Add broadcast impl

This commit is contained in:
Anatoly Yakovenko 2018-04-28 00:31:20 -07:00 committed by Stephen Akridge
parent 385d2a580c
commit c2e2960bf7
13 changed files with 848 additions and 421 deletions

View File

@ -3,22 +3,25 @@
//! in flux. Clients should use AccountantStub to interact with it.
use accountant::Accountant;
use bincode::{deserialize, serialize};
use bincode::{deserialize, serialize, serialize_into};
use crdt::{Crdt, ReplicatedData};
use ecdsa;
use entry::Entry;
use event::Event;
use hash::Hash;
use historian::Historian;
use packet;
use packet::SharedPackets;
use packet::{SharedPackets, BLOB_SIZE};
use rayon::prelude::*;
use recorder::Signal;
use result::Result;
use serde_json;
use signature::PublicKey;
use std::cmp::max;
use std::collections::LinkedList;
use std::collections::VecDeque;
use std::io::Write;
use std::io::{Cursor, Write};
use std::mem::size_of;
use std::net::{SocketAddr, UdpSocket};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::{channel, Receiver, Sender, SyncSender};
@ -28,15 +31,12 @@ use std::time::Duration;
use streamer;
use transaction::Transaction;
use subscribers;
pub struct AccountantSkel<W: Write + Send + 'static> {
acc: Accountant,
last_id: Hash,
writer: W,
historian_input: SyncSender<Signal>,
pub struct AccountantSkel {
acc: Mutex<Accountant>,
last_id: Mutex<Hash>,
historian_input: Mutex<SyncSender<Signal>>,
historian: Historian,
entry_info_subscribers: Vec<SocketAddr>,
entry_info_subscribers: Mutex<Vec<SocketAddr>>,
}
#[cfg_attr(feature = "cargo-clippy", allow(large_enum_variant))]
@ -70,6 +70,8 @@ impl Request {
}
}
type SharedSkel = Arc<AccountantSkel>;
#[derive(Serialize, Deserialize, Debug)]
pub enum Response {
Balance { key: PublicKey, val: Option<i64> },
@ -77,30 +79,31 @@ pub enum Response {
LastId { id: Hash },
}
impl<W: Write + Send + 'static> AccountantSkel<W> {
impl AccountantSkel {
/// Create a new AccountantSkel that wraps the given Accountant.
pub fn new(
acc: Accountant,
last_id: Hash,
writer: W,
historian_input: SyncSender<Signal>,
historian: Historian,
) -> Self {
AccountantSkel {
acc,
last_id,
writer,
historian_input,
acc: Mutex::new(acc),
last_id: Mutex::new(last_id),
entry_info_subscribers: Mutex::new(vec![]),
historian_input: Mutex::new(historian_input),
historian,
entry_info_subscribers: vec![],
}
}
fn notify_entry_info_subscribers(&mut self, entry: &Entry) {
fn notify_entry_info_subscribers(obj: &SharedSkel, entry: &Entry) {
// TODO: No need to bind().
let socket = UdpSocket::bind("127.0.0.1:0").expect("bind");
for addr in &self.entry_info_subscribers {
// copy subscribers to avoid taking lock while doing io
let addrs = obj.entry_info_subscribers.lock().unwrap().clone();
trace!("Sending to {} addrs", addrs.len());
for addr in addrs {
let entry_info = EntryInfo {
id: entry.id,
num_hashes: entry.num_hashes,
@ -111,34 +114,131 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
}
}
/// Process any Entry items that have been published by the Historian.
pub fn sync(&mut self) -> Hash {
while let Ok(entry) = self.historian.output.try_recv() {
self.last_id = entry.id;
self.acc.register_entry_id(&self.last_id);
writeln!(self.writer, "{}", serde_json::to_string(&entry).unwrap()).unwrap();
self.notify_entry_info_subscribers(&entry);
fn update_entry<W: Write>(obj: &SharedSkel, writer: &Arc<Mutex<W>>, entry: &Entry) {
trace!("update_entry entry");
let mut last_id_l = obj.last_id.lock().unwrap();
*last_id_l = entry.id;
obj.acc.lock().unwrap().register_entry_id(&last_id_l);
drop(last_id_l);
writeln!(
writer.lock().unwrap(),
"{}",
serde_json::to_string(&entry).unwrap()
).unwrap();
trace!("notify_entry_info entry");
Self::notify_entry_info_subscribers(obj, &entry);
trace!("notify_entry_info done");
}
fn receive_to_list<W: Write>(
obj: &SharedSkel,
writer: &Arc<Mutex<W>>,
max: usize,
) -> Result<LinkedList<Entry>> {
//TODO implement a serialize for channel that does this without allocations
let mut num = 0;
let mut l = LinkedList::new();
let entry = obj.historian
.output
.lock()
.unwrap()
.recv_timeout(Duration::new(1, 0))?;
Self::update_entry(obj, writer, &entry);
l.push_back(entry);
while let Ok(entry) = obj.historian.receive() {
Self::update_entry(obj, writer, &entry);
l.push_back(entry);
num += 1;
if num == max {
break;
}
trace!("receive_to_list entries num: {}", num);
}
self.last_id
Ok(l)
}
/// Process any Entry items that have been published by the Historian.
/// continuosly broadcast blobs of entries out
fn run_sync<W: Write>(
obj: SharedSkel,
broadcast: &streamer::BlobSender,
blob_recycler: &packet::BlobRecycler,
writer: &Arc<Mutex<W>>,
exit: Arc<AtomicBool>,
) -> Result<()> {
// TODO: should it be the serialized Entry size?
let max = BLOB_SIZE / size_of::<Entry>();
let mut q = VecDeque::new();
let mut count = 0;
trace!("max: {}", max);
while let Ok(list) = Self::receive_to_list(&obj, writer, max) {
trace!("New blobs? {} {}", count, list.len());
let b = blob_recycler.allocate();
let pos = {
let mut bd = b.write().unwrap();
let mut out = Cursor::new(bd.data_mut());
serialize_into(&mut out, &list).expect("failed to serialize output");
out.position() as usize
};
assert!(pos < BLOB_SIZE);
b.write().unwrap().set_size(pos);
q.push_back(b);
count += 1;
if exit.load(Ordering::Relaxed) {
break;
}
}
if !q.is_empty() {
broadcast.send(q)?;
}
Ok(())
}
pub fn sync_service<W: Write + Send + 'static>(
obj: SharedSkel,
exit: Arc<AtomicBool>,
broadcast: streamer::BlobSender,
blob_recycler: packet::BlobRecycler,
writer: Arc<Mutex<W>>,
) -> JoinHandle<()> {
spawn(move || loop {
let e = Self::run_sync(
obj.clone(),
&broadcast,
&blob_recycler,
&writer,
exit.clone(),
);
if e.is_err() && exit.load(Ordering::Relaxed) {
break;
}
})
}
/// Process Request items sent by clients.
pub fn process_request(
&mut self,
&self,
msg: Request,
rsp_addr: SocketAddr,
) -> Option<(Response, SocketAddr)> {
match msg {
Request::GetBalance { key } => {
let val = self.acc.get_balance(&key);
let val = self.acc.lock().unwrap().get_balance(&key);
Some((Response::Balance { key, val }, rsp_addr))
}
Request::GetLastId => Some((Response::LastId { id: self.sync() }, rsp_addr)),
Request::GetLastId => Some((
Response::LastId {
id: *self.last_id.lock().unwrap(),
},
rsp_addr,
)),
Request::Transaction(_) => unreachable!(),
Request::Subscribe { subscriptions } => {
for subscription in subscriptions {
match subscription {
Subscription::EntryInfo => self.entry_info_subscribers.push(rsp_addr),
Subscription::EntryInfo => {
self.entry_info_subscribers.lock().unwrap().push(rsp_addr)
}
}
}
None
@ -214,22 +314,25 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
}
fn process_packets(
&mut self,
&self,
req_vers: Vec<(Request, SocketAddr, u8)>,
) -> Result<Vec<(Response, SocketAddr)>> {
trace!("partitioning");
let (trs, reqs) = Self::partition_requests(req_vers);
// Process the transactions in parallel and then log the successful ones.
for result in self.acc.process_verified_transactions(trs) {
for result in self.acc.lock().unwrap().process_verified_transactions(trs) {
if let Ok(tr) = result {
self.historian_input
.lock()
.unwrap()
.send(Signal::Event(Event::Transaction(tr)))?;
}
}
// Let validators know they should not attempt to process additional
// transactions in parallel.
self.historian_input.send(Signal::Tick)?;
self.historian_input.lock().unwrap().send(Signal::Tick)?;
// Process the remaining requests serially.
let rsps = reqs.into_iter()
@ -268,39 +371,44 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
}
fn process(
obj: &Arc<Mutex<AccountantSkel<W>>>,
obj: &SharedSkel,
verified_receiver: &Receiver<Vec<(SharedPackets, Vec<u8>)>>,
blob_sender: &streamer::BlobSender,
responder_sender: &streamer::BlobSender,
packet_recycler: &packet::PacketRecycler,
blob_recycler: &packet::BlobRecycler,
) -> Result<()> {
let timer = Duration::new(1, 0);
let mms = verified_receiver.recv_timeout(timer)?;
trace!("got some messages: {}", mms.len());
for (msgs, vers) in mms {
let reqs = Self::deserialize_packets(&msgs.read().unwrap());
let req_vers = reqs.into_iter()
.zip(vers)
.filter_map(|(req, ver)| req.map(|(msg, addr)| (msg, addr, ver)))
.filter(|x| x.0.verify())
.filter(|x| {
let v = x.0.verify();
trace!("v:{} x:{:?}", v, x);
v
})
.collect();
let rsps = obj.lock().unwrap().process_packets(req_vers)?;
trace!("process_packets");
let rsps = obj.process_packets(req_vers)?;
trace!("done process_packets");
let blobs = Self::serialize_responses(rsps, blob_recycler)?;
trace!("sending blobs: {}", blobs.len());
if !blobs.is_empty() {
//don't wake up the other side if there is nothing
blob_sender.send(blobs)?;
responder_sender.send(blobs)?;
}
packet_recycler.recycle(msgs);
// Write new entries to the ledger and notify subscribers.
obj.lock().unwrap().sync();
}
trace!("done responding");
Ok(())
}
/// Process verified blobs, already in order
/// Respond with a signed hash of the state
fn replicate_state(
obj: &Arc<Mutex<AccountantSkel<W>>>,
obj: &SharedSkel,
verified_receiver: &streamer::BlobReceiver,
blob_recycler: &packet::BlobRecycler,
) -> Result<()> {
@ -310,11 +418,11 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
let blob = msgs.read().unwrap();
let entries: Vec<Entry> = deserialize(&blob.data()[..blob.meta.size]).unwrap();
for entry in entries {
obj.lock().unwrap().acc.register_entry_id(&entry.id);
obj.acc.lock().unwrap().register_entry_id(&entry.id);
obj.lock()
obj.acc
.lock()
.unwrap()
.acc
.process_verified_events(entry.events)?;
}
//TODO respond back to leader with hash of the state
@ -328,25 +436,35 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
/// Create a UDP microservice that forwards messages the given AccountantSkel.
/// This service is the network leader
/// Set `exit` to shutdown its threads.
pub fn serve(
obj: &Arc<Mutex<AccountantSkel<W>>>,
addr: &str,
pub fn serve<W: Write + Send + 'static>(
obj: &SharedSkel,
me: ReplicatedData,
serve: UdpSocket,
gossip: UdpSocket,
exit: Arc<AtomicBool>,
writer: W,
) -> Result<Vec<JoinHandle<()>>> {
let read = UdpSocket::bind(addr)?;
let crdt = Arc::new(RwLock::new(Crdt::new(me)));
let t_gossip = Crdt::gossip(crdt.clone(), exit.clone());
let t_listen = Crdt::listen(crdt.clone(), gossip, exit.clone());
// make sure we are on the same interface
let mut local = read.local_addr()?;
let mut local = serve.local_addr()?;
local.set_port(0);
let write = UdpSocket::bind(local)?;
let respond_socket = UdpSocket::bind(local.clone())?;
let packet_recycler = packet::PacketRecycler::default();
let blob_recycler = packet::BlobRecycler::default();
let (packet_sender, packet_receiver) = channel();
let t_receiver =
streamer::receiver(read, exit.clone(), packet_recycler.clone(), packet_sender)?;
let (blob_sender, blob_receiver) = channel();
let t_responder =
streamer::responder(write, exit.clone(), blob_recycler.clone(), blob_receiver);
streamer::receiver(serve, exit.clone(), packet_recycler.clone(), packet_sender)?;
let (responder_sender, responder_receiver) = channel();
let t_responder = streamer::responder(
respond_socket,
exit.clone(),
blob_recycler.clone(),
responder_receiver,
);
let (verified_sender, verified_receiver) = channel();
let exit_ = exit.clone();
@ -357,32 +475,58 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
}
});
let (broadcast_sender, broadcast_receiver) = channel();
let broadcast_socket = UdpSocket::bind(local)?;
let t_broadcast = streamer::broadcaster(
broadcast_socket,
exit.clone(),
crdt.clone(),
blob_recycler.clone(),
broadcast_receiver,
);
let t_sync = Self::sync_service(
obj.clone(),
exit.clone(),
broadcast_sender,
blob_recycler.clone(),
Arc::new(Mutex::new(writer)),
);
let skel = obj.clone();
let t_server = spawn(move || loop {
let e = Self::process(
&skel,
&mut skel.clone(),
&verified_receiver,
&blob_sender,
&responder_sender,
&packet_recycler,
&blob_recycler,
);
if e.is_err() {
// Assume this was a timeout, so sync any empty entries.
skel.lock().unwrap().sync();
if exit.load(Ordering::Relaxed) {
break;
}
}
});
Ok(vec![t_receiver, t_responder, t_server, t_verifier])
Ok(vec![
t_receiver,
t_responder,
t_server,
t_verifier,
t_sync,
t_gossip,
t_listen,
t_broadcast,
])
}
/// This service receives messages from a leader in the network and processes the transactions
/// on the accountant state.
/// # Arguments
/// * `obj` - The accountant state.
/// * `rsubs` - The subscribers.
/// * `me` - my configuration
/// * `leader` - leader configuration
/// * `exit` - The exit signal.
/// # Remarks
/// The pipeline is constructed as follows:
@ -396,13 +540,21 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
/// 4. process the transaction state machine
/// 5. respond with the hash of the state back to the leader
pub fn replicate(
obj: &Arc<Mutex<AccountantSkel<W>>>,
rsubs: subscribers::Subscribers,
obj: &SharedSkel,
me: ReplicatedData,
gossip: UdpSocket,
replicate: UdpSocket,
leader: ReplicatedData,
exit: Arc<AtomicBool>,
) -> Result<Vec<JoinHandle<()>>> {
let read = UdpSocket::bind(rsubs.me.addr)?;
let crdt = Arc::new(RwLock::new(Crdt::new(me)));
crdt.write().unwrap().set_leader(leader.id);
crdt.write().unwrap().insert(leader);
let t_gossip = Crdt::gossip(crdt.clone(), exit.clone());
let t_listen = Crdt::listen(crdt.clone(), gossip, exit.clone());
// make sure we are on the same interface
let mut local = read.local_addr()?;
let mut local = replicate.local_addr()?;
local.set_port(0);
let write = UdpSocket::bind(local)?;
@ -411,26 +563,26 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
let t_blob_receiver = streamer::blob_receiver(
exit.clone(),
blob_recycler.clone(),
read,
replicate,
blob_sender.clone(),
)?;
let (window_sender, window_receiver) = channel();
let (retransmit_sender, retransmit_receiver) = channel();
let subs = Arc::new(RwLock::new(rsubs));
let t_retransmit = streamer::retransmitter(
write,
exit.clone(),
subs.clone(),
crdt.clone(),
blob_recycler.clone(),
retransmit_receiver,
);
//TODO
//the packets coming out of blob_receiver need to be sent to the GPU and verified
//then sent to the window, which does the erasure coding reconstruction
let t_window = streamer::window(
exit.clone(),
subs,
crdt,
blob_recycler.clone(),
blob_receiver,
window_sender,
@ -444,7 +596,14 @@ impl<W: Write + Send + 'static> AccountantSkel<W> {
break;
}
});
Ok(vec![t_blob_receiver, t_retransmit, t_window, t_server])
Ok(vec![
t_blob_receiver,
t_retransmit,
t_window,
t_server,
t_gossip,
t_listen,
])
}
}
@ -479,30 +638,30 @@ mod tests {
use accountant::Accountant;
use accountant_skel::AccountantSkel;
use accountant_stub::AccountantStub;
use chrono::prelude::*;
use crdt::Crdt;
use crdt::ReplicatedData;
use entry;
use entry::Entry;
use event::Event;
use futures::Future;
use hash::{hash, Hash};
use historian::Historian;
use mint::Mint;
use plan::Plan;
use recorder::Signal;
use signature::{KeyPair, KeyPairUtil};
use std::collections::VecDeque;
use std::io::sink;
use std::net::{SocketAddr, UdpSocket};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::channel;
use std::sync::mpsc::sync_channel;
use std::sync::{Arc, Mutex};
use std::sync::{Arc, RwLock};
use std::thread::sleep;
use std::time::Duration;
use transaction::Transaction;
use chrono::prelude::*;
use entry;
use event::Event;
use hash::{hash, Hash};
use std::collections::VecDeque;
use std::sync::mpsc::channel;
use streamer;
use subscribers::{Node, Subscribers};
use transaction::Transaction;
#[test]
fn test_layout() {
@ -540,7 +699,7 @@ mod tests {
let rsp_addr: SocketAddr = "0.0.0.0:0".parse().expect("socket address");
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &mint.last_id(), None);
let mut skel = AccountantSkel::new(acc, mint.last_id(), sink(), input, historian);
let skel = AccountantSkel::new(acc, mint.last_id(), input, historian);
// Process a batch that includes a transaction that receives two tokens.
let alice = KeyPair::new();
@ -554,9 +713,13 @@ mod tests {
assert!(skel.process_packets(req_vers).is_ok());
// Collect the ledger and feed it to a new accountant.
skel.historian_input.send(Signal::Tick).unwrap();
skel.historian_input
.lock()
.unwrap()
.send(Signal::Tick)
.unwrap();
drop(skel.historian_input);
let entries: Vec<Entry> = skel.historian.output.iter().collect();
let entries: Vec<Entry> = skel.historian.output.lock().unwrap().iter().collect();
// Assert the user holds one token, not two. If the server only output one
// entry, then the second transaction will be rejected, because it drives
@ -570,45 +733,50 @@ mod tests {
#[test]
fn test_accountant_bad_sig() {
let serve_port = 9002;
let send_port = 9003;
let addr = format!("127.0.0.1:{}", serve_port);
let send_addr = format!("127.0.0.1:{}", send_port);
let (leader_data, leader_gossip, _, leader_serve) = test_node();
let alice = Mint::new(10_000);
let acc = Accountant::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
let acc = Arc::new(Mutex::new(AccountantSkel::new(
acc,
alice.last_id(),
let acc_skel = Arc::new(AccountantSkel::new(acc, alice.last_id(), input, historian));
let serve_addr = leader_serve.local_addr().unwrap();
let threads = AccountantSkel::serve(
&acc_skel,
leader_data,
leader_serve,
leader_gossip,
exit.clone(),
sink(),
input,
historian,
)));
let _threads = AccountantSkel::serve(&acc, &addr, exit.clone()).unwrap();
).unwrap();
sleep(Duration::from_millis(300));
let socket = UdpSocket::bind(send_addr).unwrap();
let socket = UdpSocket::bind("127.0.0.1:0").unwrap();
socket.set_read_timeout(Some(Duration::new(5, 0))).unwrap();
let mut acc_stub = AccountantStub::new(serve_addr, socket);
let last_id = acc_stub.get_last_id().wait().unwrap();
let mut acc = AccountantStub::new(&addr, socket);
let last_id = acc.get_last_id().wait().unwrap();
trace!("doing stuff");
let tr = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id);
let _sig = acc.transfer_signed(tr).unwrap();
let _sig = acc_stub.transfer_signed(tr).unwrap();
let last_id = acc.get_last_id().wait().unwrap();
let last_id = acc_stub.get_last_id().wait().unwrap();
let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id);
tr2.data.tokens = 502;
tr2.data.plan = Plan::new_payment(502, bob_pubkey);
let _sig = acc.transfer_signed(tr2).unwrap();
let _sig = acc_stub.transfer_signed(tr2).unwrap();
assert_eq!(acc.get_balance(&bob_pubkey).wait().unwrap(), 500);
assert_eq!(acc_stub.get_balance(&bob_pubkey).wait().unwrap(), 500);
trace!("exiting");
exit.store(true, Ordering::Relaxed);
trace!("joining threads");
for t in threads {
t.join().unwrap();
}
}
use std::sync::{Once, ONCE_INIT};
@ -623,21 +791,45 @@ mod tests {
});
}
fn test_node() -> (ReplicatedData, UdpSocket, UdpSocket, UdpSocket) {
let gossip = UdpSocket::bind("127.0.0.1:0").unwrap();
let replicate = UdpSocket::bind("127.0.0.1:0").unwrap();
let serve = UdpSocket::bind("127.0.0.1:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
(d, gossip, replicate, serve)
}
/// Test that mesasge sent from leader to target1 and repliated to target2
#[test]
fn test_replicate() {
setup();
let leader_sock = UdpSocket::bind("127.0.0.1:0").expect("bind");
let leader_addr = leader_sock.local_addr().unwrap();
let me_addr = "127.0.0.1:9010".parse().unwrap();
let target_peer_sock = UdpSocket::bind("127.0.0.1:0").expect("bind");
let target_peer_addr = target_peer_sock.local_addr().unwrap();
let source_peer_sock = UdpSocket::bind("127.0.0.1:0").expect("bind");
let (leader_data, leader_gossip, _, leader_serve) = test_node();
let (target1_data, target1_gossip, target1_replicate, _) = test_node();
let (target2_data, target2_gossip, target2_replicate, _) = test_node();
let exit = Arc::new(AtomicBool::new(false));
let node_me = Node::new([0, 0, 0, 0, 0, 0, 0, 1], 10, me_addr);
let node_subs = vec![Node::new([0, 0, 0, 0, 0, 0, 0, 2], 8, target_peer_addr); 1];
let node_leader = Node::new([0, 0, 0, 0, 0, 0, 0, 3], 20, leader_addr);
let subs = Subscribers::new(node_me, node_leader, &node_subs);
//start crdt_leader
let mut crdt_l = Crdt::new(leader_data.clone());
crdt_l.set_leader(leader_data.id);
let cref_l = Arc::new(RwLock::new(crdt_l));
let t_l_gossip = Crdt::gossip(cref_l.clone(), exit.clone());
let t_l_listen = Crdt::listen(cref_l, leader_gossip, exit.clone());
//start crdt2
let mut crdt2 = Crdt::new(target2_data.clone());
crdt2.insert(leader_data.clone());
crdt2.set_leader(leader_data.id);
let leader_id = leader_data.id;
let cref2 = Arc::new(RwLock::new(crdt2));
let t2_gossip = Crdt::gossip(cref2.clone(), exit.clone());
let t2_listen = Crdt::listen(cref2, target2_gossip, exit.clone());
// setup some blob services to send blobs into the socket
// to simulate the source peer and get blobs out of the socket to
@ -648,12 +840,14 @@ mod tests {
let t_receiver = streamer::blob_receiver(
exit.clone(),
recv_recycler.clone(),
target_peer_sock,
target2_replicate,
s_reader,
).unwrap();
// simulate leader sending messages
let (s_responder, r_responder) = channel();
let t_responder = streamer::responder(
source_peer_sock,
leader_serve,
exit.clone(),
resp_recycler.clone(),
r_responder,
@ -664,15 +858,16 @@ mod tests {
let acc = Accountant::new(&alice);
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
let acc = Arc::new(Mutex::new(AccountantSkel::new(
acc,
alice.last_id(),
sink(),
input,
historian,
)));
let _threads = AccountantSkel::replicate(&acc, subs, exit.clone()).unwrap();
let acc = Arc::new(AccountantSkel::new(acc, alice.last_id(), input, historian));
let replicate_addr = target1_data.replicate_addr;
let threads = AccountantSkel::replicate(
&acc,
target1_data,
target1_gossip,
target1_replicate,
leader_data,
exit.clone(),
).unwrap();
let mut alice_ref_balance = starting_balance;
let mut msgs = VecDeque::new();
@ -685,10 +880,11 @@ mod tests {
let b_ = b.clone();
let mut w = b.write().unwrap();
w.set_index(i).unwrap();
w.set_id(leader_id).unwrap();
let tr0 = Event::new_timestamp(&bob_keypair, Utc::now());
let entry0 = entry::create_entry(&cur_hash, i, vec![tr0]);
acc.lock().unwrap().acc.register_entry_id(&cur_hash);
acc.acc.lock().unwrap().register_entry_id(&cur_hash);
cur_hash = hash(&cur_hash);
let tr1 = Transaction::new(
@ -697,11 +893,11 @@ mod tests {
transfer_amount,
cur_hash,
);
acc.lock().unwrap().acc.register_entry_id(&cur_hash);
acc.acc.lock().unwrap().register_entry_id(&cur_hash);
cur_hash = hash(&cur_hash);
let entry1 =
entry::create_entry(&cur_hash, i + num_blobs, vec![Event::Transaction(tr1)]);
acc.lock().unwrap().acc.register_entry_id(&cur_hash);
acc.acc.lock().unwrap().register_entry_id(&cur_hash);
cur_hash = hash(&cur_hash);
alice_ref_balance -= transfer_amount;
@ -710,7 +906,7 @@ mod tests {
w.data_mut()[..serialized_entry.len()].copy_from_slice(&serialized_entry);
w.set_size(serialized_entry.len());
w.meta.set_addr(&me_addr);
w.meta.set_addr(&replicate_addr);
drop(w);
msgs.push_back(b_);
}
@ -726,25 +922,31 @@ mod tests {
msgs.push(msg);
}
let alice_balance = acc.lock()
let alice_balance = acc.acc
.lock()
.unwrap()
.acc
.get_balance(&alice.keypair().pubkey())
.unwrap();
assert_eq!(alice_balance, alice_ref_balance);
let bob_balance = acc.lock()
let bob_balance = acc.acc
.lock()
.unwrap()
.acc
.get_balance(&bob_keypair.pubkey())
.unwrap();
assert_eq!(bob_balance, starting_balance - alice_ref_balance);
exit.store(true, Ordering::Relaxed);
for t in threads {
t.join().expect("join");
}
t2_gossip.join().expect("join");
t2_listen.join().expect("join");
t_receiver.join().expect("join");
t_responder.join().expect("join");
t_l_gossip.join().expect("join");
t_l_listen.join().expect("join");
}
}
#[cfg(all(feature = "unstable", test))]
@ -758,7 +960,6 @@ mod bench {
use mint::Mint;
use signature::{KeyPair, KeyPairUtil};
use std::collections::HashSet;
use std::io::sink;
use std::sync::mpsc::sync_channel;
use std::time::Instant;
use transaction::Transaction;
@ -806,7 +1007,7 @@ mod bench {
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &mint.last_id(), None);
let mut skel = AccountantSkel::new(acc, mint.last_id(), sink(), input, historian);
let skel = AccountantSkel::new(acc, mint.last_id(), input, historian);
let now = Instant::now();
assert!(skel.process_packets(req_vers).is_ok());
@ -816,7 +1017,7 @@ mod bench {
// Ensure that all transactions were successfully logged.
drop(skel.historian_input);
let entries: Vec<Entry> = skel.historian.output.iter().collect();
let entries: Vec<Entry> = skel.historian.output.lock().unwrap().iter().collect();
assert_eq!(entries.len(), 1);
assert_eq!(entries[0].events.len(), txs as usize);

View File

@ -10,11 +10,11 @@ use hash::Hash;
use signature::{KeyPair, PublicKey, Signature};
use std::collections::HashMap;
use std::io;
use std::net::UdpSocket;
use std::net::{SocketAddr, UdpSocket};
use transaction::Transaction;
pub struct AccountantStub {
pub addr: String,
pub addr: SocketAddr,
pub socket: UdpSocket,
last_id: Option<Hash>,
num_events: u64,
@ -25,9 +25,9 @@ impl AccountantStub {
/// Create a new AccountantStub that will interface with AccountantSkel
/// over `socket`. To receive responses, the caller must bind `socket`
/// to a public address before invoking AccountantStub methods.
pub fn new(addr: &str, socket: UdpSocket) -> Self {
pub fn new(addr: SocketAddr, socket: UdpSocket) -> Self {
let stub = AccountantStub {
addr: addr.to_string(),
addr: addr,
socket,
last_id: None,
num_events: 0,
@ -160,6 +160,7 @@ mod tests {
use super::*;
use accountant::Accountant;
use accountant_skel::AccountantSkel;
use crdt::ReplicatedData;
use futures::Future;
use historian::Historian;
use mint::Mint;
@ -167,32 +168,35 @@ mod tests {
use std::io::sink;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::sync_channel;
use std::sync::{Arc, Mutex};
use std::sync::Arc;
use std::thread::sleep;
use std::time::Duration;
// TODO: Figure out why this test sometimes hangs on TravisCI.
#[test]
fn test_accountant_stub() {
let addr = "127.0.0.1:9000";
let send_addr = "127.0.0.1:9001";
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
let addr = serve.local_addr().unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
"0.0.0.0:0".parse().unwrap(),
serve.local_addr().unwrap(),
);
let alice = Mint::new(10_000);
let acc = Accountant::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
let acc = Arc::new(Mutex::new(AccountantSkel::new(
acc,
alice.last_id(),
sink(),
input,
historian,
)));
let _threads = AccountantSkel::serve(&acc, addr, exit.clone()).unwrap();
let acc = Arc::new(AccountantSkel::new(acc, alice.last_id(), input, historian));
let threads = AccountantSkel::serve(&acc, d, serve, gossip, exit.clone(), sink()).unwrap();
sleep(Duration::from_millis(300));
let socket = UdpSocket::bind(send_addr).unwrap();
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
socket.set_read_timeout(Some(Duration::new(5, 0))).unwrap();
let mut acc = AccountantStub::new(addr, socket);
@ -201,5 +205,8 @@ mod tests {
.unwrap();
assert_eq!(acc.get_balance(&bob_pubkey).wait().unwrap(), 500);
exit.store(true, Ordering::Relaxed);
for t in threads {
t.join().unwrap();
}
}
}

View File

@ -84,7 +84,7 @@ fn main() {
println!("Binding to {}", client_addr);
let socket = UdpSocket::bind(&client_addr).unwrap();
let mut acc = AccountantStub::new(&addr, socket);
let mut acc = AccountantStub::new(addr.parse().unwrap(), socket);
println!("Get last ID...");
let last_id = acc.get_last_id().wait().unwrap();
@ -125,7 +125,7 @@ fn main() {
let mut client_addr: SocketAddr = client_addr.parse().unwrap();
client_addr.set_port(0);
let socket = UdpSocket::bind(client_addr).unwrap();
let acc = AccountantStub::new(&addr, socket);
let acc = AccountantStub::new(addr.parse().unwrap(), socket);
for tr in trs {
acc.transfer_signed(tr.clone()).unwrap();
}

View File

@ -28,7 +28,7 @@ fn main() {
let hist = Historian::new(event_receiver, &seed, Some(10));
create_ledger(&input, &seed).expect("send error");
drop(input);
let entries: Vec<Entry> = hist.output.iter().collect();
let entries: Vec<Entry> = hist.output.lock().unwrap().iter().collect();
for entry in &entries {
println!("{:?}", entry);
}

View File

@ -8,15 +8,18 @@ use getopts::Options;
use isatty::stdin_isatty;
use solana::accountant::Accountant;
use solana::accountant_skel::AccountantSkel;
use solana::crdt::ReplicatedData;
use solana::entry::Entry;
use solana::event::Event;
use solana::historian::Historian;
use solana::signature::{KeyPair, KeyPairUtil};
use std::env;
use std::io::{stdin, stdout, Read};
use std::net::UdpSocket;
use std::process::exit;
use std::sync::atomic::AtomicBool;
use std::sync::mpsc::sync_channel;
use std::sync::{Arc, Mutex};
use std::sync::Arc;
fn print_usage(program: &str, opts: Options) {
let mut brief = format!("Usage: cat <transaction.log> | {} [options]\n\n", program);
@ -49,7 +52,9 @@ fn main() {
if matches.opt_present("p") {
port = matches.opt_str("p").unwrap().parse().expect("port");
}
let addr = format!("0.0.0.0:{}", port);
let serve_addr = format!("0.0.0.0:{}", port);
let gossip_addr = format!("0.0.0.0:{}", port + 1);
let replicate_addr = format!("0.0.0.0:{}", port + 2);
if stdin_isatty() {
eprintln!("nothing found on stdin, expected a log file");
@ -99,15 +104,20 @@ fn main() {
let (input, event_receiver) = sync_channel(10_000);
let historian = Historian::new(event_receiver, &last_id, Some(1000));
let exit = Arc::new(AtomicBool::new(false));
let skel = Arc::new(Mutex::new(AccountantSkel::new(
acc,
last_id,
stdout(),
input,
historian,
)));
let threads = AccountantSkel::serve(&skel, &addr, exit.clone()).unwrap();
eprintln!("Ready. Listening on {}", addr);
let skel = Arc::new(AccountantSkel::new(acc, last_id, input, historian));
let serve_sock = UdpSocket::bind(&serve_addr).unwrap();
let gossip_sock = UdpSocket::bind(&gossip_addr).unwrap();
let replicate_sock = UdpSocket::bind(&replicate_addr).unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip_sock.local_addr().unwrap(),
replicate_sock.local_addr().unwrap(),
serve_sock.local_addr().unwrap(),
);
let threads =
AccountantSkel::serve(&skel, d, serve_sock, gossip_sock, exit.clone(), stdout()).unwrap();
eprintln!("Ready. Listening on {}", serve_addr);
for t in threads {
t.join().expect("join");
}

View File

@ -1,14 +1,24 @@
//! The `crdt` module defines a data structure that is shared by all the nodes in the network over
//! a gossip control plane. The goal is to share small bits of of-chain information and detect and
//! a gossip control plane. The goal is to share small bits of off-chain information and detect and
//! repair partitions.
//!
//! This CRDT only supports a very limited set of types. A map of PublicKey -> Versioned Struct.
//! The last version is always picked durring an update.
//!
//! The network is arranged in layers:
//!
//! * layer 0 - Leader.
//! * layer 1 - As many nodes as we can fit
//! * layer 2 - Everyone else, if layer 1 is `2^10`, layer 2 should be able to fit `2^20` number of nodes.
//!
//! Accountant needs to provide an interface for us to query the stake weight
use bincode::{deserialize, serialize};
use byteorder::{LittleEndian, ReadBytesExt};
use hash::Hash;
use result::Result;
use packet::SharedBlob;
use rayon::prelude::*;
use result::{Error, Result};
use ring::rand::{SecureRandom, SystemRandom};
use signature::{PublicKey, Signature};
use std::collections::HashMap;
@ -22,16 +32,16 @@ use std::time::Duration;
/// Structure to be replicated by the network
#[derive(Serialize, Deserialize, Clone)]
pub struct ReplicatedData {
id: PublicKey,
pub id: PublicKey,
sig: Signature,
/// should always be increasing
version: u64,
/// address to connect to for gossip
gossip_addr: SocketAddr,
pub gossip_addr: SocketAddr,
/// address to connect to for replication
replicate_addr: SocketAddr,
pub replicate_addr: SocketAddr,
/// address to connect to when this node is leader
lead_addr: SocketAddr,
pub serve_addr: SocketAddr,
/// current leader identity
current_leader_id: PublicKey,
/// last verified hash that was submitted to the leader
@ -41,15 +51,19 @@ pub struct ReplicatedData {
}
impl ReplicatedData {
pub fn new(id: PublicKey, gossip_addr: SocketAddr) -> ReplicatedData {
let daddr = "0.0.0.0:0".parse().unwrap();
pub fn new(
id: PublicKey,
gossip_addr: SocketAddr,
replicate_addr: SocketAddr,
serve_addr: SocketAddr,
) -> ReplicatedData {
ReplicatedData {
id,
sig: Signature::default(),
version: 0,
gossip_addr,
replicate_addr: daddr,
lead_addr: daddr,
replicate_addr,
serve_addr,
current_leader_id: PublicKey::default(),
last_verified_hash: Hash::default(),
last_verified_count: 0,
@ -78,7 +92,7 @@ pub struct Crdt {
/// The value of the remote update index that i have last seen
/// This Node will ask external nodes for updates since the value in this list
remote: HashMap<PublicKey, u64>,
update_index: u64,
pub update_index: u64,
me: PublicKey,
timeout: Duration,
}
@ -109,23 +123,117 @@ impl Crdt {
g.table.insert(me.id, me);
g
}
pub fn import(&mut self, v: &ReplicatedData) {
// TODO check that last_verified types are always increasing
// TODO probably an error or attack
if self.me != v.id {
self.insert(v);
}
pub fn my_data(&self) -> &ReplicatedData {
&self.table[&self.me]
}
pub fn insert(&mut self, v: &ReplicatedData) {
pub fn leader_data(&self) -> &ReplicatedData {
&self.table[&self.table[&self.me].current_leader_id]
}
pub fn set_leader(&mut self, key: PublicKey) -> () {
let mut me = self.my_data().clone();
me.current_leader_id = key;
me.version += 1;
self.insert(me);
}
pub fn insert(&mut self, v: ReplicatedData) {
// TODO check that last_verified types are always increasing
if self.table.get(&v.id).is_none() || (v.version > self.table[&v.id].version) {
//somehow we signed a message for our own identity with a higher version that
// we have stored ourselves
trace!("me: {:?}", self.me[0]);
trace!("v.id: {:?}", v.id[0]);
trace!("insert! {}", v.version);
self.update_index += 1;
let _ = self.table.insert(v.id, v.clone());
let _ = self.table.insert(v.id.clone(), v.clone());
let _ = self.local.insert(v.id, self.update_index);
} else {
trace!("INSERT FAILED {}", v.version);
trace!(
"INSERT FAILED new.version: {} me.version: {}",
v.version,
self.table[&v.id].version
);
}
}
/// broadcast messages from the leader to layer 1 nodes
/// # Remarks
/// We need to avoid having obj locked while doing any io, such as the `send_to`
pub fn broadcast(
obj: &Arc<RwLock<Self>>,
blobs: &Vec<SharedBlob>,
s: &UdpSocket,
transmit_index: &mut u64,
) -> Result<()> {
let (me, table): (ReplicatedData, Vec<ReplicatedData>) = {
// copy to avoid locking durring IO
let robj = obj.read().unwrap();
let cloned_table: Vec<ReplicatedData> = robj.table.values().cloned().collect();
(robj.table[&robj.me].clone(), cloned_table)
};
let errs: Vec<_> = table
.iter()
.enumerate()
.cycle()
.zip(blobs.iter())
.map(|((i, v), b)| {
if me.id == v.id {
return Ok(0);
}
// only leader should be broadcasting
assert!(me.current_leader_id != v.id);
let mut blob = b.write().unwrap();
blob.set_index(*transmit_index + i as u64)
.expect("set_index");
s.send_to(&blob.data[..blob.meta.size], &v.replicate_addr)
})
.collect();
for e in errs {
trace!("retransmit result {:?}", e);
match e {
Err(e) => return Err(Error::IO(e)),
_ => (),
}
*transmit_index += 1;
}
Ok(())
}
/// retransmit messages from the leader to layer 1 nodes
/// # Remarks
/// We need to avoid having obj locked while doing any io, such as the `send_to`
pub fn retransmit(obj: &Arc<RwLock<Self>>, blob: &SharedBlob, s: &UdpSocket) -> Result<()> {
let (me, table): (ReplicatedData, Vec<ReplicatedData>) = {
// copy to avoid locking durring IO
let s = obj.read().unwrap();
(s.table[&s.me].clone(), s.table.values().cloned().collect())
};
let rblob = blob.read().unwrap();
let errs: Vec<_> = table
.par_iter()
.map(|v| {
if me.id == v.id {
return Ok(0);
}
if me.current_leader_id == v.id {
trace!("skip retransmit to leader{:?}", v.id);
return Ok(0);
}
trace!("retransmit blob to {}", v.replicate_addr);
s.send_to(&rblob.data[..rblob.meta.size], &v.replicate_addr)
})
.collect();
for e in errs {
trace!("retransmit result {:?}", e);
match e {
Err(e) => return Err(Error::IO(e)),
_ => (),
}
}
Ok(())
}
fn random() -> u64 {
let rnd = SystemRandom::new();
let mut buf = [0u8; 8];
@ -134,7 +242,7 @@ impl Crdt {
rdr.read_u64::<LittleEndian>().unwrap()
}
fn get_updates_since(&self, v: u64) -> (PublicKey, u64, Vec<ReplicatedData>) {
trace!("get updates since {}", v);
//trace!("get updates since {}", v);
let data = self.table
.values()
.filter(|x| self.local[&x.id] > v)
@ -147,10 +255,9 @@ impl Crdt {
/// Create a random gossip request
/// # Returns
/// (A,B,C)
/// * A - Remote gossip address
/// * B - My gossip address
/// * C - Remote update index to request updates since
/// (A,B)
/// * A - Address to send to
/// * B - RequestUpdates protocol message
fn gossip_request(&self) -> (SocketAddr, Protocol) {
let n = (Self::random() as usize) % self.table.len();
trace!("random {:?} {}", &self.me[0..1], n);
@ -186,7 +293,7 @@ impl Crdt {
// TODO we need to punish/spam resist here
// sig verify the whole update and slash anyone who sends a bad update
for v in data {
self.import(&v);
self.insert(v.clone());
}
*self.remote.entry(from).or_insert(update_index) = update_index;
}
@ -222,7 +329,7 @@ impl Crdt {
let rsp = serialize(&Protocol::ReceiveUpdates(from, ups, data))?;
trace!("send_to {}", addr);
//TODO verify reqdata belongs to sender
obj.write().unwrap().import(&reqdata);
obj.write().unwrap().insert(reqdata);
sock.send_to(&rsp, addr).unwrap();
trace!("send_to done!");
}
@ -251,6 +358,9 @@ impl Crdt {
#[cfg(test)]
mod test {
use crdt::{Crdt, ReplicatedData};
use logger;
use packet::Blob;
use rayon::iter::*;
use signature::KeyPair;
use signature::KeyPairUtil;
use std::net::UdpSocket;
@ -259,6 +369,28 @@ mod test {
use std::thread::{sleep, JoinHandle};
use std::time::Duration;
fn test_node() -> (Crdt, UdpSocket, UdpSocket, UdpSocket) {
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let replicate = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
let crdt = Crdt::new(d);
trace!(
"id: {} gossip: {} replicate: {} serve: {}",
crdt.my_data().id[0],
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
(crdt, gossip, replicate, serve)
}
/// Test that the network converges.
/// Run until every node in the network has a full ReplicatedData set.
/// Check that nodes stop sending updates after all the ReplicatedData has been shared.
@ -271,12 +403,9 @@ mod test {
let exit = Arc::new(AtomicBool::new(false));
let listen: Vec<_> = (0..num)
.map(|_| {
let listener = UdpSocket::bind("0.0.0.0:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(pubkey, listener.local_addr().unwrap());
let crdt = Crdt::new(d);
let (crdt, gossip, _, _) = test_node();
let c = Arc::new(RwLock::new(crdt));
let l = Crdt::listen(c.clone(), listener, exit.clone());
let l = Crdt::listen(c.clone(), gossip, exit.clone());
(c, l)
})
.collect();
@ -332,7 +461,7 @@ mod test {
let yv = listen[y].0.read().unwrap();
let mut d = yv.table[&yv.me].clone();
d.version = 0;
xv.insert(&d);
xv.insert(d);
}
});
}
@ -349,7 +478,7 @@ mod test {
let yv = listen[y].0.read().unwrap();
let mut d = yv.table[&yv.me].clone();
d.version = 0;
xv.insert(&d);
xv.insert(d);
}
});
}
@ -357,16 +486,89 @@ mod test {
/// Test that insert drops messages that are older
#[test]
fn insert_test() {
let mut d = ReplicatedData::new(KeyPair::new().pubkey(), "127.0.0.1:1234".parse().unwrap());
let mut d = ReplicatedData::new(
KeyPair::new().pubkey(),
"127.0.0.1:1234".parse().unwrap(),
"127.0.0.1:1235".parse().unwrap(),
"127.0.0.1:1236".parse().unwrap(),
);
assert_eq!(d.version, 0);
let mut crdt = Crdt::new(d.clone());
assert_eq!(crdt.table[&d.id].version, 0);
d.version = 2;
crdt.insert(&d);
crdt.insert(d.clone());
assert_eq!(crdt.table[&d.id].version, 2);
d.version = 1;
crdt.insert(&d);
crdt.insert(d.clone());
assert_eq!(crdt.table[&d.id].version, 2);
}
#[test]
pub fn test_crdt_retransmit() {
logger::setup();
trace!("c1:");
let (mut c1, s1, r1, e1) = test_node();
trace!("c2:");
let (mut c2, s2, r2, _) = test_node();
trace!("c3:");
let (mut c3, s3, r3, _) = test_node();
let c1_id = c1.my_data().id;
c1.set_leader(c1_id);
c2.insert(c1.my_data().clone());
c3.insert(c1.my_data().clone());
c2.set_leader(c1.my_data().id);
c3.set_leader(c1.my_data().id);
let exit = Arc::new(AtomicBool::new(false));
// Create listen threads
let a1 = Arc::new(RwLock::new(c1));
let t1 = Crdt::listen(a1.clone(), s1, exit.clone());
let a2 = Arc::new(RwLock::new(c2));
let t2 = Crdt::listen(a2.clone(), s2, exit.clone());
let a3 = Arc::new(RwLock::new(c3));
let t3 = Crdt::listen(a3.clone(), s3, exit.clone());
// Create gossip threads
let t1_gossip = Crdt::gossip(a1.clone(), exit.clone());
let t2_gossip = Crdt::gossip(a2.clone(), exit.clone());
let t3_gossip = Crdt::gossip(a3.clone(), exit.clone());
//wait to converge
trace!("waitng to converge:");
let mut done = false;
for _ in 0..10 {
done = a1.read().unwrap().table.len() == 3 && a2.read().unwrap().table.len() == 3
&& a3.read().unwrap().table.len() == 3;
if done {
break;
}
sleep(Duration::new(1, 0));
}
assert!(done);
let mut b = Blob::default();
b.meta.size = 10;
Crdt::retransmit(&a1, &Arc::new(RwLock::new(b)), &e1).unwrap();
let res: Vec<_> = [r1, r2, r3]
.into_par_iter()
.map(|s| {
let mut b = Blob::default();
s.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
let res = s.recv_from(&mut b.data);
res.is_err() //true if failed to receive the retransmit packet
})
.collect();
//true if failed receive the retransmit packet, r2, and r3 should succeed
//r1 was the sender, so it should fail to receive the packet
assert_eq!(res, [true, false, false]);
exit.store(true, Ordering::Relaxed);
let threads = vec![t1, t2, t3, t1_gossip, t2_gossip, t3_gossip];
for t in threads.into_iter() {
t.join().unwrap();
}
}
}

View File

@ -153,7 +153,7 @@ pub fn decode_blocks(data: &mut [&mut [u8]], coding: &[&[u8]], erasures: &[i32])
// Generate coding blocks in window from consumed to consumed+NUM_DATA
pub fn generate_coding(
re: &BlobRecycler,
window: &mut Vec<Option<SharedBlob>>,
window: &mut Vec<SharedBlob>,
consumed: usize,
) -> Result<()> {
let mut data_blobs = Vec::new();
@ -179,7 +179,7 @@ pub fn generate_coding(
let coding_end = consumed + NUM_CODED;
for i in coding_start..coding_end {
let n = i % window.len();
window[n] = Some(re.allocate());
window[n] = re.allocate();
coding_blobs.push(window[n].clone().unwrap());
}
for b in &coding_blobs {
@ -272,7 +272,6 @@ pub fn recover(
mod test {
use erasure;
use packet::{BlobRecycler, SharedBlob, PACKET_DATA_SIZE};
extern crate env_logger;
#[test]
pub fn test_coding() {

View File

@ -4,12 +4,13 @@
use entry::Entry;
use hash::Hash;
use recorder::{ExitReason, Recorder, Signal};
use std::sync::mpsc::{sync_channel, Receiver, SyncSender};
use std::sync::mpsc::{sync_channel, Receiver, SyncSender, TryRecvError};
use std::sync::{Arc, Mutex};
use std::thread::{spawn, JoinHandle};
use std::time::Instant;
pub struct Historian {
pub output: Receiver<Entry>,
pub output: Arc<Mutex<Receiver<Entry>>>,
pub thread_hdl: JoinHandle<ExitReason>,
}
@ -22,7 +23,11 @@ impl Historian {
let (entry_sender, output) = sync_channel(10_000);
let thread_hdl =
Historian::create_recorder(*start_hash, ms_per_tick, event_receiver, entry_sender);
Historian { output, thread_hdl }
let loutput = Arc::new(Mutex::new(output));
Historian {
output: loutput,
thread_hdl,
}
}
/// A background thread that will continue tagging received Event messages and
@ -46,6 +51,10 @@ impl Historian {
}
})
}
pub fn receive(self: &Self) -> Result<Entry, TryRecvError> {
self.output.lock().unwrap().try_recv()
}
}
#[cfg(test)]
@ -67,9 +76,9 @@ mod tests {
sleep(Duration::new(0, 1_000_000));
input.send(Signal::Tick).unwrap();
let entry0 = hist.output.recv().unwrap();
let entry1 = hist.output.recv().unwrap();
let entry2 = hist.output.recv().unwrap();
let entry0 = hist.output.lock().unwrap().recv().unwrap();
let entry1 = hist.output.lock().unwrap().recv().unwrap();
let entry2 = hist.output.lock().unwrap().recv().unwrap();
assert_eq!(entry0.num_hashes, 0);
assert_eq!(entry1.num_hashes, 0);
@ -105,7 +114,7 @@ mod tests {
sleep(Duration::from_millis(300));
input.send(Signal::Tick).unwrap();
drop(input);
let entries: Vec<Entry> = hist.output.iter().collect();
let entries: Vec<Entry> = hist.output.lock().unwrap().iter().collect();
assert!(entries.len() > 1);
// Ensure the ID is not the seed.

View File

@ -11,6 +11,7 @@ pub mod event;
pub mod hash;
pub mod historian;
pub mod ledger;
pub mod logger;
pub mod mint;
pub mod packet;
pub mod plan;
@ -18,7 +19,6 @@ pub mod recorder;
pub mod result;
pub mod signature;
pub mod streamer;
pub mod subscribers;
pub mod transaction;
extern crate bincode;
extern crate byteorder;

11
src/logger.rs Normal file
View File

@ -0,0 +1,11 @@
use std::sync::{Once, ONCE_INIT};
extern crate env_logger;
static INIT: Once = ONCE_INIT;
/// Setup function that is only run once, even if called multiple times.
pub fn setup() {
INIT.call_once(|| {
let _ = env_logger::init();
});
}

View File

@ -1,6 +1,8 @@
//! The `packet` module defines data structures and methods to pull data from the network.
use bincode::{deserialize, serialize};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use result::{Error, Result};
use signature::PublicKey;
use std::collections::VecDeque;
use std::fmt;
use std::io;
@ -14,7 +16,7 @@ pub type PacketRecycler = Recycler<Packets>;
pub type BlobRecycler = Recycler<Blob>;
pub const NUM_PACKETS: usize = 1024 * 8;
const BLOB_SIZE: usize = 64 * 1024;
pub const BLOB_SIZE: usize = 64 * 1024;
pub const PACKET_DATA_SIZE: usize = 256;
pub const NUM_BLOBS: usize = (NUM_PACKETS * PACKET_DATA_SIZE) / BLOB_SIZE;
@ -211,28 +213,40 @@ impl Packets {
}
}
const BLOB_INDEX_SIZE: usize = size_of::<u64>();
const BLOB_INDEX_END: usize = size_of::<u64>();
const BLOB_ID_END: usize = BLOB_INDEX_END + size_of::<usize>() + size_of::<PublicKey>();
impl Blob {
pub fn get_index(&self) -> Result<u64> {
let mut rdr = io::Cursor::new(&self.data[0..BLOB_INDEX_SIZE]);
let mut rdr = io::Cursor::new(&self.data[0..BLOB_INDEX_END]);
let r = rdr.read_u64::<LittleEndian>()?;
Ok(r)
}
pub fn set_index(&mut self, ix: u64) -> Result<()> {
let mut wtr = vec![];
wtr.write_u64::<LittleEndian>(ix)?;
self.data[..BLOB_INDEX_SIZE].clone_from_slice(&wtr);
self.data[..BLOB_INDEX_END].clone_from_slice(&wtr);
Ok(())
}
pub fn get_id(&self) -> Result<PublicKey> {
let e = deserialize(&self.data[BLOB_INDEX_END..BLOB_ID_END])?;
Ok(e)
}
pub fn set_id(&mut self, id: PublicKey) -> Result<()> {
let wtr = serialize(&id)?;
self.data[BLOB_INDEX_END..BLOB_ID_END].clone_from_slice(&wtr);
Ok(())
}
pub fn data(&self) -> &[u8] {
&self.data[BLOB_INDEX_SIZE..]
&self.data[BLOB_ID_END..]
}
pub fn data_mut(&mut self) -> &mut [u8] {
&mut self.data[BLOB_INDEX_SIZE..]
&mut self.data[BLOB_ID_END..]
}
pub fn set_size(&mut self, size: usize) {
self.meta.size = size + BLOB_INDEX_SIZE;
self.meta.size = size + BLOB_ID_END;
}
pub fn recv_from(re: &BlobRecycler, socket: &UdpSocket) -> Result<VecDeque<SharedBlob>> {
let mut v = VecDeque::new();

View File

@ -1,4 +1,7 @@
//! The `streamer` module defines a set of services for effecently pulling data from udp sockets.
use crdt::Crdt;
#[cfg(feature = "erasure")]
use erasure;
use packet::{Blob, BlobRecycler, PacketRecycler, SharedBlob, SharedPackets, NUM_BLOBS};
use result::Result;
use std::collections::VecDeque;
@ -8,7 +11,6 @@ use std::sync::mpsc;
use std::sync::{Arc, RwLock};
use std::thread::{spawn, JoinHandle};
use std::time::Duration;
use subscribers::Subscribers;
pub type PacketReceiver = mpsc::Receiver<SharedPackets>;
pub type PacketSender = mpsc::Sender<SharedPackets>;
@ -99,17 +101,14 @@ pub fn blob_receiver(
if exit.load(Ordering::Relaxed) {
break;
}
let ret = recv_blobs(&recycler, &sock, &s);
if ret.is_err() {
break;
}
let _ = recv_blobs(&recycler, &sock, &s);
});
Ok(t)
}
fn recv_window(
window: &mut Vec<Option<SharedBlob>>,
subs: &Arc<RwLock<Subscribers>>,
crdt: &Arc<RwLock<Crdt>>,
recycler: &BlobRecycler,
consumed: &mut usize,
r: &BlobReceiver,
@ -118,24 +117,25 @@ fn recv_window(
) -> Result<()> {
let timer = Duration::new(1, 0);
let mut dq = r.recv_timeout(timer)?;
let leader_id = crdt.read().unwrap().leader_data().id;
while let Ok(mut nq) = r.try_recv() {
dq.append(&mut nq)
}
{
//retransmit all leader blocks
let mut retransmitq = VecDeque::new();
let rsubs = subs.read().unwrap();
for b in &dq {
let p = b.read().unwrap();
//TODO this check isn't safe against adverserial packets
//we need to maintain a sequence window
trace!(
"idx: {} addr: {:?} leader: {:?}",
"idx: {} addr: {:?} id: {:?} leader: {:?}",
p.get_index().unwrap(),
p.get_id().unwrap(),
p.meta.addr(),
rsubs.leader.addr
leader_id
);
if p.meta.addr() == rsubs.leader.addr {
if p.get_id().unwrap() == leader_id {
//TODO
//need to copy the retransmited blob
//otherwise we get into races with which thread
@ -195,7 +195,7 @@ fn recv_window(
pub fn window(
exit: Arc<AtomicBool>,
subs: Arc<RwLock<Subscribers>>,
crdt: Arc<RwLock<Crdt>>,
recycler: BlobRecycler,
r: BlobReceiver,
s: BlobSender,
@ -210,7 +210,7 @@ pub fn window(
}
let _ = recv_window(
&mut window,
&subs,
&crdt,
&recycler,
&mut consumed,
&r,
@ -221,8 +221,57 @@ pub fn window(
})
}
fn broadcast(
crdt: &Arc<RwLock<Crdt>>,
recycler: &BlobRecycler,
r: &BlobReceiver,
sock: &UdpSocket,
transmit_index: &mut u64,
) -> Result<()> {
let timer = Duration::new(1, 0);
let mut dq = r.recv_timeout(timer)?;
while let Ok(mut nq) = r.try_recv() {
dq.append(&mut nq);
}
let mut blobs = dq.into_iter().collect();
/// appends codes to the list of blobs allowing us to reconstruct the stream
#[cfg(feature = "erasure")]
erasure::generate_codes(blobs);
Crdt::broadcast(crdt, &blobs, &sock, transmit_index)?;
while let Some(b) = blobs.pop() {
recycler.recycle(b);
}
Ok(())
}
/// Service to broadcast messages from the leader to layer 1 nodes.
/// See `crdt` for network layer definitions.
/// # Arguments
/// * `sock` - Socket to send from.
/// * `exit` - Boolean to signal system exit.
/// * `crdt` - CRDT structure
/// * `recycler` - Blob recycler.
/// * `r` - Receive channel for blobs to be retransmitted to all the layer 1 nodes.
pub fn broadcaster(
sock: UdpSocket,
exit: Arc<AtomicBool>,
crdt: Arc<RwLock<Crdt>>,
recycler: BlobRecycler,
r: BlobReceiver,
) -> JoinHandle<()> {
spawn(move || {
let mut transmit_index = 0;
loop {
if exit.load(Ordering::Relaxed) {
break;
}
let _ = broadcast(&crdt, &recycler, &r, &sock, &mut transmit_index);
}
})
}
fn retransmit(
subs: &Arc<RwLock<Subscribers>>,
crdt: &Arc<RwLock<Crdt>>,
recycler: &BlobRecycler,
r: &BlobReceiver,
sock: &UdpSocket,
@ -233,10 +282,8 @@ fn retransmit(
dq.append(&mut nq);
}
{
let wsubs = subs.read().unwrap();
for b in &dq {
let mut mb = b.write().unwrap();
wsubs.retransmit(&mut mb, sock)?;
Crdt::retransmit(&crdt, b, sock)?;
}
}
while let Some(b) = dq.pop_front() {
@ -246,26 +293,30 @@ fn retransmit(
}
/// Service to retransmit messages from the leader to layer 1 nodes.
/// See `subscribers` for network layer definitions.
/// See `crdt` for network layer definitions.
/// # Arguments
/// * `sock` - Socket to read from. Read timeout is set to 1.
/// * `exit` - Boolean to signal system exit.
/// * `subs` - Shared Subscriber structure. This structure needs to be updated and popualted by
/// the accountant.
/// * `crdt` - This structure needs to be updated and populated by the accountant and via gossip.
/// * `recycler` - Blob recycler.
/// * `r` - Receive channel for blobs to be retransmitted to all the layer 1 nodes.
pub fn retransmitter(
sock: UdpSocket,
exit: Arc<AtomicBool>,
subs: Arc<RwLock<Subscribers>>,
crdt: Arc<RwLock<Crdt>>,
recycler: BlobRecycler,
r: BlobReceiver,
) -> JoinHandle<()> {
spawn(move || loop {
if exit.load(Ordering::Relaxed) {
break;
spawn(move || {
trace!("retransmitter started");
loop {
if exit.load(Ordering::Relaxed) {
break;
}
// TODO: handle this error
let _ = retransmit(&crdt, &recycler, &r, &sock);
}
let _ = retransmit(&subs, &recycler, &r, &sock);
trace!("exiting retransmitter");
})
}
@ -356,7 +407,7 @@ mod bench {
let time = elapsed.as_secs() * 10000000000 + elapsed.subsec_nanos() as u64;
let ftime = (time as f64) / 10000000000f64;
let fcount = (end_val - start_val) as f64;
println!("performance: {:?}", fcount / ftime);
trace!("performance: {:?}", fcount / ftime);
exit.store(true, Ordering::Relaxed);
t_reader.join()?;
t_producer1.join()?;
@ -373,7 +424,11 @@ mod bench {
#[cfg(test)]
mod test {
use crdt::{Crdt, ReplicatedData};
use logger;
use packet::{Blob, BlobRecycler, Packet, PacketRecycler, Packets, PACKET_DATA_SIZE};
use signature::KeyPair;
use signature::KeyPairUtil;
use std::collections::VecDeque;
use std::io;
use std::io::Write;
@ -381,17 +436,17 @@ mod test {
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::channel;
use std::sync::{Arc, RwLock};
use std::thread::sleep;
use std::time::Duration;
use streamer::{blob_receiver, receiver, responder, retransmitter, window, BlobReceiver,
PacketReceiver};
use subscribers::{Node, Subscribers};
fn get_msgs(r: PacketReceiver, num: &mut usize) {
for _t in 0..5 {
let timer = Duration::new(1, 0);
match r.recv_timeout(timer) {
Ok(m) => *num += m.read().unwrap().packets.len(),
e => println!("error {:?}", e),
e => info!("error {:?}", e),
}
if *num == 10 {
break;
@ -445,7 +500,7 @@ mod test {
}
*num += m.len();
}
e => println!("error {:?}", e),
e => info!("error {:?}", e),
}
if *num == 10 {
break;
@ -455,15 +510,23 @@ mod test {
#[test]
pub fn window_send_test() {
let pubkey_me = KeyPair::new().pubkey();
let read = UdpSocket::bind("127.0.0.1:0").expect("bind");
let addr = read.local_addr().unwrap();
let send = UdpSocket::bind("127.0.0.1:0").expect("bind");
let serve = UdpSocket::bind("127.0.0.1:0").expect("bind");
let exit = Arc::new(AtomicBool::new(false));
let subs = Arc::new(RwLock::new(Subscribers::new(
Node::default(),
Node::new([0; 8], 0, send.local_addr().unwrap()),
&[],
)));
let rep_data = ReplicatedData::new(
pubkey_me,
read.local_addr().unwrap(),
send.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
let mut crdt_me = Crdt::new(rep_data);
let me_id = crdt_me.my_data().id;
crdt_me.set_leader(me_id);
let subs = Arc::new(RwLock::new(crdt_me));
let resp_recycler = BlobRecycler::default();
let (s_reader, r_reader) = channel();
let t_receiver =
@ -487,6 +550,7 @@ mod test {
let b_ = b.clone();
let mut w = b.write().unwrap();
w.set_index(i).unwrap();
w.set_id(me_id).unwrap();
assert_eq!(i, w.get_index().unwrap());
w.meta.size = PACKET_DATA_SIZE;
w.meta.set_addr(&addr);
@ -507,43 +571,102 @@ mod test {
t_window.join().expect("join");
}
fn test_node() -> (Arc<RwLock<Crdt>>, UdpSocket, UdpSocket, UdpSocket) {
let gossip = UdpSocket::bind("127.0.0.1:0").unwrap();
let replicate = UdpSocket::bind("127.0.0.1:0").unwrap();
let serve = UdpSocket::bind("127.0.0.1:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
let crdt = Crdt::new(d);
trace!(
"id: {} gossip: {} replicate: {} serve: {}",
crdt.my_data().id[0],
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
(Arc::new(RwLock::new(crdt)), gossip, replicate, serve)
}
#[test]
//retransmit from leader to replicate target
pub fn retransmit() {
let read = UdpSocket::bind("127.0.0.1:0").expect("bind");
let send = UdpSocket::bind("127.0.0.1:0").expect("bind");
logger::setup();
trace!("retransmit test start");
let exit = Arc::new(AtomicBool::new(false));
let subs = Arc::new(RwLock::new(Subscribers::new(
Node::default(),
Node::default(),
&[Node::new([0; 8], 1, read.local_addr().unwrap())],
)));
let (crdt_leader, sock_gossip_leader, _, sock_leader) = test_node();
let (crdt_target, sock_gossip_target, sock_replicate_target, _) = test_node();
let leader_data = crdt_leader.read().unwrap().my_data().clone();
crdt_leader.write().unwrap().insert(leader_data.clone());
crdt_leader.write().unwrap().set_leader(leader_data.id);
let t_crdt_leader_g = Crdt::gossip(crdt_leader.clone(), exit.clone());
let t_crdt_leader_l = Crdt::listen(crdt_leader.clone(), sock_gossip_leader, exit.clone());
crdt_target.write().unwrap().insert(leader_data.clone());
crdt_target.write().unwrap().set_leader(leader_data.id);
let t_crdt_target_g = Crdt::gossip(crdt_target.clone(), exit.clone());
let t_crdt_target_l = Crdt::listen(crdt_target.clone(), sock_gossip_target, exit.clone());
//leader retransmitter
let (s_retransmit, r_retransmit) = channel();
let blob_recycler = BlobRecycler::default();
let saddr = send.local_addr().unwrap();
let saddr = sock_leader.local_addr().unwrap();
let t_retransmit = retransmitter(
send,
sock_leader,
exit.clone(),
subs,
crdt_leader.clone(),
blob_recycler.clone(),
r_retransmit,
);
//target receiver
let (s_blob_receiver, r_blob_receiver) = channel();
let t_receiver = blob_receiver(
exit.clone(),
blob_recycler.clone(),
sock_replicate_target,
s_blob_receiver,
).unwrap();
for _ in 0..10 {
let done = crdt_target.read().unwrap().update_index == 2
&& crdt_leader.read().unwrap().update_index == 2;
if done {
break;
}
let timer = Duration::new(1, 0);
sleep(timer);
}
//send the data through
let mut bq = VecDeque::new();
let b = blob_recycler.allocate();
b.write().unwrap().meta.size = 10;
bq.push_back(b);
s_retransmit.send(bq).unwrap();
let (s_blob_receiver, r_blob_receiver) = channel();
let t_receiver =
blob_receiver(exit.clone(), blob_recycler.clone(), read, s_blob_receiver).unwrap();
let mut oq = r_blob_receiver.recv().unwrap();
let timer = Duration::new(5, 0);
trace!("Waiting for timeout");
let mut oq = r_blob_receiver.recv_timeout(timer).unwrap();
assert_eq!(oq.len(), 1);
let o = oq.pop_front().unwrap();
let ro = o.read().unwrap();
assert_eq!(ro.meta.size, 10);
assert_eq!(ro.meta.addr(), saddr);
exit.store(true, Ordering::Relaxed);
t_receiver.join().expect("join");
t_retransmit.join().expect("join");
let threads = vec![
t_receiver,
t_retransmit,
t_crdt_target_g,
t_crdt_target_l,
t_crdt_leader_g,
t_crdt_leader_l,
];
for t in threads {
t.join().unwrap();
}
}
}

View File

@ -1,149 +0,0 @@
//! The `subscribers` module defines data structures to keep track of nodes on the network.
//! The network is arranged in layers:
//!
//! * layer 0 - Leader.
//! * layer 1 - As many nodes as we can fit to quickly get reliable `2/3+1` finality
//! * layer 2 - Everyone else, if layer 1 is `2^10`, layer 2 should be able to fit `2^20` number of nodes.
//!
//! It's up to the external state machine to keep this updated.
use packet::Blob;
use rayon::prelude::*;
use result::{Error, Result};
use std::net::{SocketAddr, UdpSocket};
use std::fmt;
#[derive(Clone, PartialEq)]
pub struct Node {
pub id: [u64; 8],
pub weight: u64,
pub addr: SocketAddr,
}
//sockaddr doesn't implement default
impl Default for Node {
fn default() -> Node {
Node {
id: [0; 8],
weight: 0,
addr: "0.0.0.0:0".parse().unwrap(),
}
}
}
impl Node {
pub fn new(id: [u64; 8], weight: u64, addr: SocketAddr) -> Node {
Node { id, weight, addr }
}
fn key(&self) -> i64 {
(self.weight as i64).checked_neg().unwrap()
}
}
impl fmt::Debug for Node {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Node {{ weight: {} addr: {} }}", self.weight, self.addr)
}
}
pub struct Subscribers {
data: Vec<Node>,
pub me: Node,
pub leader: Node,
}
impl Subscribers {
pub fn new(me: Node, leader: Node, network: &[Node]) -> Subscribers {
let mut h = Subscribers {
data: vec![],
me: me.clone(),
leader: leader.clone(),
};
h.insert(&[me, leader]);
h.insert(network);
h
}
/// retransmit messages from the leader to layer 1 nodes
pub fn retransmit(&self, blob: &mut Blob, s: &UdpSocket) -> Result<()> {
let errs: Vec<_> = self.data
.par_iter()
.map(|i| {
if self.me == *i {
return Ok(0);
}
if self.leader == *i {
return Ok(0);
}
trace!("retransmit blob to {}", i.addr);
s.send_to(&blob.data[..blob.meta.size], &i.addr)
})
.collect();
for e in errs {
trace!("retransmit result {:?}", e);
match e {
Err(e) => return Err(Error::IO(e)),
_ => (),
}
}
Ok(())
}
pub fn insert(&mut self, ns: &[Node]) {
self.data.extend_from_slice(ns);
self.data.sort_by_key(Node::key);
}
}
#[cfg(test)]
mod test {
use packet::Blob;
use rayon::prelude::*;
use std::net::UdpSocket;
use std::time::Duration;
use subscribers::{Node, Subscribers};
#[test]
pub fn subscriber() {
let mut me = Node::default();
me.weight = 10;
let mut leader = Node::default();
leader.weight = 11;
let mut s = Subscribers::new(me, leader, &[]);
assert_eq!(s.data.len(), 2);
assert_eq!(s.data[0].weight, 11);
assert_eq!(s.data[1].weight, 10);
let mut n = Node::default();
n.weight = 12;
s.insert(&[n]);
assert_eq!(s.data.len(), 3);
assert_eq!(s.data[0].weight, 12);
}
#[test]
pub fn retransmit() {
let s1 = UdpSocket::bind("127.0.0.1:0").expect("bind");
let s2 = UdpSocket::bind("127.0.0.1:0").expect("bind");
let s3 = UdpSocket::bind("127.0.0.1:0").expect("bind");
let n1 = Node::new([0; 8], 0, s1.local_addr().unwrap());
let n2 = Node::new([0; 8], 0, s2.local_addr().unwrap());
let mut s = Subscribers::new(n1.clone(), n2.clone(), &[]);
let n3 = Node::new([0; 8], 0, s3.local_addr().unwrap());
s.insert(&[n3]);
let mut b = Blob::default();
b.meta.size = 10;
let s4 = UdpSocket::bind("127.0.0.1:0").expect("bind");
s.retransmit(&mut b, &s4).unwrap();
let res: Vec<_> = [s1, s2, s3]
.into_par_iter()
.map(|s| {
let mut b = Blob::default();
s.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
s.recv_from(&mut b.data).is_err()
})
.collect();
assert_eq!(res, [true, true, false]);
let mut n4 = Node::default();
n4.addr = "255.255.255.255:1".parse().unwrap();
s.insert(&[n4]);
assert!(s.retransmit(&mut b, &s4).is_err());
}
}