solana/src/signature.rs

194 lines
5.6 KiB
Rust
Raw Normal View History

2018-03-30 10:43:38 -07:00
//! The `signature` module provides functionality for public, and private keys.
2018-05-11 11:49:22 -07:00
use generic_array::GenericArray;
use generic_array::typenum::{U32, U64};
use rand::{ChaChaRng, Rng, SeedableRng};
2018-05-12 12:42:27 -07:00
use rayon::prelude::*;
use ring::error::Unspecified;
use ring::rand::SecureRandom;
use ring::signature::Ed25519KeyPair;
use ring::{rand, signature};
2018-05-11 11:07:41 -07:00
use std::cell::RefCell;
use std::mem;
use untrusted;
pub type KeyPair = Ed25519KeyPair;
pub type PublicKey = GenericArray<u8, U32>;
pub type Signature = GenericArray<u8, U64>;
pub trait KeyPairUtil {
fn new() -> Self;
fn pubkey(&self) -> PublicKey;
}
impl KeyPairUtil for Ed25519KeyPair {
/// Return a new ED25519 keypair
fn new() -> Self {
let rng = rand::SystemRandom::new();
2018-05-11 11:38:52 -07:00
let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng)
.expect("generate_pkcs8 in signature pb fn new");
signature::Ed25519KeyPair::from_pkcs8(untrusted::Input::from(&pkcs8_bytes))
.expect("from_pcks8 in signature pb fn new")
}
/// Return the public key for the given keypair
fn pubkey(&self) -> PublicKey {
GenericArray::clone_from_slice(self.public_key_bytes())
}
}
pub trait SignatureUtil {
fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool;
}
impl SignatureUtil for GenericArray<u8, U64> {
fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool {
let peer_public_key = untrusted::Input::from(peer_public_key_bytes);
let msg = untrusted::Input::from(msg_bytes);
let sig = untrusted::Input::from(self);
signature::verify(&signature::ED25519, peer_public_key, msg, sig).is_ok()
}
}
pub struct GenKeys {
2018-05-11 11:07:41 -07:00
// This is necessary because the rng needs to mutate its state to remain
// deterministic, and the fill trait requires an immuatble reference to self
generator: RefCell<ChaChaRng>,
}
impl GenKeys {
pub fn new(seed_values: &[u8]) -> GenKeys {
let seed: &[u8] = &seed_values[..];
let rng: ChaChaRng = SeedableRng::from_seed(unsafe { mem::transmute(seed) });
GenKeys {
2018-05-11 11:07:41 -07:00
generator: RefCell::new(rng),
}
}
pub fn new_key(&self) -> Vec<u8> {
KeyPair::generate_pkcs8(self).unwrap().to_vec()
}
2018-05-12 15:08:08 -07:00
pub fn gen_n_keys(&self, n_keys: i64, tokens_per_user: i64) -> Vec<(Vec<u8>, i64)> {
let users: Vec<_> = (0..n_keys)
.into_iter()
.map(|_| {
let pkcs8 = self.new_key();
(pkcs8, tokens_per_user)
})
.collect();
users
}
}
impl SecureRandom for GenKeys {
fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified> {
let mut rng = self.generator.borrow_mut();
rng.fill_bytes(dest);
Ok(())
}
}
pub struct GenKeys2 {
// This is necessary because the rng needs to mutate its state to remain
// deterministic, and the fill trait requires an immuatble reference to self
generator: RefCell<ChaChaRng>,
}
impl GenKeys2 {
pub fn new(seed_values: &[u8]) -> GenKeys2 {
let seed: &[u8] = &seed_values[..];
let rng: ChaChaRng = SeedableRng::from_seed(unsafe { mem::transmute(seed) });
GenKeys2 {
generator: RefCell::new(rng),
}
}
pub fn new_key(&self) -> Vec<u8> {
KeyPair::generate_pkcs8(self).unwrap().to_vec()
}
2018-05-12 12:42:27 -07:00
pub fn gen_n_seeds(&self, n_seeds: i64) -> Vec<[u8; 16]> {
let mut rng = self.generator.borrow_mut();
let seeds = (0..n_seeds)
2018-05-11 11:07:41 -07:00
.into_iter()
.map(|_| {
2018-05-12 12:42:27 -07:00
let seed: [u8; 16] = rng.gen();
seed
})
.collect();
seeds
}
pub fn gen_n_keys(&self, n_keys: i64, tokens_per_user: i64) -> Vec<(Vec<u8>, i64)> {
let keys = self.gen_n_seeds(n_keys);
2018-05-12 16:27:15 -07:00
let users: Vec<_> = keys.into_par_iter()
2018-05-12 12:42:27 -07:00
.map(|seed| {
2018-05-12 15:08:08 -07:00
let new: GenKeys2 = GenKeys2::new(&seed[..]);
2018-05-12 12:42:27 -07:00
let pkcs8 = KeyPair::generate_pkcs8(&new).unwrap().to_vec();
(pkcs8, tokens_per_user)
})
.collect();
users
}
}
2018-05-12 15:08:08 -07:00
impl SecureRandom for GenKeys2 {
fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified> {
2018-05-11 11:07:41 -07:00
let mut rng = self.generator.borrow_mut();
rng.fill_bytes(dest);
Ok(())
}
}
2018-05-12 15:08:08 -07:00
#[cfg(all(feature = "unstable", test))]
mod tests {
2018-05-12 15:08:08 -07:00
extern crate test;
use self::test::Bencher;
use super::*;
use std::collections::HashSet;
use std::iter::FromIterator;
2018-05-12 15:08:08 -07:00
#[bench]
fn bench_gen_keys(b: &mut Bencher) {
let seed: &[_] = &[1, 2, 3, 4];
let rnd = GenKeys::new(seed);
2018-05-12 15:18:18 -07:00
b.iter(|| rnd.gen_n_keys(1000, 1));
2018-05-12 15:08:08 -07:00
}
#[bench]
fn bench_gen_keys2(b: &mut Bencher) {
let seed: &[_] = &[1, 2, 3, 4];
let rnd = GenKeys2::new(seed);
2018-05-12 15:18:18 -07:00
b.iter(|| rnd.gen_n_keys(1000, 1));
2018-05-12 15:08:08 -07:00
}
#[test]
fn test_new_key_is_redundant() {
let seed: &[_] = &[1, 2, 3, 4];
let rnd = GenKeys::new(seed);
let rnd2 = GenKeys::new(seed);
for _ in 0..100 {
assert_eq!(rnd.new_key(), rnd2.new_key());
}
}
#[test]
fn test_gen_n_keys() {
let seed: &[_] = &[1, 2, 3, 4];
let rnd = GenKeys::new(seed);
let rnd2 = GenKeys::new(seed);
let users1 = rnd.gen_n_keys(50, 1);
let users2 = rnd2.gen_n_keys(50, 1);
let users1_set: HashSet<(Vec<u8>, i64)> = HashSet::from_iter(users1.iter().cloned());
let users2_set: HashSet<(Vec<u8>, i64)> = HashSet::from_iter(users2.iter().cloned());
assert_eq!(users1_set, users2_set);
}
}