//! The `timing` module provides std::time utility functions. use { crate::unchecked_div_by_const, std::{ sync::atomic::{AtomicU64, Ordering}, time::{Duration, SystemTime, UNIX_EPOCH}, }, }; pub fn duration_as_ns(d: &Duration) -> u64 { d.as_secs() .saturating_mul(1_000_000_000) .saturating_add(u64::from(d.subsec_nanos())) } pub fn duration_as_us(d: &Duration) -> u64 { d.as_secs() .saturating_mul(1_000_000) .saturating_add(unchecked_div_by_const!(u64::from(d.subsec_nanos()), 1_000)) } pub fn duration_as_ms(d: &Duration) -> u64 { d.as_secs() .saturating_mul(1000) .saturating_add(unchecked_div_by_const!( u64::from(d.subsec_nanos()), 1_000_000 )) } pub fn duration_as_s(d: &Duration) -> f32 { d.as_secs() as f32 + (d.subsec_nanos() as f32 / 1_000_000_000.0) } /// return timestamp as ms pub fn timestamp() -> u64 { let now = SystemTime::now() .duration_since(UNIX_EPOCH) .expect("create timestamp in timing"); duration_as_ms(&now) } pub const SECONDS_PER_YEAR: f64 = 365.242_199 * 24.0 * 60.0 * 60.0; /// from years to slots pub fn years_as_slots(years: f64, tick_duration: &Duration, ticks_per_slot: u64) -> f64 { // slots is years * slots/year years * // slots/year is seconds/year ... SECONDS_PER_YEAR // * (ns/s)/(ns/tick) / ticks/slot = 1/s/1/tick = ticks/s * (1_000_000_000.0 / duration_as_ns(tick_duration) as f64) // / ticks/slot / ticks_per_slot as f64 } /// From slots per year to slot duration pub fn slot_duration_from_slots_per_year(slots_per_year: f64) -> Duration { // Recently, rust changed from infinity as usize being zero to 2^64-1; ensure it's zero here let slot_in_ns = if slots_per_year != 0.0 { (SECONDS_PER_YEAR * 1_000_000_000.0) / slots_per_year } else { 0.0 }; Duration::from_nanos(slot_in_ns as u64) } #[derive(Debug, Default)] pub struct AtomicInterval { last_update: AtomicU64, } impl AtomicInterval { /// true if 'interval_time_ms' has elapsed since last time we returned true as long as it has been 'interval_time_ms' since this struct was created pub fn should_update(&self, interval_time_ms: u64) -> bool { self.should_update_ext(interval_time_ms, true) } /// a primary use case is periodic metric reporting, potentially from different threads /// true if 'interval_time_ms' has elapsed since last time we returned true /// except, if skip_first=false, false until 'interval_time_ms' has elapsed since this struct was created pub fn should_update_ext(&self, interval_time_ms: u64, skip_first: bool) -> bool { let now = timestamp(); let last = self.last_update.load(Ordering::Relaxed); now.saturating_sub(last) > interval_time_ms && self .last_update .compare_exchange(last, now, Ordering::Relaxed, Ordering::Relaxed) == Ok(last) && !(skip_first && last == 0) } /// return ms elapsed since the last time the time was set pub fn elapsed_ms(&self) -> u64 { let now = timestamp(); let last = self.last_update.load(Ordering::Relaxed); now.saturating_sub(last) // wrapping somehow? } /// return ms until the interval_time will have elapsed pub fn remaining_until_next_interval(&self, interval_time: u64) -> u64 { interval_time.saturating_sub(self.elapsed_ms()) } } #[cfg(test)] mod test { use super::*; #[test] fn test_interval_update() { solana_logger::setup(); let i = AtomicInterval::default(); assert!(!i.should_update(1000)); let i = AtomicInterval::default(); assert!(i.should_update_ext(1000, false)); std::thread::sleep(Duration::from_millis(10)); assert!(i.elapsed_ms() > 9 && i.elapsed_ms() < 1000); assert!( i.remaining_until_next_interval(1000) > 9 && i.remaining_until_next_interval(1000) < 991 ); assert!(i.should_update(9)); assert!(!i.should_update(100)); } #[test] #[allow(clippy::float_cmp)] fn test_years_as_slots() { let tick_duration = Duration::from_micros(1000 * 1000 / 160); // interestingly large numbers with 160 ticks/second assert_eq!(years_as_slots(0.0, &tick_duration, 4) as u64, 0); assert_eq!( years_as_slots(1.0 / 12f64, &tick_duration, 4) as u64, 105_189_753 ); assert_eq!(years_as_slots(1.0, &tick_duration, 4) as u64, 1_262_277_039); let tick_duration = Duration::from_micros(1000 * 1000); // one second in years with one tick per second + one tick per slot assert_eq!( years_as_slots(1.0 / SECONDS_PER_YEAR, &tick_duration, 1), 1.0 ); } #[test] fn test_slot_duration_from_slots_per_year() { let slots_per_year = 1_262_277_039.0; let ticks_per_slot = 4; assert_eq!( slot_duration_from_slots_per_year(slots_per_year), Duration::from_micros(1000 * 1000 / 160) * ticks_per_slot ); assert_eq!( slot_duration_from_slots_per_year(0.0), Duration::from_micros(0) * ticks_per_slot ); let slots_per_year = SECONDS_PER_YEAR; let ticks_per_slot = 1; assert_eq!( slot_duration_from_slots_per_year(slots_per_year), Duration::from_millis(1000) * ticks_per_slot ); } #[test] fn test_duration_as() { // zero let test_zero = Duration::from_nanos(0); assert_eq!(duration_as_ns(&test_zero), 0); assert_eq!(duration_as_us(&test_zero), 0); assert_eq!(duration_as_ms(&test_zero), 0); assert!((duration_as_s(&test_zero) - 0f32) <= f32::EPSILON); // min non-zero for each unit let test_1ns = Duration::from_nanos(1); assert_eq!(duration_as_ns(&test_1ns), 1); assert_eq!(duration_as_us(&test_1ns), 0); assert_eq!(duration_as_ms(&test_1ns), 0); assert!((duration_as_s(&test_1ns) - 0.000_000_001f32) <= f32::EPSILON); let test_1ns = Duration::from_micros(1); assert_eq!(duration_as_ns(&test_1ns), 1_000); assert_eq!(duration_as_us(&test_1ns), 1); assert_eq!(duration_as_ms(&test_1ns), 0); assert!((duration_as_s(&test_1ns) - 0.000_001f32) <= f32::EPSILON); let test_1ns = Duration::from_millis(1); assert_eq!(duration_as_ns(&test_1ns), 1_000_000); assert_eq!(duration_as_us(&test_1ns), 1_000); assert_eq!(duration_as_ms(&test_1ns), 1); assert!((duration_as_s(&test_1ns) - 0.001f32) <= f32::EPSILON); let test_1ns = Duration::from_secs(1); assert_eq!(duration_as_ns(&test_1ns), 1_000_000_000); assert_eq!(duration_as_us(&test_1ns), 1_000_000); assert_eq!(duration_as_ms(&test_1ns), 1_000); assert!((duration_as_s(&test_1ns) - 1f32) <= f32::EPSILON); // max without error for each unit (except secs, 'cause if you use floats // you deserve to get got) const DUR_MAX_SECS: u64 = Duration::MAX.as_secs(); const NS_PER_SEC: u64 = 1_000_000_000; let max_as_ns_secs = DUR_MAX_SECS / NS_PER_SEC; let max_as_ns_ns = (DUR_MAX_SECS % NS_PER_SEC) as u32; let max_as_ns = Duration::new(max_as_ns_secs, max_as_ns_ns); assert_eq!(max_as_ns_secs, 18_446_744_073); assert_eq!(max_as_ns_ns, 709_551_615); assert_eq!(duration_as_ns(&max_as_ns), u64::MAX); const US_PER_SEC: u64 = 1_000_000; let max_as_us_secs = DUR_MAX_SECS / US_PER_SEC; let max_as_us_ns = (DUR_MAX_SECS % US_PER_SEC) as u32; let max_as_us = Duration::new(max_as_us_secs, max_as_us_ns * 1_000); assert_eq!(max_as_us_secs, 18_446_744_073_709); assert_eq!(max_as_us_ns, 551_615); assert_eq!(duration_as_us(&max_as_us), u64::MAX); const MS_PER_SEC: u64 = 1_000; let max_as_ms_secs = DUR_MAX_SECS / MS_PER_SEC; let max_as_ms_ns = (DUR_MAX_SECS % MS_PER_SEC) as u32; let max_as_ms = Duration::new(max_as_ms_secs, max_as_ms_ns * 1_000_000); assert_eq!(max_as_ms_secs, 18_446_744_073_709_551); assert_eq!(max_as_ms_ns, 615); assert_eq!(duration_as_ms(&max_as_ms), u64::MAX); } }