Cost Model to limit transactions which are not parallelizeable (#16694)

* * Add following to banking_stage:
  1. CostModel as immutable ref shared between threads, to provide estimated cost for transactions.
  2. CostTracker which is shared between threads, tracks transaction costs for each block.

* replace hard coded program ID with id() calls

* Add Account Access Cost as part of TransactionCost. Account Access cost are weighted differently between read and write, signed and non-signed.

* Establish instruction_execution_cost_table, add function to update or insert instruction cost, unit tested. It is read-only for now; it allows Replay to insert realtime instruction execution costs to the table.

* add test for cost_tracker atomically try_add operation, serves as safety guard for future changes

* check cost against local copy of cost_tracker, return transactions that would exceed limit as unprocessed transaction to be buffered; only apply bank processed transactions cost to tracker;

* bencher to new banking_stage with max cost limit to allow cost model being hit consistently during bench iterations
This commit is contained in:
Tao Zhu 2021-06-01 09:16:17 -05:00 committed by GitHub
parent 31ce6faf83
commit b000d490ce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 1087 additions and 21 deletions

1
Cargo.lock generated
View File

@ -4421,6 +4421,7 @@ dependencies = [
"solana-banks-server",
"solana-clap-utils",
"solana-client",
"solana-config-program",
"solana-faucet",
"solana-frozen-abi 1.8.0",
"solana-frozen-abi-macro 1.8.0",

View File

@ -54,6 +54,7 @@ solana-account-decoder = { path = "../account-decoder", version = "=1.8.0" }
solana-banks-server = { path = "../banks-server", version = "=1.8.0" }
solana-clap-utils = { path = "../clap-utils", version = "=1.8.0" }
solana-client = { path = "../client", version = "=1.8.0" }
solana-config-program = { path = "../programs/config", version = "=1.8.0" }
solana-faucet = { path = "../faucet", version = "=1.8.0" }
solana-gossip = { path = "../gossip", version = "=1.8.0" }
solana-ledger = { path = "../ledger", version = "=1.8.0" }

View File

@ -8,6 +8,8 @@ use log::*;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use solana_core::banking_stage::{create_test_recorder, BankingStage, BankingStageStats};
use solana_core::cost_model::CostModel;
use solana_core::cost_tracker::CostTracker;
use solana_core::poh_recorder::WorkingBankEntry;
use solana_gossip::cluster_info::ClusterInfo;
use solana_gossip::cluster_info::Node;
@ -32,7 +34,7 @@ use solana_sdk::transaction::Transaction;
use std::collections::VecDeque;
use std::sync::atomic::Ordering;
use std::sync::mpsc::Receiver;
use std::sync::Arc;
use std::sync::{Arc, Mutex};
use std::time::{Duration, Instant};
use test::Bencher;
@ -91,6 +93,8 @@ fn bench_consume_buffered(bencher: &mut Bencher) {
None::<Box<dyn Fn()>>,
&BankingStageStats::default(),
&recorder,
&Arc::new(CostModel::default()),
&Arc::new(Mutex::new(CostTracker::new(std::u32::MAX, std::u32::MAX))),
);
});
@ -204,13 +208,15 @@ fn bench_banking(bencher: &mut Bencher, tx_type: TransactionType) {
let cluster_info = ClusterInfo::new_with_invalid_keypair(Node::new_localhost().info);
let cluster_info = Arc::new(cluster_info);
let (s, _r) = unbounded();
let _banking_stage = BankingStage::new(
let _banking_stage = BankingStage::new_with_cost_limit(
&cluster_info,
&poh_recorder,
verified_receiver,
vote_receiver,
None,
s,
std::u32::MAX,
std::u32::MAX,
);
poh_recorder.lock().unwrap().set_bank(&bank);

View File

@ -2,6 +2,8 @@
//! to contruct a software pipeline. The stage uses all available CPU cores and
//! can do its processing in parallel with signature verification on the GPU.
use crate::{
cost_model::{CostModel, ACCOUNT_MAX_COST, BLOCK_MAX_COST},
cost_tracker::CostTracker,
packet_hasher::PacketHasher,
poh_recorder::{PohRecorder, PohRecorderError, TransactionRecorder, WorkingBankEntry},
poh_service::{self, PohService},
@ -231,6 +233,35 @@ impl BankingStage {
transaction_status_sender: Option<TransactionStatusSender>,
gossip_vote_sender: ReplayVoteSender,
) -> Self {
Self::new_with_cost_limit(
cluster_info,
poh_recorder,
verified_receiver,
verified_vote_receiver,
transaction_status_sender,
gossip_vote_sender,
ACCOUNT_MAX_COST,
BLOCK_MAX_COST,
)
}
pub fn new_with_cost_limit(
cluster_info: &Arc<ClusterInfo>,
poh_recorder: &Arc<Mutex<PohRecorder>>,
verified_receiver: CrossbeamReceiver<Vec<Packets>>,
verified_vote_receiver: CrossbeamReceiver<Vec<Packets>>,
transaction_status_sender: Option<TransactionStatusSender>,
gossip_vote_sender: ReplayVoteSender,
account_cost_limit: u32,
block_cost_limit: u32,
) -> Self {
// shared immutable 'cost_model' that calcuates transaction costs
// shared mutex guarded 'cost_tracker' tracks bank's cost against configured limits.
let cost_model = Arc::new(CostModel::new(account_cost_limit, block_cost_limit));
let cost_tracker = Arc::new(Mutex::new(CostTracker::new(
cost_model.get_account_cost_limit(),
cost_model.get_block_cost_limit(),
)));
Self::new_num_threads(
cluster_info,
poh_recorder,
@ -239,6 +270,8 @@ impl BankingStage {
Self::num_threads(),
transaction_status_sender,
gossip_vote_sender,
&cost_model,
&cost_tracker,
)
}
@ -250,6 +283,8 @@ impl BankingStage {
num_threads: u32,
transaction_status_sender: Option<TransactionStatusSender>,
gossip_vote_sender: ReplayVoteSender,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> Self {
let batch_limit = TOTAL_BUFFERED_PACKETS / ((num_threads - 1) as usize * PACKETS_PER_BATCH);
// Single thread to generate entries from many banks.
@ -276,6 +311,8 @@ impl BankingStage {
let transaction_status_sender = transaction_status_sender.clone();
let gossip_vote_sender = gossip_vote_sender.clone();
let duplicates = duplicates.clone();
let cost_model = cost_model.clone();
let cost_tracker = cost_tracker.clone();
Builder::new()
.name("solana-banking-stage-tx".to_string())
.spawn(move || {
@ -291,6 +328,8 @@ impl BankingStage {
transaction_status_sender,
gossip_vote_sender,
&duplicates,
&cost_model,
&cost_tracker,
);
})
.unwrap()
@ -338,6 +377,11 @@ impl BankingStage {
has_more_unprocessed_transactions
}
fn reset_cost_tracker_if_new_bank(cost_tracker: &Arc<Mutex<CostTracker>>, bank_slot: Slot) {
cost_tracker.lock().unwrap().reset_if_new_bank(bank_slot);
}
#[allow(clippy::too_many_arguments)]
pub fn consume_buffered_packets(
my_pubkey: &Pubkey,
max_tx_ingestion_ns: u128,
@ -348,6 +392,8 @@ impl BankingStage {
test_fn: Option<impl Fn()>,
banking_stage_stats: &BankingStageStats,
recorder: &TransactionRecorder,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) {
let mut rebuffered_packets_len = 0;
let mut new_tx_count = 0;
@ -365,6 +411,8 @@ impl BankingStage {
&original_unprocessed_indexes,
my_pubkey,
*next_leader,
cost_model,
cost_tracker,
);
Self::update_buffered_packets_with_new_unprocessed(
original_unprocessed_indexes,
@ -373,6 +421,7 @@ impl BankingStage {
} else {
let bank_start = poh_recorder.lock().unwrap().bank_start();
if let Some((bank, bank_creation_time)) = bank_start {
Self::reset_cost_tracker_if_new_bank(cost_tracker, bank.slot());
let (processed, verified_txs_len, new_unprocessed_indexes) =
Self::process_packets_transactions(
&bank,
@ -383,6 +432,8 @@ impl BankingStage {
transaction_status_sender.clone(),
gossip_vote_sender,
banking_stage_stats,
cost_model,
cost_tracker,
);
if processed < verified_txs_len
|| !Bank::should_bank_still_be_processing_txs(
@ -485,6 +536,8 @@ impl BankingStage {
gossip_vote_sender: &ReplayVoteSender,
banking_stage_stats: &BankingStageStats,
recorder: &TransactionRecorder,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> BufferedPacketsDecision {
let bank_start;
let (
@ -495,6 +548,9 @@ impl BankingStage {
) = {
let poh = poh_recorder.lock().unwrap();
bank_start = poh.bank_start();
if let Some((ref bank, _)) = bank_start {
Self::reset_cost_tracker_if_new_bank(cost_tracker, bank.slot());
};
(
poh.leader_after_n_slots(FORWARD_TRANSACTIONS_TO_LEADER_AT_SLOT_OFFSET),
PohRecorder::get_bank_still_processing_txs(&bank_start),
@ -525,6 +581,8 @@ impl BankingStage {
None::<Box<dyn Fn()>>,
banking_stage_stats,
recorder,
cost_model,
cost_tracker,
);
}
BufferedPacketsDecision::Forward => {
@ -595,6 +653,8 @@ impl BankingStage {
transaction_status_sender: Option<TransactionStatusSender>,
gossip_vote_sender: ReplayVoteSender,
duplicates: &Arc<Mutex<(LruCache<u64, ()>, PacketHasher)>>,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) {
let recorder = poh_recorder.lock().unwrap().recorder();
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
@ -613,6 +673,8 @@ impl BankingStage {
&gossip_vote_sender,
&banking_stage_stats,
&recorder,
cost_model,
cost_tracker,
);
if matches!(decision, BufferedPacketsDecision::Hold)
|| matches!(decision, BufferedPacketsDecision::ForwardAndHold)
@ -647,6 +709,8 @@ impl BankingStage {
&banking_stage_stats,
duplicates,
&recorder,
cost_model,
cost_tracker,
) {
Ok(()) | Err(RecvTimeoutError::Timeout) => (),
Err(RecvTimeoutError::Disconnected) => break,
@ -893,12 +957,12 @@ impl BankingStage {
) -> (usize, Vec<usize>) {
let mut chunk_start = 0;
let mut unprocessed_txs = vec![];
while chunk_start != transactions.len() {
let chunk_end = std::cmp::min(
transactions.len(),
chunk_start + MAX_NUM_TRANSACTIONS_PER_BATCH,
);
let (result, retryable_txs_in_chunk) = Self::process_and_record_transactions(
bank,
&transactions[chunk_start..chunk_end],
@ -981,12 +1045,21 @@ impl BankingStage {
// This function deserializes packets into transactions, computes the blake3 hash of transaction messages,
// and verifies secp256k1 instructions. A list of valid transactions are returned with their message hashes
// and packet indexes.
// Also returned is packet indexes for transaction should be retried due to cost limits.
fn transactions_from_packets(
msgs: &Packets,
transaction_indexes: &[usize],
secp256k1_program_enabled: bool,
) -> (Vec<HashedTransaction<'static>>, Vec<usize>) {
transaction_indexes
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> (Vec<HashedTransaction<'static>>, Vec<usize>, Vec<usize>) {
// Making a snapshot of shared cost_tracker by clone(), drop lock immediately.
// Local copy `cost_tracker` is used to filter transactions by cost.
// Shared cost_tracker is updated later by processed transactions confirmed by bank.
let mut cost_tracker = cost_tracker.lock().unwrap().clone();
let mut retryable_transaction_packet_indexes: Vec<usize> = vec![];
let (filtered_transactions, filter_transaction_packet_indexes) = transaction_indexes
.iter()
.filter_map(|tx_index| {
let p = &msgs.packets[*tx_index];
@ -994,6 +1067,19 @@ impl BankingStage {
if secp256k1_program_enabled {
tx.verify_precompiles().ok()?;
}
// Get transaction cost via immutable cost_model; try to add cost to
// local copy of cost_tracker, if suceeded, local copy is updated
// and transaction added to valid list; otherwise, transaction is
// added to retry list. No locking here.
let tx_cost = cost_model.calculate_cost(&tx);
let result = cost_tracker.try_add(tx_cost);
if result.is_err() {
debug!("transaction {:?} would exceed limit: {:?}", tx, result);
retryable_transaction_packet_indexes.push(*tx_index);
return None;
}
let message_bytes = Self::packet_message(p)?;
let message_hash = Message::hash_raw_message(message_bytes);
Some((
@ -1001,7 +1087,13 @@ impl BankingStage {
tx_index,
))
})
.unzip()
.unzip();
(
filtered_transactions,
filter_transaction_packet_indexes,
retryable_transaction_packet_indexes,
)
}
/// This function filters pending packets that are still valid
@ -1043,6 +1135,7 @@ impl BankingStage {
Self::filter_valid_transaction_indexes(&results, transaction_to_packet_indexes)
}
#[allow(clippy::too_many_arguments)]
fn process_packets_transactions(
bank: &Arc<Bank>,
bank_creation_time: &Instant,
@ -1052,19 +1145,25 @@ impl BankingStage {
transaction_status_sender: Option<TransactionStatusSender>,
gossip_vote_sender: &ReplayVoteSender,
banking_stage_stats: &BankingStageStats,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> (usize, usize, Vec<usize>) {
let mut packet_conversion_time = Measure::start("packet_conversion");
let (transactions, transaction_to_packet_indexes) = Self::transactions_from_packets(
msgs,
&packet_indexes,
bank.secp256k1_program_enabled(),
);
let (transactions, transaction_to_packet_indexes, retryable_packet_indexes) =
Self::transactions_from_packets(
msgs,
&packet_indexes,
bank.secp256k1_program_enabled(),
cost_model,
cost_tracker,
);
packet_conversion_time.stop();
debug!(
"bank: {} filtered transactions {}",
"bank: {} filtered transactions {} cost limited transactions {}",
bank.slot(),
transactions.len()
transactions.len(),
retryable_packet_indexes.len()
);
let tx_len = transactions.len();
@ -1079,11 +1178,20 @@ impl BankingStage {
gossip_vote_sender,
);
process_tx_time.stop();
let unprocessed_tx_count = unprocessed_tx_indexes.len();
// applying cost of processed transactions to shared cost_tracker
transactions.iter().enumerate().for_each(|(index, tx)| {
if !unprocessed_tx_indexes.iter().any(|&i| i == index) {
let tx_cost = cost_model.calculate_cost(&tx.transaction());
let mut guard = cost_tracker.lock().unwrap();
let _result = guard.try_add(tx_cost);
drop(guard);
}
});
let mut filter_pending_packets_time = Measure::start("filter_pending_packets_time");
let filtered_unprocessed_packet_indexes = Self::filter_pending_packets_from_pending_txs(
let mut filtered_unprocessed_packet_indexes = Self::filter_pending_packets_from_pending_txs(
bank,
&transactions,
&transaction_to_packet_indexes,
@ -1091,6 +1199,10 @@ impl BankingStage {
);
filter_pending_packets_time.stop();
// combine cost-related unprocessed transactions with bank determined unprocessed for
// buffering
filtered_unprocessed_packet_indexes.extend(retryable_packet_indexes);
inc_new_counter_info!(
"banking_stage-dropped_tx_before_forwarding",
unprocessed_tx_count.saturating_sub(filtered_unprocessed_packet_indexes.len())
@ -1115,6 +1227,8 @@ impl BankingStage {
transaction_indexes: &[usize],
my_pubkey: &Pubkey,
next_leader: Option<Pubkey>,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> Vec<usize> {
// Check if we are the next leader. If so, let's not filter the packets
// as we'll filter it again while processing the packets.
@ -1125,22 +1239,27 @@ impl BankingStage {
}
}
let (transactions, transaction_to_packet_indexes) = Self::transactions_from_packets(
msgs,
&transaction_indexes,
bank.secp256k1_program_enabled(),
);
let (transactions, transaction_to_packet_indexes, retry_packet_indexes) =
Self::transactions_from_packets(
msgs,
&transaction_indexes,
bank.secp256k1_program_enabled(),
cost_model,
cost_tracker,
);
let tx_count = transaction_to_packet_indexes.len();
let unprocessed_tx_indexes = (0..transactions.len()).collect_vec();
let filtered_unprocessed_packet_indexes = Self::filter_pending_packets_from_pending_txs(
let mut filtered_unprocessed_packet_indexes = Self::filter_pending_packets_from_pending_txs(
bank,
&transactions,
&transaction_to_packet_indexes,
&unprocessed_tx_indexes,
);
filtered_unprocessed_packet_indexes.extend(retry_packet_indexes);
inc_new_counter_info!(
"banking_stage-dropped_tx_before_forwarding",
tx_count.saturating_sub(filtered_unprocessed_packet_indexes.len())
@ -1180,6 +1299,8 @@ impl BankingStage {
banking_stage_stats: &BankingStageStats,
duplicates: &Arc<Mutex<(LruCache<u64, ()>, PacketHasher)>>,
recorder: &TransactionRecorder,
cost_model: &Arc<CostModel>,
cost_tracker: &Arc<Mutex<CostTracker>>,
) -> Result<(), RecvTimeoutError> {
let mut recv_time = Measure::start("process_packets_recv");
let mms = verified_receiver.recv_timeout(recv_timeout)?;
@ -1218,6 +1339,7 @@ impl BankingStage {
continue;
}
let (bank, bank_creation_time) = bank_start.unwrap();
Self::reset_cost_tracker_if_new_bank(cost_tracker, bank.slot());
let (processed, verified_txs_len, unprocessed_indexes) =
Self::process_packets_transactions(
@ -1229,6 +1351,8 @@ impl BankingStage {
transaction_status_sender.clone(),
gossip_vote_sender,
banking_stage_stats,
cost_model,
cost_tracker,
);
new_tx_count += processed;
@ -1259,6 +1383,8 @@ impl BankingStage {
&packet_indexes,
&my_pubkey,
next_leader,
cost_model,
cost_tracker,
);
Self::push_unprocessed(
buffered_packets,
@ -1751,6 +1877,11 @@ mod tests {
2,
None,
gossip_vote_sender,
&Arc::new(CostModel::default()),
&Arc::new(Mutex::new(CostTracker::new(
ACCOUNT_MAX_COST,
BLOCK_MAX_COST,
))),
);
// wait for banking_stage to eat the packets
@ -2571,6 +2702,11 @@ mod tests {
None::<Box<dyn Fn()>>,
&BankingStageStats::default(),
&recorder,
&Arc::new(CostModel::default()),
&Arc::new(Mutex::new(CostTracker::new(
ACCOUNT_MAX_COST,
BLOCK_MAX_COST,
))),
);
assert_eq!(buffered_packets[0].1.len(), num_conflicting_transactions);
// When the poh recorder has a bank, should process all non conflicting buffered packets.
@ -2587,6 +2723,11 @@ mod tests {
None::<Box<dyn Fn()>>,
&BankingStageStats::default(),
&recorder,
&Arc::new(CostModel::default()),
&Arc::new(Mutex::new(CostTracker::new(
ACCOUNT_MAX_COST,
BLOCK_MAX_COST,
))),
);
if num_expected_unprocessed == 0 {
assert!(buffered_packets.is_empty())
@ -2652,6 +2793,11 @@ mod tests {
test_fn,
&BankingStageStats::default(),
&recorder,
&Arc::new(CostModel::default()),
&Arc::new(Mutex::new(CostTracker::new(
ACCOUNT_MAX_COST,
BLOCK_MAX_COST,
))),
);
// Check everything is correct. All indexes after `interrupted_iteration`

554
core/src/cost_model.rs Normal file
View File

@ -0,0 +1,554 @@
//! 'cost_model` provides service to estimate a transaction's cost
//! It does so by analyzing accounts the transaction touches, and instructions
//! it includes. Using historical data as guideline, it estimates cost of
//! reading/writing account, the sum of that comes up to "account access cost";
//! Instructions take time to execute, both historical and runtime data are
//! used to determine each instruction's execution time, the sum of that
//! is transaction's "execution cost"
//! The main function is `calculate_cost` which returns a TransactionCost struct.
//!
use log::*;
use solana_sdk::{
bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable, feature, incinerator,
message::Message, native_loader, pubkey::Pubkey, secp256k1_program, system_program,
transaction::Transaction,
};
use std::collections::HashMap;
// from mainnet-beta data, taking `vote program` as 1 COST_UNIT to load and execute
// amount all type programs, the costs are:
// min: 0.9 COST_UNIT
// max: 110 COST UNIT
// Median: 12 COST_UNIT
// Average: 19 COST_UNIT
const COST_UNIT: u32 = 1;
const DEFAULT_PROGRAM_COST: u32 = COST_UNIT * 100;
// re-adjust these numbers if needed
const SIGNED_WRITABLE_ACCOUNT_ACCESS_COST: u32 = COST_UNIT * 10;
const SIGNED_READONLY_ACCOUNT_ACCESS_COST: u32 = COST_UNIT * 2;
const NON_SIGNED_WRITABLE_ACCOUNT_ACCESS_COST: u32 = COST_UNIT * 5;
const NON_SIGNED_READONLY_ACCOUNT_ACCESS_COST: u32 = COST_UNIT;
// running 'ledger-tool compute-cost' over mainnet ledger, the largest block cost
// is 575_687, and the largest chain cost (eg account cost) is 559_000
// Configuring cost model to have larger block limit and smaller account limit
// to encourage packing parallelizable transactions in block.
pub const ACCOUNT_MAX_COST: u32 = COST_UNIT * 10_000;
pub const BLOCK_MAX_COST: u32 = COST_UNIT * 10_000_000;
// cost of transaction is made of account_access_cost and instruction execution_cost
// where
// account_access_cost is the sum of read/write/sign all accounts included in the transaction
// read is cheaper than write.
// execution_cost is the sum of all instructions execution cost, which is
// observed during runtime and feedback by Replay
#[derive(Default, Debug)]
pub struct TransactionCost {
pub writable_accounts: Vec<Pubkey>,
pub account_access_cost: u32,
pub execution_cost: u32,
}
// instruction execution code table is initialized with default values, and
// updated with realtime information (by Replay)
#[derive(Debug)]
struct InstructionExecutionCostTable {
pub table: HashMap<Pubkey, u32>,
}
macro_rules! costmetrics {
($( $key: expr => $val: expr ),*) => {{
let mut hashmap: HashMap< Pubkey, u32 > = HashMap::new();
$( hashmap.insert( $key, $val); )*
hashmap
}}
}
impl InstructionExecutionCostTable {
// build cost table with default value
pub fn new() -> Self {
Self {
table: costmetrics![
solana_config_program::id() => COST_UNIT,
feature::id() => COST_UNIT * 2,
incinerator::id() => COST_UNIT * 2,
native_loader::id() => COST_UNIT * 2,
solana_stake_program::id() => COST_UNIT * 2,
solana_stake_program::config::id() => COST_UNIT,
solana_vote_program::id() => COST_UNIT,
secp256k1_program::id() => COST_UNIT,
system_program::id() => COST_UNIT * 8,
bpf_loader::id() => COST_UNIT * 500,
bpf_loader_deprecated::id() => COST_UNIT * 500,
bpf_loader_upgradeable::id() => COST_UNIT * 500
],
}
}
}
#[derive(Debug)]
pub struct CostModel {
account_cost_limit: u32,
block_cost_limit: u32,
instruction_execution_cost_table: InstructionExecutionCostTable,
}
impl Default for CostModel {
fn default() -> Self {
CostModel::new(ACCOUNT_MAX_COST, BLOCK_MAX_COST)
}
}
impl CostModel {
pub fn new(chain_max: u32, block_max: u32) -> Self {
Self {
account_cost_limit: chain_max,
block_cost_limit: block_max,
instruction_execution_cost_table: InstructionExecutionCostTable::new(),
}
}
pub fn get_account_cost_limit(&self) -> u32 {
self.account_cost_limit
}
pub fn get_block_cost_limit(&self) -> u32 {
self.block_cost_limit
}
pub fn calculate_cost(&self, transaction: &Transaction) -> TransactionCost {
let (
signed_writable_accounts,
signed_readonly_accounts,
non_signed_writable_accounts,
non_signed_readonly_accounts,
) = CostModel::sort_accounts_by_type(transaction.message());
let mut cost = TransactionCost {
writable_accounts: vec![],
account_access_cost: CostModel::find_account_access_cost(
&signed_writable_accounts,
&signed_readonly_accounts,
&non_signed_writable_accounts,
&non_signed_readonly_accounts,
),
execution_cost: self.find_transaction_cost(&transaction),
};
cost.writable_accounts.extend(&signed_writable_accounts);
cost.writable_accounts.extend(&non_signed_writable_accounts);
debug!("transaction {:?} has cost {:?}", transaction, cost);
cost
}
// To update or insert instruction cost to table.
// When updating, uses the average of new and old values to smooth out outliers
pub fn upsert_instruction_cost(
&mut self,
program_key: &Pubkey,
cost: &u32,
) -> Result<u32, &'static str> {
let instruction_cost = self
.instruction_execution_cost_table
.table
.entry(*program_key)
.or_insert(*cost);
*instruction_cost = (*instruction_cost + *cost) / 2;
Ok(*instruction_cost)
}
fn find_instruction_cost(&self, program_key: &Pubkey) -> u32 {
match self
.instruction_execution_cost_table
.table
.get(&program_key)
{
Some(cost) => *cost,
None => {
debug!(
"Program key {:?} does not have assigned cost, using default {}",
program_key, DEFAULT_PROGRAM_COST
);
DEFAULT_PROGRAM_COST
}
}
}
fn find_transaction_cost(&self, transaction: &Transaction) -> u32 {
let mut cost: u32 = 0;
for instruction in &transaction.message().instructions {
let program_id =
transaction.message().account_keys[instruction.program_id_index as usize];
let instruction_cost = self.find_instruction_cost(&program_id);
trace!(
"instruction {:?} has cost of {}",
instruction,
instruction_cost
);
cost += instruction_cost;
}
cost
}
fn find_account_access_cost(
signed_writable_accounts: &[Pubkey],
signed_readonly_accounts: &[Pubkey],
non_signed_writable_accounts: &[Pubkey],
non_signed_readonly_accounts: &[Pubkey],
) -> u32 {
let mut cost = 0;
cost += signed_writable_accounts.len() as u32 * SIGNED_WRITABLE_ACCOUNT_ACCESS_COST;
cost += signed_readonly_accounts.len() as u32 * SIGNED_READONLY_ACCOUNT_ACCESS_COST;
cost += non_signed_writable_accounts.len() as u32 * NON_SIGNED_WRITABLE_ACCOUNT_ACCESS_COST;
cost += non_signed_readonly_accounts.len() as u32 * NON_SIGNED_READONLY_ACCOUNT_ACCESS_COST;
cost
}
fn sort_accounts_by_type(
message: &Message,
) -> (Vec<Pubkey>, Vec<Pubkey>, Vec<Pubkey>, Vec<Pubkey>) {
let demote_sysvar_write_locks = true;
let mut signer_writable: Vec<Pubkey> = vec![];
let mut signer_readonly: Vec<Pubkey> = vec![];
let mut non_signer_writable: Vec<Pubkey> = vec![];
let mut non_signer_readonly: Vec<Pubkey> = vec![];
message.account_keys.iter().enumerate().for_each(|(i, k)| {
let is_signer = message.is_signer(i);
let is_writable = message.is_writable(i, demote_sysvar_write_locks);
if is_signer && is_writable {
signer_writable.push(*k);
} else if is_signer && !is_writable {
signer_readonly.push(*k);
} else if !is_signer && is_writable {
non_signer_writable.push(*k);
} else {
non_signer_readonly.push(*k);
}
});
(
signer_writable,
signer_readonly,
non_signer_writable,
non_signer_readonly,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_runtime::{
bank::Bank,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
};
use solana_sdk::{
hash::Hash,
instruction::CompiledInstruction,
message::Message,
signature::{Keypair, Signer},
system_instruction::{self},
system_transaction,
};
use std::{
str::FromStr,
sync::{Arc, RwLock},
thread::{self, JoinHandle},
};
fn test_setup() -> (Keypair, Hash) {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(10);
let bank = Arc::new(Bank::new_no_wallclock_throttle(&genesis_config));
let start_hash = bank.last_blockhash();
(mint_keypair, start_hash)
}
#[test]
fn test_cost_model_instruction_cost() {
let testee = CostModel::default();
// find cost for known programs
assert_eq!(
COST_UNIT,
testee.find_instruction_cost(
&Pubkey::from_str("Vote111111111111111111111111111111111111111").unwrap()
)
);
assert_eq!(
COST_UNIT * 500,
testee.find_instruction_cost(&bpf_loader::id())
);
// unknown program is assigned with default cost
assert_eq!(
DEFAULT_PROGRAM_COST,
testee.find_instruction_cost(
&Pubkey::from_str("unknown111111111111111111111111111111111111").unwrap()
)
);
}
#[test]
fn test_cost_model_simple_transaction() {
let (mint_keypair, start_hash) = test_setup();
let keypair = Keypair::new();
let simple_transaction =
system_transaction::transfer(&mint_keypair, &keypair.pubkey(), 2, start_hash);
debug!(
"system_transaction simple_transaction {:?}",
simple_transaction
);
// expected cost for one system transfer instructions
let expected_cost = COST_UNIT * 8;
let testee = CostModel::default();
assert_eq!(
expected_cost,
testee.find_transaction_cost(&simple_transaction)
);
}
#[test]
fn test_cost_model_transaction_many_transfer_instructions() {
let (mint_keypair, start_hash) = test_setup();
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let instructions =
system_instruction::transfer_many(&mint_keypair.pubkey(), &[(key1, 1), (key2, 1)]);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let tx = Transaction::new(&[&mint_keypair], message, start_hash);
debug!("many transfer transaction {:?}", tx);
// expected cost for two system transfer instructions
let expected_cost = COST_UNIT * 8 * 2;
let testee = CostModel::default();
assert_eq!(expected_cost, testee.find_transaction_cost(&tx));
}
#[test]
fn test_cost_model_message_many_different_instructions() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
);
debug!("many random transaction {:?}", tx);
// expected cost for two random/unknown program is
let expected_cost = DEFAULT_PROGRAM_COST * 2;
let testee = CostModel::default();
assert_eq!(expected_cost, testee.find_transaction_cost(&tx));
}
#[test]
fn test_cost_model_sort_message_accounts_by_type() {
// construct a transaction with two random instructions with same signer
let signer1 = Keypair::new();
let signer2 = Keypair::new();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let prog1 = Pubkey::new_unique();
let prog2 = Pubkey::new_unique();
let instructions = vec![
CompiledInstruction::new(4, &(), vec![0, 2]),
CompiledInstruction::new(5, &(), vec![1, 3]),
];
let tx = Transaction::new_with_compiled_instructions(
&[&signer1, &signer2],
&[key1, key2],
Hash::new_unique(),
vec![prog1, prog2],
instructions,
);
debug!("many random transaction {:?}", tx);
let (
signed_writable_accounts,
signed_readonly_accounts,
non_signed_writable_accounts,
non_signed_readonly_accounts,
) = CostModel::sort_accounts_by_type(tx.message());
assert_eq!(2, signed_writable_accounts.len());
assert_eq!(signer1.pubkey(), signed_writable_accounts[0]);
assert_eq!(signer2.pubkey(), signed_writable_accounts[1]);
assert_eq!(0, signed_readonly_accounts.len());
assert_eq!(2, non_signed_writable_accounts.len());
assert_eq!(key1, non_signed_writable_accounts[0]);
assert_eq!(key2, non_signed_writable_accounts[1]);
assert_eq!(2, non_signed_readonly_accounts.len());
assert_eq!(prog1, non_signed_readonly_accounts[0]);
assert_eq!(prog2, non_signed_readonly_accounts[1]);
}
#[test]
fn test_cost_model_insert_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let mut cost_model = CostModel::default();
// Using default cost for unknown instruction
assert_eq!(
DEFAULT_PROGRAM_COST,
cost_model.find_instruction_cost(&key1)
);
// insert instruction cost to table
assert!(cost_model.upsert_instruction_cost(&key1, &cost1).is_ok());
// now it is known insturction with known cost
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_calculate_cost() {
let (mint_keypair, start_hash) = test_setup();
let tx =
system_transaction::transfer(&mint_keypair, &Keypair::new().pubkey(), 2, start_hash);
let expected_account_cost = SIGNED_WRITABLE_ACCOUNT_ACCESS_COST
+ NON_SIGNED_WRITABLE_ACCOUNT_ACCESS_COST
+ NON_SIGNED_READONLY_ACCOUNT_ACCESS_COST;
let expected_execution_cost = COST_UNIT * 8;
let cost_model = CostModel::default();
let tx_cost = cost_model.calculate_cost(&tx);
assert_eq!(expected_account_cost, tx_cost.account_access_cost);
assert_eq!(expected_execution_cost, tx_cost.execution_cost);
assert_eq!(2, tx_cost.writable_accounts.len());
}
#[test]
fn test_cost_model_update_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let cost2 = 200;
let updated_cost = (cost1 + cost2) / 2;
let mut cost_model = CostModel::default();
// insert instruction cost to table
assert!(cost_model.upsert_instruction_cost(&key1, &cost1).is_ok());
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
// update instruction cost
assert!(cost_model.upsert_instruction_cost(&key1, &cost2).is_ok());
assert_eq!(updated_cost, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_can_be_shared_concurrently_as_immutable() {
let (mint_keypair, start_hash) = test_setup();
let number_threads = 10;
let expected_account_cost = SIGNED_WRITABLE_ACCOUNT_ACCESS_COST
+ NON_SIGNED_WRITABLE_ACCOUNT_ACCESS_COST
+ NON_SIGNED_READONLY_ACCOUNT_ACCESS_COST;
let expected_execution_cost = COST_UNIT * 8;
let cost_model = Arc::new(CostModel::default());
let thread_handlers: Vec<JoinHandle<()>> = (0..number_threads)
.map(|_| {
// each thread creates its own simple transaction
let simple_transaction = system_transaction::transfer(
&mint_keypair,
&Keypair::new().pubkey(),
2,
start_hash,
);
let cost_model = cost_model.clone();
thread::spawn(move || {
let tx_cost = cost_model.calculate_cost(&simple_transaction);
assert_eq!(2, tx_cost.writable_accounts.len());
assert_eq!(expected_account_cost, tx_cost.account_access_cost);
assert_eq!(expected_execution_cost, tx_cost.execution_cost);
})
})
.collect();
for th in thread_handlers {
th.join().unwrap();
}
}
#[test]
fn test_cost_model_can_be_shared_concurrently_with_rwlock() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = Arc::new(Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
));
let number_threads = 10;
let expected_account_cost = SIGNED_WRITABLE_ACCOUNT_ACCESS_COST
+ NON_SIGNED_WRITABLE_ACCOUNT_ACCESS_COST * 2
+ NON_SIGNED_READONLY_ACCOUNT_ACCESS_COST * 2;
let cost1 = 100;
let cost2 = 200;
// execution cost can be either 2 * Default (before write) or cost1+cost2 (after write)
let expected_execution_cost = Arc::new(vec![cost1 + cost2, DEFAULT_PROGRAM_COST * 2]);
let cost_model: Arc<RwLock<CostModel>> = Arc::new(RwLock::new(CostModel::default()));
let thread_handlers: Vec<JoinHandle<()>> = (0..number_threads)
.map(|i| {
let cost_model = cost_model.clone();
let tx = tx.clone();
let expected_execution_cost = expected_execution_cost.clone();
if i == 5 {
thread::spawn(move || {
let mut cost_model = cost_model.write().unwrap();
assert!(cost_model.upsert_instruction_cost(&prog1, &cost1).is_ok());
assert!(cost_model.upsert_instruction_cost(&prog2, &cost2).is_ok());
})
} else {
thread::spawn(move || {
let tx_cost = cost_model.read().unwrap().calculate_cost(&tx);
assert_eq!(3, tx_cost.writable_accounts.len());
assert_eq!(expected_account_cost, tx_cost.account_access_cost);
assert!(expected_execution_cost.contains(&tx_cost.execution_cost));
})
}
})
.collect();
for th in thread_handlers {
th.join().unwrap();
}
}
}

356
core/src/cost_tracker.rs Normal file
View File

@ -0,0 +1,356 @@
//! `cost_tracker` keeps tracking tranasction cost per chained accounts as well as for entire block
//! The main entry function is 'try_add', if success, it returns new block cost.
//!
use crate::cost_model::TransactionCost;
use solana_sdk::{clock::Slot, pubkey::Pubkey};
use std::collections::HashMap;
#[derive(Debug, Clone)]
pub struct CostTracker {
account_cost_limit: u32,
block_cost_limit: u32,
current_bank_slot: Slot,
cost_by_writable_accounts: HashMap<Pubkey, u32>,
block_cost: u32,
}
impl CostTracker {
pub fn new(chain_max: u32, package_max: u32) -> Self {
assert!(chain_max <= package_max);
Self {
account_cost_limit: chain_max,
block_cost_limit: package_max,
current_bank_slot: 0,
cost_by_writable_accounts: HashMap::new(),
block_cost: 0,
}
}
pub fn reset_if_new_bank(&mut self, slot: Slot) {
if slot != self.current_bank_slot {
self.current_bank_slot = slot;
self.cost_by_writable_accounts.clear();
self.block_cost = 0;
}
}
pub fn try_add(&mut self, transaction_cost: TransactionCost) -> Result<u32, &'static str> {
let cost = transaction_cost.account_access_cost + transaction_cost.execution_cost;
self.would_fit(&transaction_cost.writable_accounts, &cost)?;
self.add_transaction(&transaction_cost.writable_accounts, &cost);
Ok(self.block_cost)
}
fn would_fit(&self, keys: &[Pubkey], cost: &u32) -> Result<(), &'static str> {
// check against the total package cost
if self.block_cost + cost > self.block_cost_limit {
return Err("would exceed block cost limit");
}
// check if the transaction itself is more costly than the account_cost_limit
if *cost > self.account_cost_limit {
return Err("Transaction is too expansive, exceeds account cost limit");
}
// check each account against account_cost_limit,
for account_key in keys.iter() {
match self.cost_by_writable_accounts.get(&account_key) {
Some(chained_cost) => {
if chained_cost + cost > self.account_cost_limit {
return Err("would exceed account cost limit");
} else {
continue;
}
}
None => continue,
}
}
Ok(())
}
fn add_transaction(&mut self, keys: &[Pubkey], cost: &u32) {
for account_key in keys.iter() {
*self
.cost_by_writable_accounts
.entry(*account_key)
.or_insert(0) += cost;
}
self.block_cost += cost;
}
}
// CostStats can be collected by util, such as ledger_tool
#[derive(Default, Debug)]
pub struct CostStats {
pub total_cost: u32,
pub number_of_accounts: usize,
pub costliest_account: Pubkey,
pub costliest_account_cost: u32,
}
impl CostTracker {
pub fn get_stats(&self) -> CostStats {
let mut stats = CostStats {
total_cost: self.block_cost,
number_of_accounts: self.cost_by_writable_accounts.len(),
costliest_account: Pubkey::default(),
costliest_account_cost: 0,
};
for (key, cost) in self.cost_by_writable_accounts.iter() {
if cost > &stats.costliest_account_cost {
stats.costliest_account = *key;
stats.costliest_account_cost = *cost;
}
}
stats
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_runtime::{
bank::Bank,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
};
use solana_sdk::{
hash::Hash,
signature::{Keypair, Signer},
system_transaction,
transaction::Transaction,
};
use std::{cmp, sync::Arc};
fn test_setup() -> (Keypair, Hash) {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(10);
let bank = Arc::new(Bank::new_no_wallclock_throttle(&genesis_config));
let start_hash = bank.last_blockhash();
(mint_keypair, start_hash)
}
fn build_simple_transaction(
mint_keypair: &Keypair,
start_hash: &Hash,
) -> (Transaction, Vec<Pubkey>, u32) {
let keypair = Keypair::new();
let simple_transaction =
system_transaction::transfer(&mint_keypair, &keypair.pubkey(), 2, *start_hash);
(simple_transaction, vec![mint_keypair.pubkey()], 5)
}
#[test]
fn test_cost_tracker_initialization() {
let testee = CostTracker::new(10, 11);
assert_eq!(10, testee.account_cost_limit);
assert_eq!(11, testee.block_cost_limit);
assert_eq!(0, testee.cost_by_writable_accounts.len());
assert_eq!(0, testee.block_cost);
}
#[test]
fn test_cost_tracker_ok_add_one() {
let (mint_keypair, start_hash) = test_setup();
let (_tx, keys, cost) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for one simple transaction
let mut testee = CostTracker::new(cost, cost);
assert!(testee.would_fit(&keys, &cost).is_ok());
testee.add_transaction(&keys, &cost);
assert_eq!(cost, testee.block_cost);
}
#[test]
fn test_cost_tracker_ok_add_two_same_accounts() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, with same accounts
let mut testee = CostTracker::new(cost1 + cost2, cost1 + cost2);
{
assert!(testee.would_fit(&keys1, &cost1).is_ok());
testee.add_transaction(&keys1, &cost1);
}
{
assert!(testee.would_fit(&keys2, &cost2).is_ok());
testee.add_transaction(&keys2, &cost2);
}
assert_eq!(cost1 + cost2, testee.block_cost);
assert_eq!(1, testee.cost_by_writable_accounts.len());
}
#[test]
fn test_cost_tracker_ok_add_two_diff_accounts() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with diff accounts
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let second_account = Keypair::new();
let (_tx2, keys2, cost2) = build_simple_transaction(&second_account, &start_hash);
// build testee to have capacity for two simple transactions, with same accounts
let mut testee = CostTracker::new(cmp::max(cost1, cost2), cost1 + cost2);
{
assert!(testee.would_fit(&keys1, &cost1).is_ok());
testee.add_transaction(&keys1, &cost1);
}
{
assert!(testee.would_fit(&keys2, &cost2).is_ok());
testee.add_transaction(&keys2, &cost2);
}
assert_eq!(cost1 + cost2, testee.block_cost);
assert_eq!(2, testee.cost_by_writable_accounts.len());
}
#[test]
fn test_cost_tracker_chain_reach_limit() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, but not for same accounts
let mut testee = CostTracker::new(cmp::min(cost1, cost2), cost1 + cost2);
// should have room for first transaction
{
assert!(testee.would_fit(&keys1, &cost1).is_ok());
testee.add_transaction(&keys1, &cost1);
}
// but no more sapce on the same chain (same signer account)
{
assert!(testee.would_fit(&keys2, &cost2).is_err());
}
}
#[test]
fn test_cost_tracker_reach_limit() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with diff accounts
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let second_account = Keypair::new();
let (_tx2, keys2, cost2) = build_simple_transaction(&second_account, &start_hash);
// build testee to have capacity for each chain, but not enough room for both transactions
let mut testee = CostTracker::new(cmp::max(cost1, cost2), cost1 + cost2 - 1);
// should have room for first transaction
{
assert!(testee.would_fit(&keys1, &cost1).is_ok());
testee.add_transaction(&keys1, &cost1);
}
// but no more room for package as whole
{
assert!(testee.would_fit(&keys2, &cost2).is_err());
}
}
#[test]
fn test_cost_tracker_reset() {
let (mint_keypair, start_hash) = test_setup();
// build two transactions with same signed account
let (_tx1, keys1, cost1) = build_simple_transaction(&mint_keypair, &start_hash);
let (_tx2, keys2, cost2) = build_simple_transaction(&mint_keypair, &start_hash);
// build testee to have capacity for two simple transactions, but not for same accounts
let mut testee = CostTracker::new(cmp::min(cost1, cost2), cost1 + cost2);
// should have room for first transaction
{
assert!(testee.would_fit(&keys1, &cost1).is_ok());
testee.add_transaction(&keys1, &cost1);
assert_eq!(1, testee.cost_by_writable_accounts.len());
assert_eq!(cost1, testee.block_cost);
}
// but no more sapce on the same chain (same signer account)
{
assert!(testee.would_fit(&keys2, &cost2).is_err());
}
// reset the tracker
{
testee.reset_if_new_bank(100);
assert_eq!(0, testee.cost_by_writable_accounts.len());
assert_eq!(0, testee.block_cost);
}
//now the second transaction can be added
{
assert!(testee.would_fit(&keys2, &cost2).is_ok());
}
}
#[test]
fn test_cost_tracker_try_add_is_atomic() {
let acct1 = Pubkey::new_unique();
let acct2 = Pubkey::new_unique();
let acct3 = Pubkey::new_unique();
let cost = 100;
let account_max = cost * 2;
let block_max = account_max * 3; // for three accts
let mut testee = CostTracker::new(account_max, block_max);
// case 1: a tx writes to 3 accounts, should success, we will have:
// | acct1 | $cost |
// | acct2 | $cost |
// | acct2 | $cost |
// and block_cost = $cost
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct1, acct2, acct3],
account_access_cost: 0,
execution_cost: cost,
};
assert!(testee.try_add(tx_cost).is_ok());
let stat = testee.get_stats();
assert_eq!(cost, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost, stat.costliest_account_cost);
}
// case 2: add tx writes to acct2 with $cost, should succeed, result to
// | acct1 | $cost |
// | acct2 | $cost * 2 |
// | acct2 | $cost |
// and block_cost = $cost * 2
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct2],
account_access_cost: 0,
execution_cost: cost,
};
assert!(testee.try_add(tx_cost).is_ok());
let stat = testee.get_stats();
assert_eq!(cost * 2, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost * 2, stat.costliest_account_cost);
assert_eq!(acct2, stat.costliest_account);
}
// case 3: add tx writes to [acct1, acct2], acct2 exceeds limit, should failed atomically,
// we shoudl still have:
// | acct1 | $cost |
// | acct2 | $cost |
// | acct2 | $cost |
// and block_cost = $cost
{
let tx_cost = TransactionCost {
writable_accounts: vec![acct1, acct2],
account_access_cost: 0,
execution_cost: cost,
};
assert!(testee.try_add(tx_cost).is_err());
let stat = testee.get_stats();
assert_eq!(cost * 2, stat.total_cost);
assert_eq!(3, stat.number_of_accounts);
assert_eq!(cost * 2, stat.costliest_account_cost);
assert_eq!(acct2, stat.costliest_account);
}
}
}

View File

@ -19,6 +19,8 @@ pub mod cluster_slots_service;
pub mod commitment_service;
pub mod completed_data_sets_service;
pub mod consensus;
pub mod cost_model;
pub mod cost_tracker;
pub mod fetch_stage;
pub mod fork_choice;
pub mod gen_keys;