//! The `repair_service` module implements the tools necessary to generate a thread which //! regularly finds missing blobs in the ledger and sends repair requests for those blobs use crate::bank_forks::BankForks; use crate::blocktree::{Blocktree, CompletedSlotsReceiver, SlotMeta}; use crate::cluster_info::ClusterInfo; use crate::result::Result; use crate::service::Service; use solana_metrics::datapoint; use solana_sdk::pubkey::Pubkey; use std::collections::HashSet; use std::net::UdpSocket; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, RwLock}; use std::thread::sleep; use std::thread::{self, Builder, JoinHandle}; use std::time::Duration; pub const MAX_REPAIR_LENGTH: usize = 16; pub const REPAIR_MS: u64 = 100; pub const MAX_REPAIR_TRIES: u64 = 128; pub const NUM_FORKS_TO_REPAIR: usize = 5; pub const MAX_ORPHANS: usize = 5; pub enum RepairStrategy { RepairRange(RepairSlotRange), RepairAll { bank_forks: Arc>, completed_slots_receiver: CompletedSlotsReceiver, }, } #[derive(Serialize, Deserialize, Debug, Clone, Copy, PartialEq, Eq)] pub enum RepairType { Orphan(u64), HighestBlob(u64, u64), Blob(u64, u64), } #[derive(Default)] struct RepairInfo { max_slot: u64, repair_tries: u64, } impl RepairInfo { fn new() -> Self { RepairInfo { max_slot: 0, repair_tries: 0, } } } pub struct RepairSlotRange { pub start: u64, pub end: u64, } impl Default for RepairSlotRange { fn default() -> Self { RepairSlotRange { start: 0, end: std::u64::MAX, } } } pub struct RepairService { t_repair: JoinHandle<()>, } impl RepairService { pub fn new( blocktree: Arc, exit: &Arc, repair_socket: Arc, cluster_info: Arc>, repair_strategy: RepairStrategy, ) -> Self { let exit = exit.clone(); let t_repair = Builder::new() .name("solana-repair-service".to_string()) .spawn(move || { Self::run( &blocktree, exit, &repair_socket, &cluster_info, repair_strategy, ) }) .unwrap(); RepairService { t_repair } } fn run( blocktree: &Arc, exit: Arc, repair_socket: &Arc, cluster_info: &Arc>, repair_strategy: RepairStrategy, ) { let mut repair_info = RepairInfo::new(); let epoch_slots: HashSet = HashSet::new(); let id = cluster_info.read().unwrap().id(); loop { if exit.load(Ordering::Relaxed) { break; } let repairs = { match repair_strategy { RepairStrategy::RepairRange(ref repair_slot_range) => { // Strategy used by replicators Self::generate_repairs_in_range( blocktree, MAX_REPAIR_LENGTH, &mut repair_info, repair_slot_range, ) } RepairStrategy::RepairAll { ref bank_forks, ref completed_slots_receiver, } => { Self::update_epoch_slots( id, &epoch_slots, &cluster_info, bank_forks, completed_slots_receiver, ); Self::generate_repairs(blocktree, MAX_REPAIR_LENGTH) } } }; if let Ok(repairs) = repairs { let reqs: Vec<_> = repairs .into_iter() .filter_map(|repair_request| { cluster_info .read() .unwrap() .repair_request(&repair_request) .map(|result| (result, repair_request)) .ok() }) .collect(); for ((to, req), repair_request) in reqs { if let Ok(local_addr) = repair_socket.local_addr() { datapoint!( "repair_service", ("repair_request", format!("{:?}", repair_request), String), ("to", to.to_string(), String), ("from", local_addr.to_string(), String), ("id", id.to_string(), String) ); } repair_socket.send_to(&req, to).unwrap_or_else(|e| { info!("{} repair req send_to({}) error {:?}", id, to, e); 0 }); } } sleep(Duration::from_millis(REPAIR_MS)); } } // Generate repairs for all slots `x` in the repair_range.start <= x <= repair_range.end fn generate_repairs_in_range( blocktree: &Blocktree, max_repairs: usize, repair_info: &mut RepairInfo, repair_range: &RepairSlotRange, ) -> Result<(Vec)> { // Slot height and blob indexes for blobs we want to repair let mut repairs: Vec = vec![]; let mut meta_iter = blocktree .slot_meta_iterator(repair_range.start) .expect("Couldn't get db iterator"); while repairs.len() < max_repairs && meta_iter.valid() { let current_slot = meta_iter.key(); if current_slot.unwrap() > repair_range.end { break; } if current_slot.unwrap() > repair_info.max_slot { repair_info.repair_tries = 0; repair_info.max_slot = current_slot.unwrap(); } if let Some(slot) = meta_iter.value() { let new_repairs = Self::generate_repairs_for_slot( blocktree, current_slot.unwrap(), &slot, max_repairs - repairs.len(), ); repairs.extend(new_repairs); } meta_iter.next(); } // Only increment repair_tries if the ledger contains every blob for every slot if repairs.is_empty() { repair_info.repair_tries += 1; } // Optimistically try the next slot if we haven't gotten any repairs // for a while if repair_info.repair_tries >= MAX_REPAIR_TRIES { repairs.push(RepairType::HighestBlob(repair_info.max_slot + 1, 0)) } Ok(repairs) } fn generate_repairs(blocktree: &Blocktree, max_repairs: usize) -> Result<(Vec)> { // Slot height and blob indexes for blobs we want to repair let mut repairs: Vec = vec![]; let slot = blocktree.get_root()?; Self::generate_repairs_for_fork(blocktree, &mut repairs, max_repairs, slot); // TODO: Incorporate gossip to determine priorities for repair? // Try to resolve orphans in blocktree let orphans = blocktree.get_orphans(Some(MAX_ORPHANS)); Self::generate_repairs_for_orphans(&orphans[..], &mut repairs); Ok(repairs) } fn generate_repairs_for_slot( blocktree: &Blocktree, slot: u64, slot_meta: &SlotMeta, max_repairs: usize, ) -> Vec { if slot_meta.is_full() { vec![] } else if slot_meta.consumed == slot_meta.received { vec![RepairType::HighestBlob(slot, slot_meta.received)] } else { let reqs = blocktree.find_missing_data_indexes( slot, slot_meta.consumed, slot_meta.received, max_repairs, ); reqs.into_iter() .map(|i| RepairType::Blob(slot, i)) .collect() } } fn generate_repairs_for_orphans(orphans: &[u64], repairs: &mut Vec) { repairs.extend(orphans.iter().map(|h| RepairType::Orphan(*h))); } /// Repairs any fork starting at the input slot fn generate_repairs_for_fork( blocktree: &Blocktree, repairs: &mut Vec, max_repairs: usize, slot: u64, ) { let mut pending_slots = vec![slot]; while repairs.len() < max_repairs && !pending_slots.is_empty() { let slot = pending_slots.pop().unwrap(); if let Some(slot_meta) = blocktree.meta(slot).unwrap() { let new_repairs = Self::generate_repairs_for_slot( blocktree, slot, &slot_meta, max_repairs - repairs.len(), ); repairs.extend(new_repairs); let next_slots = slot_meta.next_slots; pending_slots.extend(next_slots); } else { break; } } } // Update the gossiped structure used for the "Repairmen" repair protocol. See book // for details. fn update_epoch_slots( id: Pubkey, slots: &HashSet, cluster_info: &RwLock, bank_forks: &Arc>, _completed_slots_receiver: &CompletedSlotsReceiver, ) { let root = bank_forks.read().unwrap().root(); cluster_info .write() .unwrap() .push_epoch_slots(id, root, slots.clone()); } } impl Service for RepairService { type JoinReturnType = (); fn join(self) -> thread::Result<()> { self.t_repair.join() } } #[cfg(test)] mod test { use super::*; use crate::blocktree::tests::{ make_chaining_slot_entries, make_many_slot_entries, make_slot_entries, }; use crate::blocktree::{get_tmp_ledger_path, Blocktree}; #[test] pub fn test_repair_orphan() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Create some orphan slots let (mut blobs, _) = make_slot_entries(1, 0, 1); let (blobs2, _) = make_slot_entries(5, 2, 1); blobs.extend(blobs2); blocktree.write_blobs(&blobs).unwrap(); assert_eq!( RepairService::generate_repairs(&blocktree, 2).unwrap(), vec![ RepairType::HighestBlob(0, 0), RepairType::Orphan(0), RepairType::Orphan(2) ] ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_empty_slot() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let (blobs, _) = make_slot_entries(2, 0, 1); // Write this blob to slot 2, should chain to slot 0, which we haven't received // any blobs for blocktree.write_blobs(&blobs).unwrap(); // Check that repair tries to patch the empty slot assert_eq!( RepairService::generate_repairs(&blocktree, 2).unwrap(), vec![RepairType::HighestBlob(0, 0), RepairType::Orphan(0)] ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_generate_repairs() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let nth = 3; let num_entries_per_slot = 5 * nth; let num_slots = 2; // Create some blobs let (blobs, _) = make_many_slot_entries(0, num_slots as u64, num_entries_per_slot as u64); // write every nth blob let blobs_to_write: Vec<_> = blobs.iter().step_by(nth as usize).collect(); blocktree.write_blobs(blobs_to_write).unwrap(); let missing_indexes_per_slot: Vec = (0..num_entries_per_slot / nth - 1) .flat_map(|x| ((nth * x + 1) as u64..(nth * x + nth) as u64)) .collect(); let expected: Vec = (0..num_slots) .flat_map(|slot| { missing_indexes_per_slot .iter() .map(move |blob_index| RepairType::Blob(slot as u64, *blob_index)) }) .collect(); assert_eq!( RepairService::generate_repairs(&blocktree, std::usize::MAX).unwrap(), expected ); assert_eq!( RepairService::generate_repairs(&blocktree, expected.len() - 2).unwrap()[..], expected[0..expected.len() - 2] ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_generate_highest_repair() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_entries_per_slot = 10; // Create some blobs let (mut blobs, _) = make_slot_entries(0, 0, num_entries_per_slot as u64); // Remove is_last flag on last blob blobs.last_mut().unwrap().set_flags(0); blocktree.write_blobs(&blobs).unwrap(); // We didn't get the last blob for this slot, so ask for the highest blob for that slot let expected: Vec = vec![RepairType::HighestBlob(0, num_entries_per_slot)]; assert_eq!( RepairService::generate_repairs(&blocktree, std::usize::MAX).unwrap(), expected ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_range() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let mut repair_info = RepairInfo::new(); let slots: Vec = vec![1, 3, 5, 7, 8]; let num_entries_per_slot = 10; let blobs = make_chaining_slot_entries(&slots, num_entries_per_slot); for (slot_blobs, _) in blobs.iter() { blocktree.write_blobs(&slot_blobs[1..]).unwrap(); } // Iterate through all possible combinations of start..end (inclusive on both // sides of the range) for start in 0..slots.len() { for end in start..slots.len() { let mut repair_slot_range = RepairSlotRange::default(); repair_slot_range.start = slots[start]; repair_slot_range.end = slots[end]; let expected: Vec = slots[start..end + 1] .iter() .map(|slot_index| RepairType::Blob(*slot_index, 0)) .collect(); assert_eq!( RepairService::generate_repairs_in_range( &blocktree, std::usize::MAX, &mut repair_info, &repair_slot_range ) .unwrap(), expected ); } } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_range_highest() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_entries_per_slot = 10; let mut repair_info = RepairInfo::new(); let num_slots = 1; let start = 5; // Create some blobs in slots 0..num_slots for i in start..start + num_slots { let parent = if i > 0 { i - 1 } else { 0 }; let (blobs, _) = make_slot_entries(i, parent, num_entries_per_slot as u64); blocktree.write_blobs(&blobs).unwrap(); } let end = 4; let expected: Vec = vec![RepairType::HighestBlob(end, 0)]; let mut repair_slot_range = RepairSlotRange::default(); repair_slot_range.start = 2; repair_slot_range.end = end; assert_eq!( RepairService::generate_repairs_in_range( &blocktree, std::usize::MAX, &mut repair_info, &repair_slot_range ) .unwrap(), expected ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } }