
fn relationship(&self, _a: Slot, _b: Slot) -> BlockRelation {
self.relation
}
}
#[test]
fn test_prune_empty() {
let mut cache = LoadedPrograms::default();
let fork_graph = TestForkGraph {
relation: BlockRelation::Unrelated,
};
cache.prune(&fork_graph, 0);
assert!(cache.entries.is_empty());
cache.prune(&fork_graph, 10);
assert!(cache.entries.is_empty());
let fork_graph = TestForkGraph {
relation: BlockRelation::Ancestor,
};
cache.prune(&fork_graph, 0);
assert!(cache.entries.is_empty());
cache.prune(&fork_graph, 10);
assert!(cache.entries.is_empty());
let fork_graph = TestForkGraph {
relation: BlockRelation::Descendant,
};
cache.prune(&fork_graph, 0);
assert!(cache.entries.is_empty());
cache.prune(&fork_graph, 10);
assert!(cache.entries.is_empty());
let fork_graph = TestForkGraph {
relation: BlockRelation::Unknown,
};
cache.prune(&fork_graph, 0);
assert!(cache.entries.is_empty());
cache.prune(&fork_graph, 10);
assert!(cache.entries.is_empty());
}
#[derive(Default)]
struct TestForkGraphSpecific {
forks: Vec<Vec<Slot>>,
}
impl TestForkGraphSpecific {
fn insert_fork(&mut self, fork: &[Slot]) {
let mut fork = fork.to_vec();
fork.sort();
self.forks.push(fork)
}
}
impl ForkGraph for TestForkGraphSpecific {
fn relationship(&self, a: Slot, b: Slot) -> BlockRelation {
match self.forks.iter().try_for_each(|fork| {
let relation = fork
.iter()
.position(|x| *x == a)
.and_then(|a_pos| {
fork.iter().position(|x| *x == b).and_then(|b_pos| {
(a_pos == b_pos)
.then_some(BlockRelation::Equal)
.or_else(|| (a_pos < b_pos).then_some(BlockRelation::Ancestor))
.or(Some(BlockRelation::Descendant))
})
})
.unwrap_or(BlockRelation::Unrelated);
if relation != BlockRelation::Unrelated {
return ControlFlow::Break(relation);
}
ControlFlow::Continue(())
}) {
ControlFlow::Break(relation) => relation,
_ => BlockRelation::Unrelated,
}
}
}
struct TestWorkingSlot {
slot: Slot,
fork: Vec<Slot>,
slot_pos: usize,
}
impl TestWorkingSlot {
fn new(slot: Slot, fork: &[Slot]) -> Self {
let mut fork = fork.to_vec();
fork.sort();
let slot_pos = fork
.iter()
.position(|current| *current == slot)
.expect("The fork didn't have the slot in it");
TestWorkingSlot {
slot,
fork,
slot_pos,
}
}
fn update_slot(&mut self, slot: Slot) {
self.slot = slot;
self.slot_pos = self
.fork
.iter()
.position(|current| *current == slot)
.expect("The fork didn't have the slot in it");
}
}
impl WorkingSlot for TestWorkingSlot {
fn current_slot(&self) -> Slot {
self.slot
}
fn is_ancestor(&self, other: Slot) -> bool {
self.fork
.iter()
.position(|current| *current == other)
.map(|other_pos| other_pos < self.slot_pos)
.unwrap_or(false)
}
}
fn new_test_loaded_program(deployment_slot: Slot, effective_slot: Slot) -> Arc<LoadedProgram> {
new_test_loaded_program_with_usage(deployment_slot, effective_slot, AtomicU64::default())
}
fn new_test_loaded_program_with_usage(
deployment_slot: Slot,
effective_slot: Slot,
usage_counter: AtomicU64,
) -> Arc<LoadedProgram> {
Arc::new(LoadedProgram {
program: LoadedProgramType::FailedVerification,
account_size: 0,
deployment_slot,
effective_slot,
usage_counter,
})
}
fn match_slot(
table: &HashMap<Pubkey, Arc<LoadedProgram>>,
program: &Pubkey,
deployment_slot: Slot,
) -> bool {
table
.get(program)
.map(|entry| entry.deployment_slot == deployment_slot)
.unwrap_or(false)
}
#[test]
fn test_fork_extract_and_prune() {
let mut cache = LoadedPrograms::default();
// Fork graph created for the test
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20, 22]);
fork_graph.insert_fork(&[0, 5, 11, 15, 16]);
fork_graph.insert_fork(&[0, 5, 11, 25, 27]);
let program1 = Pubkey::new_unique();
assert!(!cache.replenish(program1, new_test_loaded_program(0, 1)).0);
assert!(!cache.replenish(program1, new_test_loaded_program(10, 11)).0);
assert!(!cache.replenish(program1, new_test_loaded_program(20, 21)).0);
// Test: inserting duplicate entry return pre existing entry from the cache
assert!(cache.replenish(program1, new_test_loaded_program(20, 21)).0);
let program2 = Pubkey::new_unique();
assert!(!cache.replenish(program2, new_test_loaded_program(5, 6)).0);
assert!(!cache.replenish(program2, new_test_loaded_program(11, 12)).0);
let program3 = Pubkey::new_unique();
assert!(!cache.replenish(program3, new_test_loaded_program(25, 26)).0);
let program4 = Pubkey::new_unique();
assert!(!cache.replenish(program4, new_test_loaded_program(0, 1)).0);
assert!(!cache.replenish(program4, new_test_loaded_program(5, 6)).0);
// The following is a special case, where effective slot is 4 slots in the future
assert!(!cache.replenish(program4, new_test_loaded_program(15, 19)).0);
// Current fork graph
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
// Testing fork 0 - 10 - 12 - 22 with current slot at 22
let working_slot = TestWorkingSlot::new(22, &[0, 10, 20, 22]);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 20));
assert!(match_slot(&found, &program4, 0));
assert!(missing.contains(&program2));
assert!(missing.contains(&program3));
// Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 16
let mut working_slot = TestWorkingSlot::new(16, &[0, 5, 11, 15, 16, 19, 23]);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 11));
// The effective slot of program4 deployed in slot 15 is 19. So it should not be usable in slot 16.
assert!(match_slot(&found, &program4, 5));
assert!(missing.contains(&program3));
// Testing the same fork above, but current slot is now 19 (equal to effective slot of program4).
working_slot.update_slot(19);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 11));
// The effective slot of program4 deployed in slot 15 is 19. So it should be usable in slot 19.
assert!(match_slot(&found, &program4, 15));
assert!(missing.contains(&program3));
// Testing the same fork above, but current slot is now 23 (future slot than effective slot of program4).
working_slot.update_slot(23);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 11));
// The effective slot of program4 deployed in slot 15 is 19. So it should be usable in slot 23.
assert!(match_slot(&found, &program4, 15));
assert!(missing.contains(&program3));
// Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 11
let working_slot = TestWorkingSlot::new(11, &[0, 5, 11, 15, 16]);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 5));
assert!(match_slot(&found, &program4, 5));
assert!(missing.contains(&program3));
cache.prune(&fork_graph, 5);
// Fork graph after pruning
// 0
// |
// 5
// |
// 11
// | \
// 15 25
// | |
// 16 27
// |
// 19
// |
// 23
// Testing fork 0 - 10 - 12 - 22 (which was pruned) with current slot at 22
let working_slot = TestWorkingSlot::new(22, &[0, 10, 20, 22]);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
// Since the fork was pruned, we should not find the entry deployed at slot 20.
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program4, 0));
assert!(missing.contains(&program2));
assert!(missing.contains(&program3));
// Testing fork 0 - 5 - 11 - 25 - 27 with current slot at 27
let working_slot = TestWorkingSlot::new(27, &[0, 5, 11, 25, 27]);
let (found, _missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 11));
assert!(match_slot(&found, &program3, 25));
assert!(match_slot(&found, &program4, 5));
cache.prune(&fork_graph, 15);
// Fork graph after pruning
// 0
// |
// 5
// |
// 11
// |
// 15
// |
// 16
// |
// 19
// |
// 23
// Testing fork 0 - 5 - 11 - 25 - 27 (with root at 15, slot 25, 27 are pruned) with current slot at 27
let working_slot = TestWorkingSlot::new(27, &[0, 5, 11, 25, 27]);
let (found, missing) = cache.extract(
&working_slot,
vec![program1, program2, program3, program4].into_iter(),
);
assert!(match_slot(&found, &program1, 0));
assert!(match_slot(&found, &program2, 11));
assert!(match_slot(&found, &program4, 5));
// program3 was deployed on slot 25, which has been pruned
assert!(missing.contains(&program3));
}
}