//! The `signature` module provides functionality for public, and private keys. use generic_array::typenum::{U32, U64}; use generic_array::GenericArray; use rand::{ChaChaRng, Rng, SeedableRng}; use rayon::prelude::*; use ring::error::Unspecified; use ring::rand::SecureRandom; use ring::signature::Ed25519KeyPair; use ring::{rand, signature}; use std::cell::RefCell; use untrusted; pub type KeyPair = Ed25519KeyPair; pub type PublicKey = GenericArray; pub type Signature = GenericArray; pub trait KeyPairUtil { fn new() -> Self; fn pubkey(&self) -> PublicKey; } impl KeyPairUtil for Ed25519KeyPair { /// Return a new ED25519 keypair fn new() -> Self { let rng = rand::SystemRandom::new(); let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng) .expect("generate_pkcs8 in signature pb fn new"); signature::Ed25519KeyPair::from_pkcs8(untrusted::Input::from(&pkcs8_bytes)) .expect("from_pcks8 in signature pb fn new") } /// Return the public key for the given keypair fn pubkey(&self) -> PublicKey { GenericArray::clone_from_slice(self.public_key_bytes()) } } pub trait SignatureUtil { fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool; } impl SignatureUtil for GenericArray { fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool { let peer_public_key = untrusted::Input::from(peer_public_key_bytes); let msg = untrusted::Input::from(msg_bytes); let sig = untrusted::Input::from(self); signature::verify(&signature::ED25519, peer_public_key, msg, sig).is_ok() } } pub struct GenKeys { // This is necessary because the rng needs to mutate its state to remain // deterministic, and the fill trait requires an immuatble reference to self generator: RefCell, } impl GenKeys { pub fn new(seed: &[u8]) -> GenKeys { let seed32: Vec<_> = seed.iter().map(|&x| x as u32).collect(); let rng = ChaChaRng::from_seed(&seed32); GenKeys { generator: RefCell::new(rng), } } pub fn new_key(&self) -> Vec { KeyPair::generate_pkcs8(self).unwrap().to_vec() } pub fn gen_n_seeds(&self, n: i64) -> Vec<[u8; 16]> { let mut rng = self.generator.borrow_mut(); (0..n).map(|_| rng.gen()).collect() } pub fn gen_n_keypairs(&self, n: i64) -> Vec { self.gen_n_seeds(n) .into_par_iter() .map(|seed| { let pkcs8 = GenKeys::new(&seed).new_key(); KeyPair::from_pkcs8(untrusted::Input::from(&pkcs8)).unwrap() }) .collect() } } impl SecureRandom for GenKeys { fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified> { let mut rng = self.generator.borrow_mut(); rng.fill_bytes(dest); Ok(()) } } #[cfg(test)] mod tests { use super::*; use std::collections::HashSet; #[test] fn test_new_key_is_deterministic() { let seed = [1, 2, 3, 4]; let rng0 = GenKeys::new(&seed); let rng1 = GenKeys::new(&seed); for _ in 0..100 { assert_eq!(rng0.new_key(), rng1.new_key()); } } fn gen_n_pubkeys(seed: &[u8], n: i64) -> HashSet { GenKeys::new(&seed) .gen_n_keypairs(n) .into_iter() .map(|x| x.pubkey()) .collect() } #[test] fn test_gen_n_pubkeys_deterministic() { let seed = [1, 2, 3, 4]; assert_eq!(gen_n_pubkeys(&seed, 50), gen_n_pubkeys(&seed, 50)); } } #[cfg(all(feature = "unstable", test))] mod bench { extern crate test; use self::test::Bencher; use super::*; #[bench] fn bench_gen_keys(b: &mut Bencher) { let seed: &[_] = &[1, 2, 3, 4]; let rnd = GenKeys::new(seed); b.iter(|| rnd.gen_n_keypairs(1000)); } }