//! The `repair_service` module implements the tools necessary to generate a thread which //! regularly finds missing shreds in the ledger and sends repair requests for those shreds use crate::{ cluster_info::ClusterInfo, cluster_slots::ClusterSlots, result::Result, serve_repair::{RepairType, ServeRepair}, }; use solana_ledger::{ bank_forks::BankForks, blockstore::{Blockstore, CompletedSlotsReceiver, SlotMeta}, }; use solana_sdk::{clock::Slot, epoch_schedule::EpochSchedule, pubkey::Pubkey}; use std::{ collections::HashMap, iter::Iterator, net::SocketAddr, net::UdpSocket, sync::atomic::{AtomicBool, Ordering}, sync::{Arc, RwLock}, thread::sleep, thread::{self, Builder, JoinHandle}, time::Duration, }; pub const MAX_REPAIR_LENGTH: usize = 512; pub const REPAIR_MS: u64 = 100; pub const MAX_ORPHANS: usize = 5; pub enum RepairStrategy { RepairRange(RepairSlotRange), RepairAll { bank_forks: Arc>, completed_slots_receiver: CompletedSlotsReceiver, epoch_schedule: EpochSchedule, }, } pub struct RepairSlotRange { pub start: Slot, pub end: Slot, } impl Default for RepairSlotRange { fn default() -> Self { RepairSlotRange { start: 0, end: std::u64::MAX, } } } pub struct RepairService { t_repair: JoinHandle<()>, } impl RepairService { pub fn new( blockstore: Arc, exit: Arc, repair_socket: Arc, cluster_info: Arc>, repair_strategy: RepairStrategy, ) -> Self { let t_repair = Builder::new() .name("solana-repair-service".to_string()) .spawn(move || { Self::run( &blockstore, &exit, &repair_socket, &cluster_info, repair_strategy, ) }) .unwrap(); RepairService { t_repair } } fn run( blockstore: &Arc, exit: &Arc, repair_socket: &Arc, cluster_info: &Arc>, repair_strategy: RepairStrategy, ) { let serve_repair = ServeRepair::new(cluster_info.clone()); let id = cluster_info.read().unwrap().id(); let mut cluster_slots = ClusterSlots::default(); if let RepairStrategy::RepairAll { .. } = repair_strategy { Self::initialize_lowest_slot(id, blockstore, cluster_info); } loop { if exit.load(Ordering::Relaxed) { break; } let repairs = { match repair_strategy { RepairStrategy::RepairRange(ref repair_slot_range) => { // Strategy used by archivers Self::generate_repairs_in_range( blockstore, MAX_REPAIR_LENGTH, repair_slot_range, ) } RepairStrategy::RepairAll { ref completed_slots_receiver, ref bank_forks, .. } => { let new_root = blockstore.last_root(); let lowest_slot = blockstore.lowest_slot(); Self::update_lowest_slot(&id, lowest_slot, &cluster_info); Self::update_completed_slots( &id, new_root, &mut cluster_slots, blockstore, completed_slots_receiver, &cluster_info, ); cluster_slots.update(new_root, cluster_info, bank_forks); Self::generate_repairs(blockstore, new_root, MAX_REPAIR_LENGTH) } } }; if let Ok(repairs) = repairs { let mut cache = HashMap::new(); let reqs: Vec<((SocketAddr, Vec), RepairType)> = repairs .into_iter() .filter_map(|repair_request| { serve_repair .repair_request(&cluster_slots, &repair_request, &mut cache) .map(|result| (result, repair_request)) .ok() }) .collect(); for ((to, req), _) in reqs { repair_socket.send_to(&req, to).unwrap_or_else(|e| { info!("{} repair req send_to({}) error {:?}", id, to, e); 0 }); } } sleep(Duration::from_millis(REPAIR_MS)); } } // Generate repairs for all slots `x` in the repair_range.start <= x <= repair_range.end pub fn generate_repairs_in_range( blockstore: &Blockstore, max_repairs: usize, repair_range: &RepairSlotRange, ) -> Result> { // Slot height and shred indexes for shreds we want to repair let mut repairs: Vec = vec![]; for slot in repair_range.start..=repair_range.end { if repairs.len() >= max_repairs { break; } let meta = blockstore .meta(slot) .expect("Unable to lookup slot meta") .unwrap_or(SlotMeta { slot, ..SlotMeta::default() }); let new_repairs = Self::generate_repairs_for_slot( blockstore, slot, &meta, max_repairs - repairs.len(), ); repairs.extend(new_repairs); } Ok(repairs) } fn generate_repairs( blockstore: &Blockstore, root: Slot, max_repairs: usize, ) -> Result> { // Slot height and shred indexes for shreds we want to repair let mut repairs: Vec = vec![]; Self::generate_repairs_for_fork(blockstore, &mut repairs, max_repairs, root); // TODO: Incorporate gossip to determine priorities for repair? // Try to resolve orphans in blockstore let orphans = blockstore.orphans_iterator(root + 1).unwrap(); Self::generate_repairs_for_orphans(orphans, &mut repairs); Ok(repairs) } fn generate_repairs_for_slot( blockstore: &Blockstore, slot: Slot, slot_meta: &SlotMeta, max_repairs: usize, ) -> Vec { if slot_meta.is_full() { vec![] } else if slot_meta.consumed == slot_meta.received { vec![RepairType::HighestShred(slot, slot_meta.received)] } else { let reqs = blockstore.find_missing_data_indexes( slot, slot_meta.first_shred_timestamp, slot_meta.consumed, slot_meta.received, max_repairs, ); reqs.into_iter() .map(|i| RepairType::Shred(slot, i)) .collect() } } fn generate_repairs_for_orphans( orphans: impl Iterator, repairs: &mut Vec, ) { repairs.extend(orphans.take(MAX_ORPHANS).map(RepairType::Orphan)); } /// Repairs any fork starting at the input slot fn generate_repairs_for_fork( blockstore: &Blockstore, repairs: &mut Vec, max_repairs: usize, slot: Slot, ) { let mut pending_slots = vec![slot]; while repairs.len() < max_repairs && !pending_slots.is_empty() { let slot = pending_slots.pop().unwrap(); if let Some(slot_meta) = blockstore.meta(slot).unwrap() { let new_repairs = Self::generate_repairs_for_slot( blockstore, slot, &slot_meta, max_repairs - repairs.len(), ); repairs.extend(new_repairs); let next_slots = slot_meta.next_slots; pending_slots.extend(next_slots); } else { break; } } } fn initialize_lowest_slot( id: Pubkey, blockstore: &Blockstore, cluster_info: &RwLock, ) { // Safe to set into gossip because by this time, the leader schedule cache should // also be updated with the latest root (done in blockstore_processor) and thus // will provide a schedule to window_service for any incoming shreds up to the // last_confirmed_epoch. cluster_info .write() .unwrap() .push_lowest_slot(id, blockstore.lowest_slot()); } fn update_completed_slots( id: &Pubkey, root: Slot, cluster_slots: &mut ClusterSlots, blockstore: &Blockstore, completed_slots_receiver: &CompletedSlotsReceiver, cluster_info: &RwLock, ) { let mine = cluster_slots.collect(id); let mut slots: Vec = vec![]; while let Ok(mut more) = completed_slots_receiver.try_recv() { more.retain(|x| !mine.contains(x)); slots.append(&mut more); } blockstore .live_slots_iterator(root) .for_each(|(slot, slot_meta)| { if slot_meta.is_full() && !mine.contains(&slot) { slots.push(slot) } }); slots.sort(); slots.dedup(); if !slots.is_empty() { cluster_info.write().unwrap().push_epoch_slots(&slots); } } fn update_lowest_slot(id: &Pubkey, lowest_slot: Slot, cluster_info: &RwLock) { cluster_info .write() .unwrap() .push_lowest_slot(*id, lowest_slot); } pub fn join(self) -> thread::Result<()> { self.t_repair.join() } } #[cfg(test)] mod test { use super::*; use crate::cluster_info::Node; use solana_ledger::blockstore::{ make_chaining_slot_entries, make_many_slot_entries, make_slot_entries, }; use solana_ledger::shred::max_ticks_per_n_shreds; use solana_ledger::{blockstore::Blockstore, get_tmp_ledger_path}; #[test] pub fn test_repair_orphan() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); // Create some orphan slots let (mut shreds, _) = make_slot_entries(1, 0, 1); let (shreds2, _) = make_slot_entries(5, 2, 1); shreds.extend(shreds2); blockstore.insert_shreds(shreds, None, false).unwrap(); assert_eq!( RepairService::generate_repairs(&blockstore, 0, 2).unwrap(), vec![RepairType::HighestShred(0, 0), RepairType::Orphan(2)] ); } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_empty_slot() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); let (shreds, _) = make_slot_entries(2, 0, 1); // Write this shred to slot 2, should chain to slot 0, which we haven't received // any shreds for blockstore.insert_shreds(shreds, None, false).unwrap(); // Check that repair tries to patch the empty slot assert_eq!( RepairService::generate_repairs(&blockstore, 0, 2).unwrap(), vec![RepairType::HighestShred(0, 0)] ); } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_generate_repairs() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); let nth = 3; let num_slots = 2; // Create some shreds let (mut shreds, _) = make_many_slot_entries(0, num_slots as u64, 150 as u64); let num_shreds = shreds.len() as u64; let num_shreds_per_slot = num_shreds / num_slots; // write every nth shred let mut shreds_to_write = vec![]; let mut missing_indexes_per_slot = vec![]; for i in (0..num_shreds).rev() { let index = i % num_shreds_per_slot; if index % nth == 0 { shreds_to_write.insert(0, shreds.remove(i as usize)); } else if i < num_shreds_per_slot { missing_indexes_per_slot.insert(0, index); } } blockstore .insert_shreds(shreds_to_write, None, false) .unwrap(); // sleep so that the holes are ready for repair sleep(Duration::from_secs(1)); let expected: Vec = (0..num_slots) .flat_map(|slot| { missing_indexes_per_slot .iter() .map(move |shred_index| RepairType::Shred(slot as u64, *shred_index)) }) .collect(); assert_eq!( RepairService::generate_repairs(&blockstore, 0, std::usize::MAX).unwrap(), expected ); assert_eq!( RepairService::generate_repairs(&blockstore, 0, expected.len() - 2).unwrap()[..], expected[0..expected.len() - 2] ); } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_generate_highest_repair() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); let num_entries_per_slot = 100; // Create some shreds let (mut shreds, _) = make_slot_entries(0, 0, num_entries_per_slot as u64); let num_shreds_per_slot = shreds.len() as u64; // Remove last shred (which is also last in slot) so that slot is not complete shreds.pop(); blockstore.insert_shreds(shreds, None, false).unwrap(); // We didn't get the last shred for this slot, so ask for the highest shred for that slot let expected: Vec = vec![RepairType::HighestShred(0, num_shreds_per_slot - 1)]; assert_eq!( RepairService::generate_repairs(&blockstore, 0, std::usize::MAX).unwrap(), expected ); } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_range() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); let slots: Vec = vec![1, 3, 5, 7, 8]; let num_entries_per_slot = max_ticks_per_n_shreds(1) + 1; let shreds = make_chaining_slot_entries(&slots, num_entries_per_slot); for (mut slot_shreds, _) in shreds.into_iter() { slot_shreds.remove(0); blockstore.insert_shreds(slot_shreds, None, false).unwrap(); } // sleep to make slot eligible for repair sleep(Duration::from_secs(1)); // Iterate through all possible combinations of start..end (inclusive on both // sides of the range) for start in 0..slots.len() { for end in start..slots.len() { let mut repair_slot_range = RepairSlotRange::default(); repair_slot_range.start = slots[start]; repair_slot_range.end = slots[end]; let expected: Vec = (repair_slot_range.start ..=repair_slot_range.end) .map(|slot_index| { if slots.contains(&(slot_index as u64)) { RepairType::Shred(slot_index as u64, 0) } else { RepairType::HighestShred(slot_index as u64, 0) } }) .collect(); assert_eq!( RepairService::generate_repairs_in_range( &blockstore, std::usize::MAX, &repair_slot_range ) .unwrap(), expected ); } } } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_repair_range_highest() { let blockstore_path = get_tmp_ledger_path!(); { let blockstore = Blockstore::open(&blockstore_path).unwrap(); let num_entries_per_slot = 10; let num_slots = 1; let start = 5; // Create some shreds in slots 0..num_slots for i in start..start + num_slots { let parent = if i > 0 { i - 1 } else { 0 }; let (shreds, _) = make_slot_entries(i, parent, num_entries_per_slot as u64); blockstore.insert_shreds(shreds, None, false).unwrap(); } let end = 4; let expected: Vec = vec![ RepairType::HighestShred(end - 2, 0), RepairType::HighestShred(end - 1, 0), RepairType::HighestShred(end, 0), ]; let mut repair_slot_range = RepairSlotRange::default(); repair_slot_range.start = 2; repair_slot_range.end = end; assert_eq!( RepairService::generate_repairs_in_range( &blockstore, std::usize::MAX, &repair_slot_range ) .unwrap(), expected ); } Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction"); } #[test] pub fn test_update_lowest_slot() { let node_info = Node::new_localhost_with_pubkey(&Pubkey::default()); let cluster_info = RwLock::new(ClusterInfo::new_with_invalid_keypair( node_info.info.clone(), )); RepairService::update_lowest_slot(&Pubkey::default(), 5, &cluster_info); let lowest = cluster_info .read() .unwrap() .get_lowest_slot_for_node(&Pubkey::default(), None) .unwrap() .0 .clone(); assert_eq!(lowest.lowest, 5); } }