//! The `bank` module tracks client balances and the progress of smart //! contracts. It offers a high-level API that signs transactions //! on behalf of the caller, and a low-level API for when they have //! already been signed and verified. extern crate libc; use chrono::prelude::*; use counter::Counter; use entry::Entry; use hash::Hash; use itertools::Itertools; use ledger::Block; use log::Level; use mint::Mint; use payment_plan::{Payment, PaymentPlan, Witness}; use signature::{Keypair, Pubkey, Signature}; use std::collections::hash_map::Entry::Occupied; use std::collections::{HashMap, HashSet, VecDeque}; use std::result; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::RwLock; use std::time::Instant; use streamer::WINDOW_SIZE; use timing::{duration_as_us, timestamp}; use transaction::{Instruction, Plan, Transaction}; /// The number of most recent `last_id` values that the bank will track the signatures /// of. Once the bank discards a `last_id`, it will reject any transactions that use /// that `last_id` in a transaction. Lowering this value reduces memory consumption, /// but requires clients to update its `last_id` more frequently. Raising the value /// lengthens the time a client must wait to be certain a missing transaction will /// not be processed by the network. pub const MAX_ENTRY_IDS: usize = 1024 * 16; pub const VERIFY_BLOCK_SIZE: usize = 16; /// Reasons a transaction might be rejected. #[derive(Debug, PartialEq, Eq)] pub enum BankError { /// Attempt to debit from `Pubkey`, but no found no record of a prior credit. AccountNotFound(Pubkey), /// The requested debit from `Pubkey` has the potential to draw the balance /// below zero. This can occur when a debit and credit are processed in parallel. /// The bank may reject the debit or push it to a future entry. InsufficientFunds(Pubkey), /// The bank has seen `Signature` before. This can occur under normal operation /// when a UDP packet is duplicated, as a user error from a client not updating /// its `last_id`, or as a double-spend attack. DuplicateSignature(Signature), /// The bank has not seen the given `last_id` or the transaction is too old and /// the `last_id` has been discarded. LastIdNotFound(Hash), /// The transaction is invalid and has requested a debit or credit of negative /// tokens. NegativeTokens, /// Proof of History verification failed. LedgerVerificationFailed, } pub type Result = result::Result; /// The state of all accounts and contracts after processing its entries. pub struct Bank { /// A map of account public keys to the balance in that account. balances: RwLock>, /// A map of smart contract transaction signatures to what remains of its payment /// plan. Each transaction that targets the plan should cause it to be reduced. /// Once it cannot be reduced, final payments are made and it is discarded. pending: RwLock>, /// A FIFO queue of `last_id` items, where each item is a set of signatures /// that have been processed using that `last_id`. Rejected `last_id` /// values are so old that the `last_id` has been pulled out of the queue. last_ids: RwLock>, /// Mapping of hashes to signature sets along with timestamp. The bank uses this data to /// reject transactions with signatures its seen before last_ids_sigs: RwLock, u64)>>, /// The number of transactions the bank has processed without error since the /// start of the ledger. transaction_count: AtomicUsize, /// This bool allows us to submit metrics that are specific for leaders or validators /// It is set to `true` by fullnode before creating the bank. pub is_leader: bool, } impl Default for Bank { fn default() -> Self { Bank { balances: RwLock::new(HashMap::new()), pending: RwLock::new(HashMap::new()), last_ids: RwLock::new(VecDeque::new()), last_ids_sigs: RwLock::new(HashMap::new()), transaction_count: AtomicUsize::new(0), is_leader: true, } } } impl Bank { /// Create a default Bank pub fn new_default(is_leader: bool) -> Self { let mut bank = Bank::default(); bank.is_leader = is_leader; bank } /// Create an Bank using a deposit. pub fn new_from_deposit(deposit: &Payment) -> Self { let bank = Self::default(); bank.apply_payment(deposit, &mut bank.balances.write().unwrap()); bank } /// Create an Bank with only a Mint. Typically used by unit tests. pub fn new(mint: &Mint) -> Self { let deposit = Payment { to: mint.pubkey(), tokens: mint.tokens, }; let bank = Self::new_from_deposit(&deposit); bank.register_entry_id(&mint.last_id()); bank } /// Commit funds to the `payment.to` party. fn apply_payment(&self, payment: &Payment, balances: &mut HashMap) { *balances.entry(payment.to).or_insert(0) += payment.tokens; } /// Return the last entry ID registered. pub fn last_id(&self) -> Hash { let last_ids = self.last_ids.read().expect("'last_ids' read lock"); let last_item = last_ids .iter() .last() .expect("get last item from 'last_ids' list"); *last_item } /// Store the given signature. The bank will reject any transaction with the same signature. fn reserve_signature(signatures: &mut HashSet, signature: &Signature) -> Result<()> { if let Some(signature) = signatures.get(signature) { return Err(BankError::DuplicateSignature(*signature)); } signatures.insert(*signature); Ok(()) } /// Forget the given `signature` because its transaction was rejected. fn forget_signature(signatures: &mut HashSet, signature: &Signature) { signatures.remove(signature); } /// Forget the given `signature` with `last_id` because the transaction was rejected. fn forget_signature_with_last_id(&self, signature: &Signature, last_id: &Hash) { if let Some(entry) = self .last_ids_sigs .write() .expect("'last_ids' read lock in forget_signature_with_last_id") .get_mut(last_id) { Self::forget_signature(&mut entry.0, signature); } } /// Forget all signatures. Useful for benchmarking. pub fn clear_signatures(&self) { for (_, sigs) in self.last_ids_sigs.write().unwrap().iter_mut() { sigs.0.clear(); } } fn reserve_signature_with_last_id(&self, signature: &Signature, last_id: &Hash) -> Result<()> { if let Some(entry) = self .last_ids_sigs .write() .expect("'last_ids' read lock in reserve_signature_with_last_id") .get_mut(last_id) { return Self::reserve_signature(&mut entry.0, signature); } Err(BankError::LastIdNotFound(*last_id)) } /// Look through the last_ids and find all the valid ids /// This is batched to avoid holding the lock for a significant amount of time /// /// Return a vec of tuple of (valid index, timestamp) /// index is into the passed ids slice to avoid copying hashes pub fn count_valid_ids(&self, ids: &[Hash]) -> Vec<(usize, u64)> { let last_ids = self.last_ids_sigs.read().unwrap(); let mut ret = Vec::new(); for (i, id) in ids.iter().enumerate() { if let Some(entry) = last_ids.get(id) { ret.push((i, entry.1)); } } ret } /// Tell the bank which Entry IDs exist on the ledger. This function /// assumes subsequent calls correspond to later entries, and will boot /// the oldest ones once its internal cache is full. Once boot, the /// bank will reject transactions using that `last_id`. pub fn register_entry_id(&self, last_id: &Hash) { let mut last_ids = self .last_ids .write() .expect("'last_ids' write lock in register_entry_id"); let mut last_ids_sigs = self .last_ids_sigs .write() .expect("last_ids_sigs write lock"); if last_ids.len() >= MAX_ENTRY_IDS { let id = last_ids.pop_front().unwrap(); last_ids_sigs.remove(&id); } last_ids_sigs.insert(*last_id, (HashSet::new(), timestamp())); last_ids.push_back(*last_id); } /// Deduct tokens from the 'from' address the account has sufficient /// funds and isn't a duplicate. fn apply_debits(&self, tx: &Transaction, bals: &mut HashMap) -> Result<()> { let mut purge = false; { let option = bals.get_mut(&tx.from); if option.is_none() { // TODO: this is gnarly because the counters are static atomics if !self.is_leader { inc_new_counter_info!("bank-appy_debits-account_not_found-validator", 1); } else if let Instruction::NewVote(_) = &tx.instruction { inc_new_counter_info!("bank-appy_debits-vote_account_not_found", 1); } else { inc_new_counter_info!("bank-appy_debits-generic_account_not_found", 1); } return Err(BankError::AccountNotFound(tx.from)); } let bal = option.unwrap(); self.reserve_signature_with_last_id(&tx.signature, &tx.last_id)?; if let Instruction::NewContract(contract) = &tx.instruction { if contract.tokens < 0 { return Err(BankError::NegativeTokens); } if *bal < contract.tokens { self.forget_signature_with_last_id(&tx.signature, &tx.last_id); return Err(BankError::InsufficientFunds(tx.from)); } else if *bal == contract.tokens { purge = true; } else { *bal -= contract.tokens; } }; } if purge { bals.remove(&tx.from); } Ok(()) } /// Apply only a transaction's credits. /// Note: It is safe to apply credits from multiple transactions in parallel. fn apply_credits(&self, tx: &Transaction, balances: &mut HashMap) { match &tx.instruction { Instruction::NewContract(contract) => { let plan = contract.plan.clone(); if let Some(payment) = plan.final_payment() { self.apply_payment(&payment, balances); } else { let mut pending = self .pending .write() .expect("'pending' write lock in apply_credits"); pending.insert(tx.signature, plan); } } Instruction::ApplyTimestamp(dt) => { let _ = self.apply_timestamp(tx.from, *dt); } Instruction::ApplySignature(signature) => { let _ = self.apply_signature(tx.from, *signature); } Instruction::NewVote(_vote) => { trace!("GOT VOTE! last_id={:?}", &tx.last_id.as_ref()[..8]); // TODO: record the vote in the stake table... } } } /// Process a Transaction. If it contains a payment plan that requires a witness /// to progress, the payment plan will be stored in the bank. pub fn process_transaction(&self, tx: &Transaction) -> Result<()> { let bals = &mut self.balances.write().unwrap(); self.apply_debits(tx, bals)?; self.apply_credits(tx, bals); self.transaction_count.fetch_add(1, Ordering::Relaxed); Ok(()) } /// Process a batch of transactions. #[must_use] pub fn process_transactions(&self, txs: Vec) -> Vec> { let bals = &mut self.balances.write().unwrap(); debug!("processing Transactions {}", txs.len()); let txs_len = txs.len(); let now = Instant::now(); let results: Vec<_> = txs .into_iter() .map(|tx| self.apply_debits(&tx, bals).map(|_| tx)) .collect(); // Calling collect() here forces all debits to complete before moving on. let debits = now.elapsed(); let now = Instant::now(); let res: Vec<_> = results .into_iter() .map(|result| { result.map(|tx| { self.apply_credits(&tx, bals); tx }) }) .collect(); debug!( "debits: {} us credits: {:?} us tx: {}", duration_as_us(&debits), duration_as_us(&now.elapsed()), txs_len ); let mut tx_count = 0; let mut err_count = 0; for r in &res { if r.is_ok() { tx_count += 1; } else { if err_count == 0 { info!("tx error: {:?}", r); } err_count += 1; } } if err_count > 0 { info!("{} errors of {} txs", err_count, err_count + tx_count); } self.transaction_count .fetch_add(tx_count, Ordering::Relaxed); res } pub fn process_entry(&self, entry: Entry) -> Result<()> { if !entry.transactions.is_empty() { for result in self.process_transactions(entry.transactions) { result?; } } if !entry.has_more { self.register_entry_id(&entry.id); } Ok(()) } /// Process an ordered list of entries, populating a circular buffer "tail" /// as we go. fn process_entries_tail( &self, entries: Vec, tail: &mut Vec, tail_idx: &mut usize, ) -> Result { let mut entry_count = 0; for entry in entries { if tail.len() > *tail_idx { tail[*tail_idx] = entry.clone(); } else { tail.push(entry.clone()); } *tail_idx = (*tail_idx + 1) % WINDOW_SIZE as usize; entry_count += 1; self.process_entry(entry)?; } Ok(entry_count) } /// Process an ordered list of entries. pub fn process_entries(&self, entries: Vec) -> Result { let mut entry_count = 0; for entry in entries { entry_count += 1; self.process_entry(entry)?; } Ok(entry_count) } /// Append entry blocks to the ledger, verifying them along the way. fn process_blocks( &self, start_hash: Hash, entries: I, tail: &mut Vec, tail_idx: &mut usize, ) -> Result where I: IntoIterator, { // Ledger verification needs to be parallelized, but we can't pull the whole // thing into memory. We therefore chunk it. let mut entry_count = *tail_idx as u64; let mut id = start_hash; for block in &entries.into_iter().chunks(VERIFY_BLOCK_SIZE) { let block: Vec<_> = block.collect(); if !block.verify(&id) { warn!("Ledger proof of history failed at entry: {}", entry_count); return Err(BankError::LedgerVerificationFailed); } id = block.last().unwrap().id; entry_count += self.process_entries_tail(block, tail, tail_idx)?; } Ok(entry_count) } /// Process a full ledger. pub fn process_ledger(&self, entries: I) -> Result<(u64, Vec)> where I: IntoIterator, { let mut entries = entries.into_iter(); // The first item in the ledger is required to be an entry with zero num_hashes, // which implies its id can be used as the ledger's seed. let entry0 = entries.next().expect("invalid ledger: empty"); // The second item in the ledger is a special transaction where the to and from // fields are the same. That entry should be treated as a deposit, not a // transfer to oneself. let entry1 = entries .next() .expect("invalid ledger: need at least 2 entries"); { let tx = &entry1.transactions[0]; let deposit = if let Instruction::NewContract(contract) = &tx.instruction { contract.plan.final_payment() } else { None }.expect("invalid ledger, needs to start with a contract"); self.apply_payment(&deposit, &mut self.balances.write().unwrap()); } self.register_entry_id(&entry0.id); self.register_entry_id(&entry1.id); let entry1_id = entry1.id; let mut tail = Vec::with_capacity(WINDOW_SIZE as usize); tail.push(entry0); tail.push(entry1); let mut tail_idx = 2; let entry_count = self.process_blocks(entry1_id, entries, &mut tail, &mut tail_idx)?; // check f we need to rotate tail if tail.len() == WINDOW_SIZE as usize { tail.rotate_left(tail_idx) } Ok((entry_count, tail)) } /// Process a Witness Signature. Any payment plans waiting on this signature /// will progress one step. fn apply_signature(&self, from: Pubkey, signature: Signature) -> Result<()> { if let Occupied(mut e) = self .pending .write() .expect("write() in apply_signature") .entry(signature) { e.get_mut().apply_witness(&Witness::Signature, &from); if let Some(payment) = e.get().final_payment() { self.apply_payment(&payment, &mut self.balances.write().unwrap()); e.remove_entry(); } }; Ok(()) } /// Process a Witness Timestamp. Any payment plans waiting on this timestamp /// will progress one step. fn apply_timestamp(&self, from: Pubkey, dt: DateTime) -> Result<()> { // Check to see if any timelocked transactions can be completed. let mut completed = vec![]; // Hold 'pending' write lock until the end of this function. Otherwise another thread can // double-spend if it enters before the modified plan is removed from 'pending'. let mut pending = self .pending .write() .expect("'pending' write lock in apply_timestamp"); for (key, plan) in pending.iter_mut() { plan.apply_witness(&Witness::Timestamp(dt), &from); if let Some(payment) = plan.final_payment() { self.apply_payment(&payment, &mut self.balances.write().unwrap()); completed.push(key.clone()); } } for key in completed { pending.remove(&key); } Ok(()) } /// Create, sign, and process a Transaction from `keypair` to `to` of /// `n` tokens where `last_id` is the last Entry ID observed by the client. pub fn transfer( &self, n: i64, keypair: &Keypair, to: Pubkey, last_id: Hash, ) -> Result { let tx = Transaction::new(keypair, to, n, last_id); let signature = tx.signature; self.process_transaction(&tx).map(|_| signature) } /// Create, sign, and process a postdated Transaction from `keypair` /// to `to` of `n` tokens on `dt` where `last_id` is the last Entry ID /// observed by the client. pub fn transfer_on_date( &self, n: i64, keypair: &Keypair, to: Pubkey, dt: DateTime, last_id: Hash, ) -> Result { let tx = Transaction::new_on_date(keypair, to, dt, n, last_id); let signature = tx.signature; self.process_transaction(&tx).map(|_| signature) } pub fn get_balance(&self, pubkey: &Pubkey) -> i64 { let bals = self .balances .read() .expect("'balances' read lock in get_balance"); bals.get(pubkey).cloned().unwrap_or(0) } pub fn transaction_count(&self) -> usize { self.transaction_count.load(Ordering::Relaxed) } pub fn has_signature(&self, signature: &Signature) -> bool { let last_ids_sigs = self .last_ids_sigs .read() .expect("'last_ids_sigs' read lock"); for (_hash, signatures) in last_ids_sigs.iter() { if signatures.0.contains(signature) { return true; } } false } } #[cfg(test)] mod tests { use super::*; use bincode::serialize; use entry::next_entry; use entry::Entry; use entry_writer::{self, EntryWriter}; use hash::hash; use ledger; use packet::BLOB_DATA_SIZE; use signature::KeypairUtil; use std::io::{BufReader, Cursor, Seek, SeekFrom}; use std::mem::size_of; #[test] fn test_two_payments_to_one_party() { let mint = Mint::new(10_000); let pubkey = Keypair::new().pubkey(); let bank = Bank::new(&mint); assert_eq!(bank.last_id(), mint.last_id()); bank.transfer(1_000, &mint.keypair(), pubkey, mint.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 1_000); bank.transfer(500, &mint.keypair(), pubkey, mint.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 1_500); assert_eq!(bank.transaction_count(), 2); } #[test] fn test_negative_tokens() { let mint = Mint::new(1); let pubkey = Keypair::new().pubkey(); let bank = Bank::new(&mint); assert_eq!( bank.transfer(-1, &mint.keypair(), pubkey, mint.last_id()), Err(BankError::NegativeTokens) ); assert_eq!(bank.transaction_count(), 0); } #[test] fn test_account_not_found() { let mint = Mint::new(1); let bank = Bank::new(&mint); let keypair = Keypair::new(); assert_eq!( bank.transfer(1, &keypair, mint.pubkey(), mint.last_id()), Err(BankError::AccountNotFound(keypair.pubkey())) ); assert_eq!(bank.transaction_count(), 0); } #[test] fn test_insufficient_funds() { let mint = Mint::new(11_000); let bank = Bank::new(&mint); let pubkey = Keypair::new().pubkey(); bank.transfer(1_000, &mint.keypair(), pubkey, mint.last_id()) .unwrap(); assert_eq!(bank.transaction_count(), 1); assert_eq!( bank.transfer(10_001, &mint.keypair(), pubkey, mint.last_id()), Err(BankError::InsufficientFunds(mint.pubkey())) ); assert_eq!(bank.transaction_count(), 1); let mint_pubkey = mint.keypair().pubkey(); assert_eq!(bank.get_balance(&mint_pubkey), 10_000); assert_eq!(bank.get_balance(&pubkey), 1_000); } #[test] fn test_transfer_to_newb() { let mint = Mint::new(10_000); let bank = Bank::new(&mint); let pubkey = Keypair::new().pubkey(); bank.transfer(500, &mint.keypair(), pubkey, mint.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 500); } #[test] fn test_transfer_on_date() { let mint = Mint::new(1); let bank = Bank::new(&mint); let pubkey = Keypair::new().pubkey(); let dt = Utc::now(); bank.transfer_on_date(1, &mint.keypair(), pubkey, dt, mint.last_id()) .unwrap(); // Mint's balance will be zero because all funds are locked up. assert_eq!(bank.get_balance(&mint.pubkey()), 0); // tx count is 1, because debits were applied. assert_eq!(bank.transaction_count(), 1); // pubkey's balance will be None because the funds have not been // sent. assert_eq!(bank.get_balance(&pubkey), 0); // Now, acknowledge the time in the condition occurred and // that pubkey's funds are now available. bank.apply_timestamp(mint.pubkey(), dt).unwrap(); assert_eq!(bank.get_balance(&pubkey), 1); // tx count is still 1, because we chose not to count timestamp transactions // tx count. assert_eq!(bank.transaction_count(), 1); bank.apply_timestamp(mint.pubkey(), dt).unwrap(); // <-- Attack! Attempt to process completed transaction. assert_ne!(bank.get_balance(&pubkey), 2); } #[test] fn test_cancel_transfer() { let mint = Mint::new(1); let bank = Bank::new(&mint); let pubkey = Keypair::new().pubkey(); let dt = Utc::now(); let signature = bank .transfer_on_date(1, &mint.keypair(), pubkey, dt, mint.last_id()) .unwrap(); // Assert the debit counts as a transaction. assert_eq!(bank.transaction_count(), 1); // Mint's balance will be zero because all funds are locked up. assert_eq!(bank.get_balance(&mint.pubkey()), 0); // pubkey's balance will be None because the funds have not been // sent. assert_eq!(bank.get_balance(&pubkey), 0); // Now, cancel the trancaction. Mint gets her funds back, pubkey never sees them. bank.apply_signature(mint.pubkey(), signature).unwrap(); assert_eq!(bank.get_balance(&mint.pubkey()), 1); assert_eq!(bank.get_balance(&pubkey), 0); // Assert cancel doesn't cause count to go backward. assert_eq!(bank.transaction_count(), 1); bank.apply_signature(mint.pubkey(), signature).unwrap(); // <-- Attack! Attempt to cancel completed transaction. assert_ne!(bank.get_balance(&mint.pubkey()), 2); } #[test] fn test_duplicate_transaction_signature() { let mint = Mint::new(1); let bank = Bank::new(&mint); let signature = Signature::default(); assert!( bank.reserve_signature_with_last_id(&signature, &mint.last_id()) .is_ok() ); assert_eq!( bank.reserve_signature_with_last_id(&signature, &mint.last_id()), Err(BankError::DuplicateSignature(signature)) ); } #[test] fn test_forget_signature() { let mint = Mint::new(1); let bank = Bank::new(&mint); let signature = Signature::default(); bank.reserve_signature_with_last_id(&signature, &mint.last_id()) .unwrap(); bank.forget_signature_with_last_id(&signature, &mint.last_id()); assert!( bank.reserve_signature_with_last_id(&signature, &mint.last_id()) .is_ok() ); } #[test] fn test_has_signature() { let mint = Mint::new(1); let bank = Bank::new(&mint); let signature = Signature::default(); bank.reserve_signature_with_last_id(&signature, &mint.last_id()) .expect("reserve signature"); assert!(bank.has_signature(&signature)); } #[test] fn test_reject_old_last_id() { let mint = Mint::new(1); let bank = Bank::new(&mint); let signature = Signature::default(); for i in 0..MAX_ENTRY_IDS { let last_id = hash(&serialize(&i).unwrap()); // Unique hash bank.register_entry_id(&last_id); } // Assert we're no longer able to use the oldest entry ID. assert_eq!( bank.reserve_signature_with_last_id(&signature, &mint.last_id()), Err(BankError::LastIdNotFound(mint.last_id())) ); } #[test] fn test_count_valid_ids() { let mint = Mint::new(1); let bank = Bank::new(&mint); let ids: Vec<_> = (0..MAX_ENTRY_IDS) .map(|i| { let last_id = hash(&serialize(&i).unwrap()); // Unique hash bank.register_entry_id(&last_id); last_id }) .collect(); assert_eq!(bank.count_valid_ids(&[]).len(), 0); assert_eq!(bank.count_valid_ids(&[mint.last_id()]).len(), 0); for (i, id) in bank.count_valid_ids(&ids).iter().enumerate() { assert_eq!(id.0, i); } } #[test] fn test_debits_before_credits() { let mint = Mint::new(2); let bank = Bank::new(&mint); let keypair = Keypair::new(); let tx0 = Transaction::new(&mint.keypair(), keypair.pubkey(), 2, mint.last_id()); let tx1 = Transaction::new(&keypair, mint.pubkey(), 1, mint.last_id()); let txs = vec![tx0, tx1]; let results = bank.process_transactions(txs); assert!(results[1].is_err()); // Assert bad transactions aren't counted. assert_eq!(bank.transaction_count(), 1); } #[test] fn test_process_empty_entry_is_registered() { let mint = Mint::new(1); let bank = Bank::new(&mint); let keypair = Keypair::new(); let entry = next_entry(&mint.last_id(), 1, vec![]); let tx = Transaction::new(&mint.keypair(), keypair.pubkey(), 1, entry.id); // First, ensure the TX is rejected because of the unregistered last ID assert_eq!( bank.process_transaction(&tx), Err(BankError::LastIdNotFound(entry.id)) ); // Now ensure the TX is accepted despite pointing to the ID of an empty entry. bank.process_entries(vec![entry]).unwrap(); assert!(bank.process_transaction(&tx).is_ok()); } #[test] fn test_process_genesis() { let mint = Mint::new(1); let genesis = mint.create_entries(); let bank = Bank::default(); bank.process_ledger(genesis).unwrap(); assert_eq!(bank.get_balance(&mint.pubkey()), 1); } fn create_sample_block_with_next_entries( mint: &Mint, length: usize, ) -> impl Iterator { let keypair = Keypair::new(); let hash = mint.last_id(); let mut txs = Vec::with_capacity(length); for i in 0..length { txs.push(Transaction::new( &mint.keypair(), keypair.pubkey(), i as i64, hash, )); } let entries = ledger::next_entries(&hash, 0, txs); entries.into_iter() } fn create_sample_block(mint: &Mint, length: usize) -> impl Iterator { let mut entries = Vec::with_capacity(length); let mut hash = mint.last_id(); let mut num_hashes = 0; for _ in 0..length { let keypair = Keypair::new(); let tx = Transaction::new(&mint.keypair(), keypair.pubkey(), 1, hash); let entry = Entry::new_mut(&mut hash, &mut num_hashes, vec![tx], false); entries.push(entry); } entries.into_iter() } fn create_sample_ledger_with_next_entries( length: usize, ) -> (impl Iterator, Pubkey) { let mint = Mint::new((length * length) as i64); let genesis = mint.create_entries(); let block = create_sample_block_with_next_entries(&mint, length); (genesis.into_iter().chain(block), mint.pubkey()) } fn create_sample_ledger(length: usize) -> (impl Iterator, Pubkey) { let mint = Mint::new(1 + length as i64); let genesis = mint.create_entries(); let block = create_sample_block(&mint, length); (genesis.into_iter().chain(block), mint.pubkey()) } #[test] fn test_process_ledger() { let (ledger, pubkey) = create_sample_ledger(1); let (ledger, dup) = ledger.tee(); let bank = Bank::default(); let (ledger_height, tail) = bank.process_ledger(ledger).unwrap(); assert_eq!(bank.get_balance(&pubkey), 1); assert_eq!(ledger_height, 3); assert_eq!(tail.len(), 3); assert_eq!(tail, dup.collect_vec()); let last_entry = &tail[tail.len() - 1]; assert_eq!(bank.last_id(), last_entry.id); } #[test] fn test_process_ledger_around_window_size() { // TODO: put me back in when Criterion is up // for _ in 0..10 { // let (ledger, _) = create_sample_ledger(WINDOW_SIZE as usize); // let bank = Bank::default(); // let (_, _) = bank.process_ledger(ledger).unwrap(); // } let window_size = WINDOW_SIZE as usize; for entry_count in window_size - 3..window_size + 2 { let (ledger, pubkey) = create_sample_ledger(entry_count); let bank = Bank::default(); let (ledger_height, tail) = bank.process_ledger(ledger).unwrap(); assert_eq!(bank.get_balance(&pubkey), 1); assert_eq!(ledger_height, entry_count as u64 + 2); assert!(tail.len() <= window_size); let last_entry = &tail[tail.len() - 1]; assert_eq!(bank.last_id(), last_entry.id); } } // Write the given entries to a file and then return a file iterator to them. fn to_file_iter(entries: impl Iterator) -> impl Iterator { let mut file = Cursor::new(vec![]); EntryWriter::write_entries(&mut file, entries).unwrap(); file.seek(SeekFrom::Start(0)).unwrap(); let reader = BufReader::new(file); entry_writer::read_entries(reader).map(|x| x.unwrap()) } #[test] fn test_process_ledger_from_file() { let (ledger, pubkey) = create_sample_ledger(1); let ledger = to_file_iter(ledger); let bank = Bank::default(); bank.process_ledger(ledger).unwrap(); assert_eq!(bank.get_balance(&pubkey), 1); } #[test] fn test_process_ledger_from_files() { let mint = Mint::new(2); let genesis = to_file_iter(mint.create_entries().into_iter()); let block = to_file_iter(create_sample_block(&mint, 1)); let bank = Bank::default(); bank.process_ledger(genesis.chain(block)).unwrap(); assert_eq!(bank.get_balance(&mint.pubkey()), 1); } #[test] fn test_process_ledger_has_more_cross_block() { // size_of is quite large for serialized size, so // use 2 * verify_block_size to ensure we get enough txes to cross that // block boundary with has_more set let num_txs = (2 * VERIFY_BLOCK_SIZE) * BLOB_DATA_SIZE / size_of::(); let (ledger, _pubkey) = create_sample_ledger_with_next_entries(num_txs); let bank = Bank::default(); assert!(bank.process_ledger(ledger).is_ok()); } #[test] fn test_new_default() { let def_bank = Bank::default(); assert!(def_bank.is_leader); let leader_bank = Bank::new_default(true); assert!(leader_bank.is_leader); let validator_bank = Bank::new_default(false); assert!(!validator_bank.is_leader); } }