//! Persistent accounts are stored in below path location: //! //data/ //! //! The persistent store would allow for this mode of operation: //! - Concurrent single thread append with many concurrent readers. //! //! The underlying memory is memory mapped to a file. The accounts would be //! stored across multiple files and the mappings of file and offset of a //! particular account would be stored in a shared index. This will allow for //! concurrent commits without blocking reads, which will sequentially write //! to memory, ssd or disk, and should be as fast as the hardware allow for. //! The only required in memory data structure with a write lock is the index, //! which should be fast to update. //! //! AppendVec's only store accounts for single slots. To bootstrap the //! index from a persistent store of AppendVec's, the entries include //! a "write_version". A single global atomic `AccountsDB::write_version` //! tracks the number of commits to the entire data store. So the latest //! commit for each slot entry would be indexed. use crate::{ accounts_index::{AccountsIndex, Ancestors, SlotList, SlotSlice}, append_vec::{AppendVec, StoredAccount, StoredMeta}, }; use byteorder::{ByteOrder, LittleEndian}; use lazy_static::lazy_static; use log::*; use rand::{thread_rng, Rng}; use rayon::{prelude::*, ThreadPool}; use serde::{Deserialize, Serialize}; use solana_measure::measure::Measure; use solana_rayon_threadlimit::get_thread_count; use solana_sdk::{ account::Account, clock::{Epoch, Slot}, hash::{Hash, Hasher}, pubkey::Pubkey, }; use std::{ collections::{HashMap, HashSet}, io::{Error as IOError, Result as IOResult}, ops::RangeBounds, path::{Path, PathBuf}, sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering}, sync::{Arc, Mutex, RwLock}, }; use tempfile::TempDir; const PAGE_SIZE: u64 = 4 * 1024; pub const DEFAULT_FILE_SIZE: u64 = PAGE_SIZE * 1024; pub const DEFAULT_NUM_THREADS: u32 = 8; pub const DEFAULT_NUM_DIRS: u32 = 4; lazy_static! { // FROZEN_ACCOUNT_PANIC is used to signal local_cluster that an AccountsDB panic has occurred, // as |cargo test| cannot observe panics in other threads pub static ref FROZEN_ACCOUNT_PANIC: Arc = Arc::new(AtomicBool::new(false)); } #[derive(Debug, Default)] pub struct ErrorCounters { pub total: usize, pub account_in_use: usize, pub account_loaded_twice: usize, pub account_not_found: usize, pub blockhash_not_found: usize, pub blockhash_too_old: usize, pub call_chain_too_deep: usize, pub duplicate_signature: usize, pub instruction_error: usize, pub insufficient_funds: usize, pub invalid_account_for_fee: usize, pub invalid_account_index: usize, pub invalid_program_for_execution: usize, } #[derive(Default, Debug, PartialEq, Clone)] pub struct AccountInfo { /// index identifying the append storage store_id: AppendVecId, /// offset into the storage offset: usize, /// lamports in the account used when squashing kept for optimization /// purposes to remove accounts with zero balance. lamports: u64, } /// An offset into the AccountsDB::storage vector pub type AppendVecId = usize; pub type SnapshotStorage = Vec>; pub type SnapshotStorages = Vec; // Each slot has a set of storage entries. pub(crate) type SlotStores = HashMap>; trait Versioned { fn version(&self) -> u64; } impl Versioned for (u64, Hash) { fn version(&self) -> u64 { self.0 } } impl Versioned for (u64, AccountInfo) { fn version(&self) -> u64 { self.0 } } #[derive(Clone, Default, Debug)] pub struct AccountStorage(pub HashMap); impl AccountStorage { fn scan_accounts(&self, account_info: &AccountInfo, slot: Slot) -> Option<(Account, Slot)> { self.0 .get(&slot) .and_then(|storage_map| storage_map.get(&account_info.store_id)) .and_then(|store| { Some( store .accounts .get_account(account_info.offset)? .0 .clone_account(), ) }) .map(|account| (account, slot)) } } #[derive(Debug, Eq, PartialEq, Copy, Clone, Deserialize, Serialize)] pub enum AccountStorageStatus { Available = 0, Full = 1, Candidate = 2, } impl Default for AccountStorageStatus { fn default() -> Self { Self::Available } } #[derive(Debug)] pub enum BankHashVerificationError { MismatchedAccountHash, MismatchedBankHash, MissingBankHash, } /// Persistent storage structure holding the accounts #[derive(Debug)] pub struct AccountStorageEntry { pub(crate) id: AppendVecId, pub(crate) slot: Slot, /// storage holding the accounts pub(crate) accounts: AppendVec, /// Keeps track of the number of accounts stored in a specific AppendVec. /// This is periodically checked to reuse the stores that do not have /// any accounts in it /// status corresponding to the storage, lets us know that /// the append_vec, once maxed out, then emptied, can be reclaimed count_and_status: RwLock<(usize, AccountStorageStatus)>, } impl Default for AccountStorageEntry { fn default() -> Self { Self { id: 0, slot: 0, accounts: AppendVec::new_empty_map(0), count_and_status: RwLock::new((0, AccountStorageStatus::Available)), } } } impl AccountStorageEntry { pub fn new(path: &Path, slot: Slot, id: usize, file_size: u64) -> Self { let tail = AppendVec::new_relative_path(slot, id); let path = Path::new(path).join(&tail); let accounts = AppendVec::new(&path, true, file_size as usize); Self { id, slot, accounts, count_and_status: RwLock::new((0, AccountStorageStatus::Available)), } } pub(crate) fn new_empty_map(id: AppendVecId, accounts_current_len: usize) -> Self { Self { id, slot: 0, accounts: AppendVec::new_empty_map(accounts_current_len), count_and_status: RwLock::new((0, AccountStorageStatus::Available)), } } pub fn set_status(&self, mut status: AccountStorageStatus) { let mut count_and_status = self.count_and_status.write().unwrap(); let count = count_and_status.0; if status == AccountStorageStatus::Full && count == 0 { // this case arises when the append_vec is full (store_ptrs fails), // but all accounts have already been removed from the storage // // the only time it's safe to call reset() on an append_vec is when // every account has been removed // **and** // the append_vec has previously been completely full // self.accounts.reset(); status = AccountStorageStatus::Available; } *count_and_status = (count, status); } pub fn status(&self) -> AccountStorageStatus { self.count_and_status.read().unwrap().1 } pub fn count(&self) -> usize { self.count_and_status.read().unwrap().0 } pub fn has_accounts(&self) -> bool { self.count() > 0 } pub fn slot(&self) -> Slot { self.slot } pub fn append_vec_id(&self) -> AppendVecId { self.id } pub fn flush(&self) -> Result<(), IOError> { self.accounts.flush() } fn add_account(&self) { let mut count_and_status = self.count_and_status.write().unwrap(); *count_and_status = (count_and_status.0 + 1, count_and_status.1); } fn try_available(&self) -> bool { let mut count_and_status = self.count_and_status.write().unwrap(); let (count, status) = *count_and_status; if status == AccountStorageStatus::Available { *count_and_status = (count, AccountStorageStatus::Candidate); true } else { false } } fn remove_account(&self) -> usize { let mut count_and_status = self.count_and_status.write().unwrap(); let (mut count, mut status) = *count_and_status; if count == 1 && status == AccountStorageStatus::Full { // this case arises when we remove the last account from the // storage, but we've learned from previous write attempts that // the storage is full // // the only time it's safe to call reset() on an append_vec is when // every account has been removed // **and** // the append_vec has previously been completely full // // otherwise, the storage may be in flight with a store() // call self.accounts.reset(); status = AccountStorageStatus::Available; } // Some code path is removing accounts too many; this may result in an // unintended reveal of old state for unrelated accounts. assert!( count > 0, "double remove of account in slot: {}/store: {}!!", self.slot, self.id ); count -= 1; *count_and_status = (count, status); count } pub fn set_file>(&mut self, path: P) -> IOResult<()> { self.accounts.set_file(path) } pub fn get_relative_path(&self) -> Option { AppendVec::get_relative_path(self.accounts.get_path()) } pub fn get_path(&self) -> PathBuf { self.accounts.get_path() } } pub fn get_temp_accounts_paths(count: u32) -> IOResult<(Vec, Vec)> { let temp_dirs: IOResult> = (0..count).map(|_| TempDir::new()).collect(); let temp_dirs = temp_dirs?; let paths: Vec = temp_dirs.iter().map(|t| t.path().to_path_buf()).collect(); Ok((temp_dirs, paths)) } #[derive(Clone, Default, Debug, Serialize, Deserialize, PartialEq)] pub struct BankHashStats { pub num_updated_accounts: u64, pub num_removed_accounts: u64, pub num_lamports_stored: u64, pub total_data_len: u64, pub num_executable_accounts: u64, } impl BankHashStats { pub fn update(&mut self, account: &Account) { if account.lamports == 0 { self.num_removed_accounts += 1; } else { self.num_updated_accounts += 1; } self.total_data_len = self.total_data_len.wrapping_add(account.data.len() as u64); if account.executable { self.num_executable_accounts += 1; } self.num_lamports_stored = self.num_lamports_stored.wrapping_add(account.lamports); } pub fn merge(&mut self, other: &BankHashStats) { self.num_updated_accounts += other.num_updated_accounts; self.num_removed_accounts += other.num_removed_accounts; self.total_data_len = self.total_data_len.wrapping_add(other.total_data_len); self.num_lamports_stored = self .num_lamports_stored .wrapping_add(other.num_lamports_stored); self.num_executable_accounts += other.num_executable_accounts; } } #[derive(Clone, Default, Debug, Serialize, Deserialize, PartialEq)] pub struct BankHashInfo { pub hash: Hash, pub snapshot_hash: Hash, pub stats: BankHashStats, } #[derive(Debug)] struct FrozenAccountInfo { pub hash: Hash, // Hash generated by hash_frozen_account_data() pub lamports: u64, // Account balance cannot be lower than this amount } // This structure handles the load/store of the accounts #[derive(Debug)] pub struct AccountsDB { /// Keeps tracks of index into AppendVec on a per slot basis pub accounts_index: RwLock>, pub storage: RwLock, /// distribute the accounts across storage lists pub next_id: AtomicUsize, pub shrink_candidate_slots: Mutex>, pub(crate) write_version: AtomicU64, /// Set of storage paths to pick from pub(crate) paths: Vec, /// Directory of paths this accounts_db needs to hold/remove temp_paths: Option>, /// Starting file size of appendvecs file_size: u64, /// Accounts that will cause a panic! if data modified or lamports decrease frozen_accounts: HashMap, /// Thread pool used for par_iter pub thread_pool: ThreadPool, pub thread_pool_clean: ThreadPool, /// Number of append vecs to create to maximize parallelism when scanning /// the accounts min_num_stores: usize, pub bank_hashes: RwLock>, dead_slots: RwLock>, stats: AccountsStats, } #[derive(Debug, Default)] struct AccountsStats { delta_hash_scan_time_total_us: AtomicU64, delta_hash_accumulate_time_total_us: AtomicU64, delta_hash_merge_time_total_us: AtomicU64, delta_hash_num: AtomicU64, } fn make_min_priority_thread_pool() -> ThreadPool { // Use lower thread count to reduce priority. let num_threads = std::cmp::max(2, num_cpus::get() / 4); rayon::ThreadPoolBuilder::new() .thread_name(|i| format!("solana-accounts-cleanup-{}", i)) .num_threads(num_threads) .build() .unwrap() } impl Default for AccountsDB { fn default() -> Self { let num_threads = get_thread_count(); let mut bank_hashes = HashMap::new(); bank_hashes.insert(0, BankHashInfo::default()); AccountsDB { accounts_index: RwLock::new(AccountsIndex::default()), storage: RwLock::new(AccountStorage(HashMap::new())), next_id: AtomicUsize::new(0), shrink_candidate_slots: Mutex::new(Vec::new()), write_version: AtomicU64::new(0), paths: vec![], temp_paths: None, file_size: DEFAULT_FILE_SIZE, thread_pool: rayon::ThreadPoolBuilder::new() .num_threads(num_threads) .thread_name(|i| format!("solana-accounts-db-{}", i)) .build() .unwrap(), thread_pool_clean: make_min_priority_thread_pool(), min_num_stores: num_threads, bank_hashes: RwLock::new(bank_hashes), frozen_accounts: HashMap::new(), dead_slots: RwLock::new(HashSet::new()), stats: AccountsStats::default(), } } } impl AccountsDB { pub fn new(paths: Vec) -> Self { let new = if !paths.is_empty() { Self { paths, temp_paths: None, ..Self::default() } } else { // Create a temporary set of accounts directories, used primarily // for testing let (temp_dirs, paths) = get_temp_accounts_paths(DEFAULT_NUM_DIRS).unwrap(); Self { paths, temp_paths: Some(temp_dirs), ..Self::default() } }; { for path in new.paths.iter() { std::fs::create_dir_all(path).expect("Create directory failed."); } } new } #[cfg(test)] pub fn new_single() -> Self { AccountsDB { min_num_stores: 0, ..AccountsDB::new(Vec::new()) } } #[cfg(test)] pub fn new_sized(paths: Vec, file_size: u64) -> Self { AccountsDB { file_size, ..AccountsDB::new(paths) } } fn new_storage_entry(&self, slot: Slot, path: &Path, size: u64) -> AccountStorageEntry { AccountStorageEntry::new( path, slot, self.next_id.fetch_add(1, Ordering::Relaxed), size, ) } // Reclaim older states of rooted non-zero lamport accounts as a general // AccountsDB bloat mitigation and preprocess for better zero-lamport purging. fn clean_old_rooted_accounts(&self, purges_in_root: Vec) { // This number isn't carefully chosen; just guessed randomly such that // the hot loop will be the order of ~Xms. const INDEX_CLEAN_BULK_COUNT: usize = 4096; let mut clean_rooted = Measure::start("clean_old_root-ms"); let reclaim_vecs = purges_in_root .par_chunks(INDEX_CLEAN_BULK_COUNT) .map(|pubkeys: &[Pubkey]| { let mut reclaims = Vec::new(); let accounts_index = self.accounts_index.read().unwrap(); for pubkey in pubkeys { accounts_index.clean_rooted_entries(&pubkey, &mut reclaims); } reclaims }); let reclaims: Vec<_> = reclaim_vecs.flatten().collect(); clean_rooted.stop(); inc_new_counter_info!("clean-old-root-par-clean-ms", clean_rooted.as_ms() as usize); let mut measure = Measure::start("clean_old_root_reclaims"); self.handle_reclaims(&reclaims); measure.stop(); debug!("{} {}", clean_rooted, measure); inc_new_counter_info!("clean-old-root-reclaim-ms", measure.as_ms() as usize); } fn clear_uncleaned_roots(&self) { let mut accounts_index = self.accounts_index.write().unwrap(); accounts_index.uncleaned_roots.clear(); } fn inc_store_counts( no_delete_id: AppendVecId, purges: &HashMap>, store_counts: &mut HashMap, already_counted: &mut HashSet, ) { if already_counted.contains(&no_delete_id) { return; } *store_counts.get_mut(&no_delete_id).unwrap() += 1; already_counted.insert(no_delete_id); let mut affected_pubkeys = HashSet::new(); for (key, account_infos) in purges { for (_slot, account_info) in account_infos { if account_info.store_id == no_delete_id { affected_pubkeys.insert(key); break; } } } for key in affected_pubkeys { for (_slot, account_info) in purges.get(&key).unwrap() { Self::inc_store_counts( account_info.store_id, purges, store_counts, already_counted, ); } } } fn calc_delete_dependencies( accounts_index: &AccountsIndex, purges: &HashMap>, store_counts: &mut HashMap, ) { // Another pass to check if there are some filtered accounts which // do not match the criteria of deleting all appendvecs which contain them // then increment their storage count. let mut already_counted = HashSet::new(); for (pubkey, account_infos) in purges.iter() { let no_delete = if account_infos.len() as u64 != accounts_index.ref_count_from_storage(&pubkey) { true } else { let mut no_delete = false; for (_slot, account_info) in account_infos { if *store_counts.get(&account_info.store_id).unwrap() != 0 { no_delete = true; break; } } no_delete }; if no_delete { for (_slot_id, account_info) in account_infos { Self::inc_store_counts( account_info.store_id, &purges, store_counts, &mut already_counted, ); } } } } // Purge zero lamport accounts and older rooted account states as garbage // collection // Only remove those accounts where the entire rooted history of the account // can be purged because there are no live append vecs in the ancestors pub fn clean_accounts(&self) { self.report_store_stats(); let no_ancestors = HashMap::new(); let mut accounts_scan = Measure::start("accounts_scan"); let accounts_index = self.accounts_index.read().unwrap(); let pubkeys: Vec = accounts_index.account_maps.keys().cloned().collect(); // parallel scan the index. let (mut purges, purges_in_root) = pubkeys .par_chunks(4096) .map(|pubkeys: &[Pubkey]| { let mut purges_in_root = Vec::new(); let mut purges = HashMap::new(); for pubkey in pubkeys { if let Some((list, index)) = accounts_index.get(pubkey, &no_ancestors) { let (slot, account_info) = &list[index]; if account_info.lamports == 0 { purges.insert(*pubkey, accounts_index.would_purge(pubkey)); } else if accounts_index.uncleaned_roots.contains(slot) { purges_in_root.push(*pubkey); } } } (purges, purges_in_root) }) .reduce( || (HashMap::new(), Vec::new()), |m1, m2| { // Collapse down the hashmaps/vecs into one. let x = m2.0.iter().fold(m1.0, |mut acc, (k, vs)| { acc.insert(k.clone(), vs.clone()); acc }); let mut y = vec![]; y.extend(m1.1); y.extend(m2.1); (x, y) }, ); drop(accounts_index); accounts_scan.stop(); let mut clean_old_rooted = Measure::start("clean_old_roots"); if !purges_in_root.is_empty() { self.clean_old_rooted_accounts(purges_in_root); } self.clear_uncleaned_roots(); clean_old_rooted.stop(); let mut store_counts_time = Measure::start("store_counts"); let accounts_index = self.accounts_index.read().unwrap(); // Calculate store counts as if everything was purged // Then purge if we can let mut store_counts: HashMap = HashMap::new(); let storage = self.storage.read().unwrap(); for account_infos in purges.values() { for (slot, account_info) in account_infos { let slot_storage = storage.0.get(&slot).unwrap(); let store = slot_storage.get(&account_info.store_id).unwrap(); if let Some(store_count) = store_counts.get_mut(&account_info.store_id) { *store_count -= 1; } else { store_counts.insert( account_info.store_id, store.count_and_status.read().unwrap().0 - 1, ); } } } Self::calc_delete_dependencies(&accounts_index, &purges, &mut store_counts); store_counts_time.stop(); // Only keep purges where the entire history of the account in the root set // can be purged. All AppendVecs for those updates are dead. let mut purge_filter = Measure::start("purge_filter"); purges.retain(|_pubkey, account_infos| { for (_slot, account_info) in account_infos.iter() { if *store_counts.get(&account_info.store_id).unwrap() != 0 { return false; } } true }); purge_filter.stop(); let mut reclaims_time = Measure::start("reclaims"); // Recalculate reclaims with new purge set let mut reclaims = Vec::new(); let mut dead_keys = Vec::new(); for pubkey in purges.keys() { let (new_reclaims, is_empty) = accounts_index.purge(&pubkey); if is_empty { dead_keys.push(*pubkey); } reclaims.extend(new_reclaims); } drop(storage); drop(accounts_index); if !dead_keys.is_empty() { let mut accounts_index = self.accounts_index.write().unwrap(); for key in &dead_keys { accounts_index.account_maps.remove(key); } } self.handle_reclaims(&reclaims); reclaims_time.stop(); debug!( "clean_accounts: {} {} {} {}", accounts_scan, store_counts_time, purge_filter, reclaims_time ); } fn handle_reclaims(&self, reclaims: SlotSlice) { let mut dead_accounts = Measure::start("reclaims::remove_dead_accounts"); let dead_slots = self.remove_dead_accounts(reclaims); dead_accounts.stop(); let dead_slots_len = { let mut dead_slots_w = self.dead_slots.write().unwrap(); dead_slots_w.extend(dead_slots); dead_slots_w.len() }; if dead_slots_len > 5000 { self.process_dead_slots(); } } pub fn process_dead_slots(&self) { let empty = HashSet::new(); let mut dead_slots_w = self.dead_slots.write().unwrap(); let dead_slots = std::mem::replace(&mut *dead_slots_w, empty); drop(dead_slots_w); let mut clean_dead_slots = Measure::start("reclaims::purge_slots"); self.clean_dead_slots(&dead_slots); clean_dead_slots.stop(); let mut purge_slots = Measure::start("reclaims::purge_slots"); self.purge_slots(&dead_slots); purge_slots.stop(); debug!( "process_dead_slots({}): {} {}", dead_slots.len(), clean_dead_slots, purge_slots ); } // Reads all accounts in given slot's AppendVecs and filter only to alive, // then create a minimum AppendVed filled with the alive. fn shrink_stale_slot(&self, slot: Slot) { trace!("shrink_stale_slot: slot: {}", slot); let mut stored_accounts = vec![]; { let storage = self.storage.read().unwrap(); if let Some(stores) = storage.0.get(&slot) { let mut alive_count = 0; for store in stores.values() { alive_count += store.count(); let mut start = 0; while let Some((account, next)) = store.accounts.get_account(start) { stored_accounts.push(( account.meta.pubkey, account.clone_account(), *account.hash, next - start, (store.id, account.offset), account.meta.write_version, )); start = next; } } if (alive_count as f32 / stored_accounts.len() as f32) >= 0.80 { trace!( "shrink_stale_slot: not enough space to shrink: {} / {}", alive_count, stored_accounts.len() ); return; } } } let alive_accounts: Vec<_> = { let no_ancestors = HashMap::new(); let accounts_index = self.accounts_index.read().unwrap(); stored_accounts .iter() .filter( |( pubkey, _account, _account_hash, _storage_size, (store_id, offset), _write_version, )| { if let Some((list, _)) = accounts_index.get(pubkey, &no_ancestors) { list.iter() .any(|(_slot, i)| i.store_id == *store_id && i.offset == *offset) } else { false } }, ) .collect() }; let alive_total: u64 = alive_accounts .iter() .map( |(_pubkey, _account, _account_hash, account_size, _location, _write_verion)| { *account_size as u64 }, ) .sum(); let aligned_total: u64 = (alive_total + (PAGE_SIZE - 1)) & !(PAGE_SIZE - 1); debug!( "shrinking: slot: {}, stored_accounts: {} => alive_accounts: {} ({} bytes; aligned to: {})", slot, stored_accounts.len(), alive_accounts.len(), alive_total, aligned_total ); if aligned_total > 0 { let mut accounts = Vec::with_capacity(alive_accounts.len()); let mut hashes = Vec::with_capacity(alive_accounts.len()); let mut write_versions = Vec::with_capacity(alive_accounts.len()); for (pubkey, account, account_hash, _size, _location, write_version) in alive_accounts { accounts.push((pubkey, account)); hashes.push(*account_hash); write_versions.push(*write_version); } let shrunken_store = self.create_and_insert_store(slot, aligned_total); // here, we're writing back alive_accounts. That should be an atomic operation // without use of rather wide locks in this whole function, because we're // mutating rooted slots; There should be no writers to them. let infos = self.store_accounts_to( slot, &accounts, &hashes, |_| shrunken_store.clone(), write_versions.into_iter(), ); let reclaims = self.update_index(slot, infos, &accounts); self.handle_reclaims(&reclaims); let mut storage = self.storage.write().unwrap(); if let Some(slot_storage) = storage.0.get_mut(&slot) { slot_storage.retain(|_key, store| store.count() > 0); } } } // Infinitely returns rooted roots in cyclic order fn next_shrink_slot(&self) -> Option { let next = { let mut candidates = self.shrink_candidate_slots.lock().unwrap(); candidates.pop() }; if next.is_some() { next } else { let mut new_all_slots = self.all_root_slots_in_index(); let next = new_all_slots.pop(); let mut candidates = self.shrink_candidate_slots.lock().unwrap(); *candidates = new_all_slots; next } } fn all_root_slots_in_index(&self) -> Vec { let index = self.accounts_index.read().unwrap(); index.roots.iter().cloned().collect() } fn all_slots_in_storage(&self) -> Vec { let storage = self.storage.read().unwrap(); storage.0.keys().cloned().collect() } pub fn process_stale_slot(&self) { if let Some(slot) = self.next_shrink_slot() { self.shrink_stale_slot(slot); } } pub fn shrink_all_stale_slots(&self) { for slot in self.all_slots_in_storage() { self.shrink_stale_slot(slot); } } pub fn scan_accounts(&self, ancestors: &Ancestors, scan_func: F) -> A where F: Fn(&mut A, Option<(&Pubkey, Account, Slot)>) -> (), A: Default, { let mut collector = A::default(); let accounts_index = self.accounts_index.read().unwrap(); let storage = self.storage.read().unwrap(); accounts_index.scan_accounts(ancestors, |pubkey, (account_info, slot)| { scan_func( &mut collector, storage .scan_accounts(account_info, slot) .map(|(account, slot)| (pubkey, account, slot)), ) }); collector } pub fn range_scan_accounts(&self, ancestors: &Ancestors, range: R, scan_func: F) -> A where F: Fn(&mut A, Option<(&Pubkey, Account, Slot)>) -> (), A: Default, R: RangeBounds, { let mut collector = A::default(); let accounts_index = self.accounts_index.read().unwrap(); let storage = self.storage.read().unwrap(); accounts_index.range_scan_accounts(ancestors, range, |pubkey, (account_info, slot)| { scan_func( &mut collector, storage .scan_accounts(account_info, slot) .map(|(account, slot)| (pubkey, account, slot)), ) }); collector } /// Scan a specific slot through all the account storage in parallel with sequential read // PERF: Sequentially read each storage entry in parallel pub fn scan_account_storage(&self, slot: Slot, scan_func: F) -> Vec where F: Fn(&StoredAccount, AppendVecId, &mut B) -> () + Send + Sync, B: Send + Default, { let storage_maps: Vec> = self .storage .read() .unwrap() .0 .get(&slot) .unwrap_or(&HashMap::new()) .values() .cloned() .collect(); self.thread_pool.install(|| { storage_maps .into_par_iter() .map(|storage| { let accounts = storage.accounts.accounts(0); let mut retval = B::default(); accounts.iter().for_each(|stored_account| { scan_func(stored_account, storage.id, &mut retval) }); retval }) .collect() }) } pub fn set_hash(&self, slot: Slot, parent_slot: Slot) { let mut bank_hashes = self.bank_hashes.write().unwrap(); if bank_hashes.get(&slot).is_some() { error!( "set_hash: already exists; multiple forks with shared slot {} as child (parent: {})!?", slot, parent_slot, ); return; } let new_hash_info = BankHashInfo { hash: Hash::default(), snapshot_hash: Hash::default(), stats: BankHashStats::default(), }; bank_hashes.insert(slot, new_hash_info); } pub fn load( storage: &AccountStorage, ancestors: &Ancestors, accounts_index: &AccountsIndex, pubkey: &Pubkey, ) -> Option<(Account, Slot)> { let (lock, index) = accounts_index.get(pubkey, ancestors)?; let slot = lock[index].0; //TODO: thread this as a ref if let Some(slot_storage) = storage.0.get(&slot) { let info = &lock[index].1; slot_storage .get(&info.store_id) .and_then(|store| Some(store.accounts.get_account(info.offset)?.0.clone_account())) .map(|account| (account, slot)) } else { None } } #[cfg(test)] fn load_account_hash(&self, ancestors: &Ancestors, pubkey: &Pubkey) -> Hash { let accounts_index = self.accounts_index.read().unwrap(); let (lock, index) = accounts_index.get(pubkey, ancestors).unwrap(); let slot = lock[index].0; let storage = self.storage.read().unwrap(); let slot_storage = storage.0.get(&slot).unwrap(); let info = &lock[index].1; let entry = slot_storage.get(&info.store_id).unwrap(); let account = entry.accounts.get_account(info.offset); *account.as_ref().unwrap().0.hash } pub fn load_slow(&self, ancestors: &Ancestors, pubkey: &Pubkey) -> Option<(Account, Slot)> { let accounts_index = self.accounts_index.read().unwrap(); let storage = self.storage.read().unwrap(); Self::load(&storage, ancestors, &accounts_index, pubkey) } fn find_storage_candidate(&self, slot: Slot) -> Arc { let mut create_extra = false; let stores = self.storage.read().unwrap(); if let Some(slot_stores) = stores.0.get(&slot) { if !slot_stores.is_empty() { if slot_stores.len() <= self.min_num_stores { let mut total_accounts = 0; for store in slot_stores.values() { total_accounts += store.count_and_status.read().unwrap().0; } // Create more stores so that when scanning the storage all CPUs have work if (total_accounts / 16) >= slot_stores.len() { create_extra = true; } } // pick an available store at random by iterating from a random point let to_skip = thread_rng().gen_range(0, slot_stores.len()); for (i, store) in slot_stores.values().cycle().skip(to_skip).enumerate() { if store.try_available() { let ret = store.clone(); drop(stores); if create_extra { self.create_and_insert_store(slot, self.file_size); } return ret; } // looked at every store, bail... if i == slot_stores.len() { break; } } } } drop(stores); let store = self.create_and_insert_store(slot, self.file_size); store.try_available(); store } fn create_and_insert_store(&self, slot: Slot, size: u64) -> Arc { let path_index = thread_rng().gen_range(0, self.paths.len()); let store = Arc::new(self.new_storage_entry(slot, &Path::new(&self.paths[path_index]), size)); let store_for_index = store.clone(); let mut stores = self.storage.write().unwrap(); let slot_storage = stores.0.entry(slot).or_insert_with(HashMap::new); slot_storage.insert(store.id, store_for_index); store } pub fn purge_slot(&self, slot: Slot) { let mut slots = HashSet::new(); slots.insert(slot); self.purge_slots(&slots); } pub fn purge_slots(&self, slots: &HashSet) { //add_root should be called first let accounts_index = self.accounts_index.read().unwrap(); let non_roots: Vec<_> = slots .iter() .filter(|slot| !accounts_index.is_root(**slot)) .collect(); drop(accounts_index); let mut storage = self.storage.write().unwrap(); for slot in non_roots { storage.0.remove(&slot); } } pub fn remove_unrooted_slot(&self, remove_slot: Slot) { if self.accounts_index.read().unwrap().is_root(remove_slot) { panic!("Trying to remove accounts for rooted slot {}", remove_slot); } let pubkey_sets: Vec> = self.scan_account_storage( remove_slot, |stored_account: &StoredAccount, _, accum: &mut HashSet| { accum.insert(stored_account.meta.pubkey); }, ); // Purge this slot from the accounts index let mut reclaims = vec![]; { let pubkeys = pubkey_sets.iter().flatten(); let accounts_index = self.accounts_index.read().unwrap(); for pubkey in pubkeys { accounts_index.clean_unrooted_entries_by_slot(remove_slot, pubkey, &mut reclaims); } } self.handle_reclaims(&reclaims); // 1) Remove old bank hash from self.bank_hashes // 2) Purge this slot's storage entries from self.storage self.process_dead_slots(); // Sanity check storage entries are removed from the index assert!(self.storage.read().unwrap().0.get(&remove_slot).is_none()); } pub fn hash_stored_account(slot: Slot, account: &StoredAccount) -> Hash { Self::hash_account_data( slot, account.account_meta.lamports, &account.account_meta.owner, account.account_meta.executable, account.account_meta.rent_epoch, account.data, &account.meta.pubkey, ) } pub fn hash_account(slot: Slot, account: &Account, pubkey: &Pubkey) -> Hash { Self::hash_account_data( slot, account.lamports, &account.owner, account.executable, account.rent_epoch, &account.data, pubkey, ) } fn hash_frozen_account_data(account: &Account) -> Hash { let mut hasher = Hasher::default(); hasher.hash(&account.data); hasher.hash(&account.owner.as_ref()); if account.executable { hasher.hash(&[1u8; 1]); } else { hasher.hash(&[0u8; 1]); } hasher.result() } pub fn hash_account_data( slot: Slot, lamports: u64, owner: &Pubkey, executable: bool, rent_epoch: Epoch, data: &[u8], pubkey: &Pubkey, ) -> Hash { if lamports == 0 { return Hash::default(); } let mut hasher = Hasher::default(); let mut buf = [0u8; 8]; LittleEndian::write_u64(&mut buf[..], lamports); hasher.hash(&buf); LittleEndian::write_u64(&mut buf[..], slot); hasher.hash(&buf); LittleEndian::write_u64(&mut buf[..], rent_epoch); hasher.hash(&buf); hasher.hash(&data); if executable { hasher.hash(&[1u8; 1]); } else { hasher.hash(&[0u8; 1]); } hasher.hash(&owner.as_ref()); hasher.hash(&pubkey.as_ref()); hasher.result() } fn bulk_assign_write_version(&self, count: usize) -> u64 { self.write_version .fetch_add(count as u64, Ordering::Relaxed) } fn store_accounts( &self, slot: Slot, accounts: &[(&Pubkey, &Account)], hashes: &[Hash], ) -> Vec { let mut current_version = self.bulk_assign_write_version(accounts.len()); let write_version_producer = std::iter::from_fn(move || { let ret = current_version; current_version += 1; Some(ret) }); let storage_finder = |slot| self.find_storage_candidate(slot); self.store_accounts_to( slot, accounts, hashes, storage_finder, write_version_producer, ) } fn store_accounts_to Arc, P: Iterator>( &self, slot: Slot, accounts: &[(&Pubkey, &Account)], hashes: &[Hash], mut storage_finder: F, mut write_version_producer: P, ) -> Vec { let default_account = Account::default(); let with_meta: Vec<(StoredMeta, &Account)> = accounts .iter() .map(|(pubkey, account)| { let account = if account.lamports == 0 { &default_account } else { *account }; let data_len = account.data.len() as u64; let meta = StoredMeta { write_version: write_version_producer.next().unwrap(), pubkey: **pubkey, data_len, }; (meta, account) }) .collect(); let mut infos: Vec = Vec::with_capacity(with_meta.len()); while infos.len() < with_meta.len() { let storage = storage_finder(slot); let rvs = storage .accounts .append_accounts(&with_meta[infos.len()..], &hashes[infos.len()..]); if rvs.is_empty() { storage.set_status(AccountStorageStatus::Full); // See if an account overflows the default append vec size. let data_len = (with_meta[infos.len()].1.data.len() + 4096) as u64; if data_len > self.file_size { self.create_and_insert_store(slot, data_len * 2); } continue; } for (offset, (_, account)) in rvs.iter().zip(&with_meta[infos.len()..]) { storage.add_account(); infos.push(AccountInfo { store_id: storage.id, offset: *offset, lamports: account.lamports, }); } // restore the state to available storage.set_status(AccountStorageStatus::Available); } infos } fn report_store_stats(&self) { let mut total_count = 0; let mut min = std::usize::MAX; let mut min_slot = 0; let mut max = 0; let mut max_slot = 0; let mut newest_slot = 0; let mut oldest_slot = std::u64::MAX; let stores = self.storage.read().unwrap(); for (slot, slot_stores) in &stores.0 { total_count += slot_stores.len(); if slot_stores.len() < min { min = slot_stores.len(); min_slot = *slot; } if slot_stores.len() > max { max = slot_stores.len(); max_slot = *slot; } if *slot > newest_slot { newest_slot = *slot; } if *slot < oldest_slot { oldest_slot = *slot; } } drop(stores); info!("total_stores: {}, newest_slot: {}, oldest_slot: {}, max_slot: {} (num={}), min_slot: {} (num={})", total_count, newest_slot, oldest_slot, max_slot, max, min_slot, min); datapoint_info!("accounts_db-stores", ("total_count", total_count, i64)); datapoint_info!( "accounts_db-perf-stats", ( "delta_hash_num", self.stats.delta_hash_num.swap(0, Ordering::Relaxed), i64 ), ( "delta_hash_scan_us", self.stats .delta_hash_scan_time_total_us .swap(0, Ordering::Relaxed), i64 ), ( "delta_hash_merge_us", self.stats .delta_hash_merge_time_total_us .swap(0, Ordering::Relaxed), i64 ), ( "delta_hash_accumulate_us", self.stats .delta_hash_accumulate_time_total_us .swap(0, Ordering::Relaxed), i64 ), ); } pub fn compute_merkle_root(hashes: Vec<(Pubkey, Hash)>, fanout: usize) -> Hash { let hashes: Vec<_> = hashes.into_iter().map(|(_pubkey, hash)| hash).collect(); let mut hashes: Vec<_> = hashes.chunks(fanout).map(|x| x.to_vec()).collect(); while hashes.len() > 1 { let mut time = Measure::start("time"); let new_hashes: Vec = hashes .par_iter() .map(|h| { let mut hasher = Hasher::default(); for v in h.iter() { hasher.hash(v.as_ref()); } hasher.result() }) .collect(); time.stop(); debug!("hashing {} {}", hashes.len(), time); hashes = new_hashes.chunks(fanout).map(|x| x.to_vec()).collect(); } let mut hasher = Hasher::default(); hashes .into_iter() .flatten() .map(|hash| hash) .for_each(|hash| { hasher.hash(hash.as_ref()); }); hasher.result() } fn accumulate_account_hashes(mut hashes: Vec<(Pubkey, Hash)>) -> Hash { let mut sort = Measure::start("sort"); hashes.par_sort_by(|a, b| a.0.cmp(&b.0)); sort.stop(); let mut hash_time = Measure::start("hash"); let fanout = 16; let res = Self::compute_merkle_root(hashes, fanout); hash_time.stop(); debug!("{} {}", sort, hash_time); res } fn calculate_accounts_hash( &self, ancestors: &Ancestors, check_hash: bool, ) -> Result { use BankHashVerificationError::*; let mut scan = Measure::start("scan"); let accounts_index = self.accounts_index.read().unwrap(); let storage = self.storage.read().unwrap(); let keys: Vec<_> = accounts_index.account_maps.keys().collect(); let mismatch_found = AtomicU64::new(0); let hashes: Vec<_> = keys .par_iter() .filter_map(|pubkey| { if let Some((list, index)) = accounts_index.get(pubkey, ancestors) { let (slot, account_info) = &list[index]; if account_info.lamports != 0 { storage .0 .get(&slot) .and_then(|storage_map| storage_map.get(&account_info.store_id)) .and_then(|store| { let account = store.accounts.get_account(account_info.offset)?.0; if check_hash { let hash = Self::hash_stored_account(*slot, &account); if hash != *account.hash { mismatch_found.fetch_add(1, Ordering::Relaxed); return None; } } Some((**pubkey, *account.hash)) }) } else { None } } else { None } }) .collect(); if mismatch_found.load(Ordering::Relaxed) > 0 { warn!( "{} mismatched account hash(es) found", mismatch_found.load(Ordering::Relaxed) ); return Err(MismatchedAccountHash); } scan.stop(); debug!("{}", scan); Ok(Self::accumulate_account_hashes(hashes)) } pub fn get_accounts_hash(&self, slot: Slot) -> Hash { let bank_hashes = self.bank_hashes.read().unwrap(); let bank_hash_info = bank_hashes.get(&slot).unwrap(); bank_hash_info.snapshot_hash } pub fn update_accounts_hash(&self, slot: Slot, ancestors: &Ancestors) -> Hash { let hash = self.calculate_accounts_hash(ancestors, false).unwrap(); let mut bank_hashes = self.bank_hashes.write().unwrap(); let mut bank_hash_info = bank_hashes.get_mut(&slot).unwrap(); bank_hash_info.snapshot_hash = hash; hash } pub fn verify_bank_hash( &self, slot: Slot, ancestors: &Ancestors, ) -> Result<(), BankHashVerificationError> { use BankHashVerificationError::*; let calculated_hash = self.calculate_accounts_hash(ancestors, true)?; let bank_hashes = self.bank_hashes.read().unwrap(); if let Some(found_hash_info) = bank_hashes.get(&slot) { if calculated_hash == found_hash_info.snapshot_hash { Ok(()) } else { warn!( "mismatched bank hash for slot {}: {} (calculated) != {} (expected)", slot, calculated_hash, found_hash_info.snapshot_hash ); Err(MismatchedBankHash) } } else { Err(MissingBankHash) } } pub fn get_accounts_delta_hash(&self, slot: Slot) -> Hash { let mut scan = Measure::start("scan"); let mut accumulator: Vec> = self.scan_account_storage( slot, |stored_account: &StoredAccount, _store_id: AppendVecId, accum: &mut HashMap| { accum.insert( stored_account.meta.pubkey, (stored_account.meta.write_version, *stored_account.hash), ); }, ); scan.stop(); let mut merge = Measure::start("merge"); let mut account_maps = accumulator.pop().unwrap(); while let Some(maps) = accumulator.pop() { AccountsDB::merge(&mut account_maps, &maps); } merge.stop(); let mut accumulate = Measure::start("accumulate"); let hashes: Vec<_> = account_maps .into_iter() .map(|(pubkey, (_, hash))| (pubkey, hash)) .collect(); let ret = Self::accumulate_account_hashes(hashes); accumulate.stop(); self.stats .delta_hash_scan_time_total_us .fetch_add(scan.as_us(), Ordering::Relaxed); self.stats .delta_hash_merge_time_total_us .fetch_add(merge.as_us(), Ordering::Relaxed); self.stats .delta_hash_accumulate_time_total_us .fetch_add(accumulate.as_us(), Ordering::Relaxed); self.stats.delta_hash_num.fetch_add(1, Ordering::Relaxed); ret } fn update_index( &self, slot: Slot, infos: Vec, accounts: &[(&Pubkey, &Account)], ) -> SlotList { let mut reclaims = SlotList::::with_capacity(infos.len() * 2); let index = self.accounts_index.read().unwrap(); let mut update_index_work = Measure::start("update_index_work"); let inserts: Vec<_> = infos .into_iter() .zip(accounts.iter()) .filter_map(|(info, pubkey_account)| { let pubkey = pubkey_account.0; index .update(slot, pubkey, info, &mut reclaims) .map(|info| (pubkey, info)) }) .collect(); drop(index); if !inserts.is_empty() { let mut index = self.accounts_index.write().unwrap(); for (pubkey, info) in inserts { index.insert(slot, pubkey, info, &mut reclaims); } } update_index_work.stop(); reclaims } fn remove_dead_accounts(&self, reclaims: SlotSlice) -> HashSet { let storage = self.storage.read().unwrap(); let mut dead_slots = HashSet::new(); for (slot, account_info) in reclaims { if let Some(slot_storage) = storage.0.get(slot) { if let Some(store) = slot_storage.get(&account_info.store_id) { assert_eq!( *slot, store.slot, "AccountDB::accounts_index corrupted. Storage should only point to one slot" ); let count = store.remove_account(); if count == 0 { dead_slots.insert(*slot); } } } } dead_slots.retain(|slot| { if let Some(slot_storage) = storage.0.get(&slot) { for x in slot_storage.values() { if x.count() != 0 { return false; } } } true }); dead_slots } pub fn clean_dead_slots(&self, dead_slots: &HashSet) { if !dead_slots.is_empty() { { let mut measure = Measure::start("clean_dead_slots-ms"); let storage = self.storage.read().unwrap(); let mut stores: Vec> = vec![]; for slot in dead_slots.iter() { if let Some(slot_storage) = storage.0.get(slot) { for store in slot_storage.values() { stores.push(store.clone()); } } } drop(storage); datapoint_debug!("clean_dead_slots", ("stores", stores.len(), i64)); let pubkeys: Vec> = { self.thread_pool_clean.install(|| { stores .into_par_iter() .map(|store| { let accounts = store.accounts.accounts(0); accounts .into_iter() .map(|account| account.meta.pubkey) .collect::>() }) .collect() }) }; let index = self.accounts_index.read().unwrap(); for pubkey_v in pubkeys { for pubkey in pubkey_v { index.unref_from_storage(&pubkey); } } drop(index); measure.stop(); inc_new_counter_info!("clean_dead_slots-unref-ms", measure.as_ms() as usize); let mut index = self.accounts_index.write().unwrap(); for slot in dead_slots.iter() { index.clean_dead_slot(*slot); } } { let mut bank_hashes = self.bank_hashes.write().unwrap(); for slot in dead_slots.iter() { bank_hashes.remove(slot); } } } } fn hash_accounts(&self, slot: Slot, accounts: &[(&Pubkey, &Account)]) -> Vec { let mut stats = BankHashStats::default(); let hashes: Vec<_> = accounts .iter() .map(|(pubkey, account)| { stats.update(account); Self::hash_account(slot, account, pubkey) }) .collect(); let mut bank_hashes = self.bank_hashes.write().unwrap(); let slot_info = bank_hashes .entry(slot) .or_insert_with(BankHashInfo::default); slot_info.stats.merge(&stats); hashes } pub fn freeze_accounts(&mut self, ancestors: &Ancestors, account_pubkeys: &[Pubkey]) { for account_pubkey in account_pubkeys { if let Some((account, _slot)) = self.load_slow(ancestors, &account_pubkey) { let frozen_account_info = FrozenAccountInfo { hash: Self::hash_frozen_account_data(&account), lamports: account.lamports, }; warn!( "Account {} is now frozen at lamports={}, hash={}", account_pubkey, frozen_account_info.lamports, frozen_account_info.hash ); self.frozen_accounts .insert(*account_pubkey, frozen_account_info); } else { panic!( "Unable to freeze an account that does not exist: {}", account_pubkey ); } } } /// Cause a panic if frozen accounts would be affected by data in `accounts` fn assert_frozen_accounts(&self, accounts: &[(&Pubkey, &Account)]) { if self.frozen_accounts.is_empty() { return; } for (account_pubkey, account) in accounts.iter() { if let Some(frozen_account_info) = self.frozen_accounts.get(*account_pubkey) { if account.lamports < frozen_account_info.lamports { FROZEN_ACCOUNT_PANIC.store(true, Ordering::Relaxed); panic!( "Frozen account {} modified. Lamports decreased from {} to {}", account_pubkey, frozen_account_info.lamports, account.lamports, ) } let hash = Self::hash_frozen_account_data(&account); if hash != frozen_account_info.hash { FROZEN_ACCOUNT_PANIC.store(true, Ordering::Relaxed); panic!( "Frozen account {} modified. Hash changed from {} to {}", account_pubkey, frozen_account_info.hash, hash, ) } } } } /// Store the account update. pub fn store(&self, slot: Slot, accounts: &[(&Pubkey, &Account)]) { self.assert_frozen_accounts(accounts); let hashes = self.hash_accounts(slot, accounts); self.store_with_hashes(slot, accounts, &hashes); } fn store_with_hashes(&self, slot: Slot, accounts: &[(&Pubkey, &Account)], hashes: &[Hash]) { let mut store_accounts = Measure::start("store::store_accounts"); let infos = self.store_accounts(slot, accounts, hashes); store_accounts.stop(); let mut update_index = Measure::start("store::update_index"); let reclaims = self.update_index(slot, infos, accounts); update_index.stop(); trace!("reclaim: {}", reclaims.len()); self.handle_reclaims(&reclaims); } pub fn add_root(&self, slot: Slot) { self.accounts_index.write().unwrap().add_root(slot) } pub fn get_snapshot_storages(&self, snapshot_slot: Slot) -> SnapshotStorages { let accounts_index = self.accounts_index.read().unwrap(); let r_storage = self.storage.read().unwrap(); r_storage .0 .iter() .filter(|(slot, _slot_stores)| { **slot <= snapshot_slot && accounts_index.is_root(**slot) }) .map(|(_slot, slot_stores)| { slot_stores .values() .filter(|x| x.has_accounts()) .cloned() .collect() }) .filter(|snapshot_storage: &SnapshotStorage| !snapshot_storage.is_empty()) .collect() } fn merge(dest: &mut HashMap, source: &HashMap) where X: Versioned + Clone, { for (key, source_item) in source.iter() { if let Some(dest_item) = dest.get(key) { if dest_item.version() > source_item.version() { continue; } } dest.insert(*key, source_item.clone()); } } pub fn generate_index(&self) { let storage = self.storage.read().unwrap(); let mut slots: Vec = storage.0.keys().cloned().collect(); slots.sort(); let mut accounts_index = self.accounts_index.write().unwrap(); for slot in slots.iter() { let accumulator: Vec>> = self .scan_account_storage( *slot, |stored_account: &StoredAccount, store_id: AppendVecId, accum: &mut HashMap>| { let account_info = AccountInfo { store_id, offset: stored_account.offset, lamports: stored_account.account_meta.lamports, }; let entry = accum .entry(stored_account.meta.pubkey) .or_insert_with(|| vec![]); entry.push((stored_account.meta.write_version, account_info)); }, ); let mut accounts_map: HashMap> = HashMap::new(); for accumulator_entry in accumulator.iter() { for (pubkey, storage_entry) in accumulator_entry { let entry = accounts_map.entry(*pubkey).or_insert_with(|| vec![]); entry.extend(storage_entry.iter().cloned()); } } // Need to restore indexes even with older write versions which may // be shielding other accounts. When they are then purged, the // original non-shielded account value will be visible when the account // is restored from the append-vec if !accumulator.is_empty() { let mut _reclaims: Vec<(u64, AccountInfo)> = vec![]; for (pubkey, account_infos) in accounts_map.iter_mut() { account_infos.sort_by(|a, b| a.0.cmp(&b.0)); for (_, account_info) in account_infos { accounts_index.insert(*slot, pubkey, account_info.clone(), &mut _reclaims); } } } } // Need to add these last, otherwise older updates will be cleaned for slot in slots { accounts_index.add_root(slot); } let mut counts = HashMap::new(); for slot_list in accounts_index.account_maps.values() { for (_slot, account_entry) in slot_list.1.read().unwrap().iter() { *counts.entry(account_entry.store_id).or_insert(0) += 1; } } for slot_stores in storage.0.values() { for (id, store) in slot_stores { if let Some(count) = counts.get(&id) { trace!( "id: {} setting count: {} cur: {}", id, count, store.count_and_status.read().unwrap().0 ); store.count_and_status.write().unwrap().0 = *count; } else { trace!("id: {} clearing count", id); store.count_and_status.write().unwrap().0 = 0; } } } } } #[cfg(test)] pub mod tests { // TODO: all the bank tests are bank specific, issue: 2194 use super::*; use crate::{accounts_index::RefCount, append_vec::AccountMeta}; use assert_matches::assert_matches; use rand::{thread_rng, Rng}; use solana_sdk::{account::Account, hash::HASH_BYTES}; use std::{fs, str::FromStr}; fn linear_ancestors(end_slot: u64) -> Ancestors { let mut ancestors: Ancestors = vec![(0, 0)].into_iter().collect(); for i in 1..end_slot { ancestors.insert(i, (i - 1) as usize); } ancestors } #[test] fn test_accountsdb_add_root() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account0 = Account::new(1, 0, &key); db.store(0, &[(&key, &account0)]); db.add_root(0); let ancestors = vec![(1, 1)].into_iter().collect(); assert_eq!(db.load_slow(&ancestors, &key), Some((account0, 0))); } #[test] fn test_accountsdb_latest_ancestor() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account0 = Account::new(1, 0, &key); db.store(0, &[(&key, &account0)]); let account1 = Account::new(0, 0, &key); db.store(1, &[(&key, &account1)]); let ancestors = vec![(1, 1)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account1); let ancestors = vec![(1, 1), (0, 0)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account1); let accounts: Vec = db.scan_accounts(&ancestors, |accounts: &mut Vec, option| { if let Some(data) = option { accounts.push(data.1); } }); assert_eq!(accounts, vec![account1]); } #[test] fn test_accountsdb_latest_ancestor_with_root() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account0 = Account::new(1, 0, &key); db.store(0, &[(&key, &account0)]); let account1 = Account::new(0, 0, &key); db.store(1, &[(&key, &account1)]); db.add_root(0); let ancestors = vec![(1, 1)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account1); let ancestors = vec![(1, 1), (0, 0)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account1); } #[test] fn test_accountsdb_root_one_slot() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account0 = Account::new(1, 0, &key); // store value 1 in the "root", i.e. db zero db.store(0, &[(&key, &account0)]); // now we have: // // root0 -> key.lamports==1 // / \ // / \ // key.lamports==0 <- slot1 \ // slot2 -> key.lamports==1 // (via root0) // store value 0 in one child let account1 = Account::new(0, 0, &key); db.store(1, &[(&key, &account1)]); // masking accounts is done at the Accounts level, at accountsDB we see // original account (but could also accept "None", which is implemented // at the Accounts level) let ancestors = vec![(0, 0), (1, 1)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account1); // we should see 1 token in slot 2 let ancestors = vec![(0, 0), (2, 2)].into_iter().collect(); assert_eq!(&db.load_slow(&ancestors, &key).unwrap().0, &account0); db.add_root(0); let ancestors = vec![(1, 1)].into_iter().collect(); assert_eq!(db.load_slow(&ancestors, &key), Some((account1, 1))); let ancestors = vec![(2, 2)].into_iter().collect(); assert_eq!(db.load_slow(&ancestors, &key), Some((account0, 0))); // original value } #[test] fn test_accountsdb_add_root_many() { let db = AccountsDB::new(Vec::new()); let mut pubkeys: Vec = vec![]; create_account(&db, &mut pubkeys, 0, 100, 0, 0); for _ in 1..100 { let idx = thread_rng().gen_range(0, 99); let ancestors = vec![(0, 0)].into_iter().collect(); let account = db.load_slow(&ancestors, &pubkeys[idx]).unwrap(); let mut default_account = Account::default(); default_account.lamports = (idx + 1) as u64; assert_eq!((default_account, 0), account); } db.add_root(0); // check that all the accounts appear with a new root for _ in 1..100 { let idx = thread_rng().gen_range(0, 99); let ancestors = vec![(0, 0)].into_iter().collect(); let account0 = db.load_slow(&ancestors, &pubkeys[idx]).unwrap(); let ancestors = vec![(1, 1)].into_iter().collect(); let account1 = db.load_slow(&ancestors, &pubkeys[idx]).unwrap(); let mut default_account = Account::default(); default_account.lamports = (idx + 1) as u64; assert_eq!(&default_account, &account0.0); assert_eq!(&default_account, &account1.0); } } #[test] fn test_accountsdb_count_stores() { solana_logger::setup(); let db = AccountsDB::new_single(); let mut pubkeys: Vec = vec![]; create_account(&db, &mut pubkeys, 0, 2, DEFAULT_FILE_SIZE as usize / 3, 0); assert!(check_storage(&db, 0, 2)); let pubkey = Pubkey::new_rand(); let account = Account::new(1, DEFAULT_FILE_SIZE as usize / 3, &pubkey); db.store(1, &[(&pubkey, &account)]); db.store(1, &[(&pubkeys[0], &account)]); { let stores = db.storage.read().unwrap(); let slot_0_stores = &stores.0.get(&0).unwrap(); let slot_1_stores = &stores.0.get(&1).unwrap(); assert_eq!(slot_0_stores.len(), 1); assert_eq!(slot_1_stores.len(), 1); assert_eq!(slot_0_stores[&0].count(), 2); assert_eq!(slot_1_stores[&1].count(), 2); } db.add_root(1); { let stores = db.storage.read().unwrap(); let slot_0_stores = &stores.0.get(&0).unwrap(); let slot_1_stores = &stores.0.get(&1).unwrap(); assert_eq!(slot_0_stores.len(), 1); assert_eq!(slot_1_stores.len(), 1); assert_eq!(slot_0_stores[&0].count(), 2); assert_eq!(slot_1_stores[&1].count(), 2); } } #[test] fn test_accounts_unsquashed() { let key = Pubkey::default(); // 1 token in the "root", i.e. db zero let db0 = AccountsDB::new(Vec::new()); let account0 = Account::new(1, 0, &key); db0.store(0, &[(&key, &account0)]); // 0 lamports in the child let account1 = Account::new(0, 0, &key); db0.store(1, &[(&key, &account1)]); // masking accounts is done at the Accounts level, at accountsDB we see // original account let ancestors = vec![(0, 0), (1, 1)].into_iter().collect(); assert_eq!(db0.load_slow(&ancestors, &key), Some((account1, 1))); let ancestors = vec![(0, 0)].into_iter().collect(); assert_eq!(db0.load_slow(&ancestors, &key), Some((account0, 0))); } #[test] fn test_remove_unrooted_slot() { let unrooted_slot = 9; let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account0 = Account::new(1, 0, &key); let ancestors: HashMap<_, _> = vec![(unrooted_slot, 1)].into_iter().collect(); db.store(unrooted_slot, &[(&key, &account0)]); db.bank_hashes .write() .unwrap() .insert(unrooted_slot, BankHashInfo::default()); assert!(db .accounts_index .read() .unwrap() .get(&key, &ancestors) .is_some()); assert_load_account(&db, unrooted_slot, key, 1); // Purge the slot db.remove_unrooted_slot(unrooted_slot); assert!(db.load_slow(&ancestors, &key).is_none()); assert!(db.bank_hashes.read().unwrap().get(&unrooted_slot).is_none()); assert!(db.storage.read().unwrap().0.get(&unrooted_slot).is_none()); assert!(db .accounts_index .read() .unwrap() .account_maps .get(&key) .map(|pubkey_entry| pubkey_entry.1.read().unwrap().is_empty()) .unwrap_or(true)); assert!(db .accounts_index .read() .unwrap() .get(&key, &ancestors) .is_none()); // Test we can store for the same slot again and get the right information let account0 = Account::new(2, 0, &key); db.store(unrooted_slot, &[(&key, &account0)]); assert_load_account(&db, unrooted_slot, key, 2); } #[test] fn test_remove_unrooted_slot_snapshot() { let unrooted_slot = 9; let db = AccountsDB::new(Vec::new()); let key = Pubkey::new_rand(); let account0 = Account::new(1, 0, &key); db.store(unrooted_slot, &[(&key, &account0)]); // Purge the slot db.remove_unrooted_slot(unrooted_slot); // Add a new root let key2 = Pubkey::new_rand(); let new_root = unrooted_slot + 1; db.store(new_root, &[(&key2, &account0)]); db.add_root(new_root); // Simulate reconstruction from snapshot let db = reconstruct_accounts_db_via_serialization(&db, new_root); // Check root account exists assert_load_account(&db, new_root, key2, 1); // Check purged account stays gone let unrooted_slot_ancestors: HashMap<_, _> = vec![(unrooted_slot, 1)].into_iter().collect(); assert!(db.load_slow(&unrooted_slot_ancestors, &key).is_none()); } fn create_account( accounts: &AccountsDB, pubkeys: &mut Vec, slot: Slot, num: usize, space: usize, num_vote: usize, ) { let ancestors = vec![(slot, 0)].into_iter().collect(); for t in 0..num { let pubkey = Pubkey::new_rand(); let account = Account::new((t + 1) as u64, space, &Account::default().owner); pubkeys.push(pubkey.clone()); assert!(accounts.load_slow(&ancestors, &pubkey).is_none()); accounts.store(slot, &[(&pubkey, &account)]); } for t in 0..num_vote { let pubkey = Pubkey::new_rand(); let account = Account::new((num + t + 1) as u64, space, &solana_vote_program::id()); pubkeys.push(pubkey.clone()); let ancestors = vec![(slot, 0)].into_iter().collect(); assert!(accounts.load_slow(&ancestors, &pubkey).is_none()); accounts.store(slot, &[(&pubkey, &account)]); } } fn update_accounts(accounts: &AccountsDB, pubkeys: &[Pubkey], slot: Slot, range: usize) { for _ in 1..1000 { let idx = thread_rng().gen_range(0, range); let ancestors = vec![(slot, 0)].into_iter().collect(); if let Some((mut account, _)) = accounts.load_slow(&ancestors, &pubkeys[idx]) { account.lamports += 1; accounts.store(slot, &[(&pubkeys[idx], &account)]); if account.lamports == 0 { let ancestors = vec![(slot, 0)].into_iter().collect(); assert!(accounts.load_slow(&ancestors, &pubkeys[idx]).is_none()); } else { let mut default_account = Account::default(); default_account.lamports = account.lamports; assert_eq!(default_account, account); } } } } fn check_storage(accounts: &AccountsDB, slot: Slot, count: usize) -> bool { let storage = accounts.storage.read().unwrap(); assert_eq!(storage.0[&slot].len(), 1); let slot_storage = storage.0.get(&slot).unwrap(); let mut total_count: usize = 0; for store in slot_storage.values() { assert_eq!(store.status(), AccountStorageStatus::Available); total_count += store.count(); } assert_eq!(total_count, count); total_count == count } fn check_accounts( accounts: &AccountsDB, pubkeys: &[Pubkey], slot: Slot, num: usize, count: usize, ) { let ancestors = vec![(slot, 0)].into_iter().collect(); for _ in 0..num { let idx = thread_rng().gen_range(0, num); let account = accounts.load_slow(&ancestors, &pubkeys[idx]); let account1 = Some(( Account::new((idx + count) as u64, 0, &Account::default().owner), slot, )); assert_eq!(account, account1); } } #[allow(clippy::needless_range_loop)] fn modify_accounts( accounts: &AccountsDB, pubkeys: &[Pubkey], slot: Slot, num: usize, count: usize, ) { for idx in 0..num { let account = Account::new((idx + count) as u64, 0, &Account::default().owner); accounts.store(slot, &[(&pubkeys[idx], &account)]); } } #[test] fn test_account_one() { let (_accounts_dirs, paths) = get_temp_accounts_paths(1).unwrap(); let db = AccountsDB::new(paths); let mut pubkeys: Vec = vec![]; create_account(&db, &mut pubkeys, 0, 1, 0, 0); let ancestors = vec![(0, 0)].into_iter().collect(); let account = db.load_slow(&ancestors, &pubkeys[0]).unwrap(); let mut default_account = Account::default(); default_account.lamports = 1; assert_eq!((default_account, 0), account); } #[test] fn test_account_many() { let (_accounts_dirs, paths) = get_temp_accounts_paths(2).unwrap(); let db = AccountsDB::new(paths); let mut pubkeys: Vec = vec![]; create_account(&db, &mut pubkeys, 0, 100, 0, 0); check_accounts(&db, &pubkeys, 0, 100, 1); } #[test] fn test_account_update() { let accounts = AccountsDB::new_single(); let mut pubkeys: Vec = vec![]; create_account(&accounts, &mut pubkeys, 0, 100, 0, 0); update_accounts(&accounts, &pubkeys, 0, 99); assert_eq!(check_storage(&accounts, 0, 100), true); } #[test] fn test_account_grow_many() { let (_accounts_dir, paths) = get_temp_accounts_paths(2).unwrap(); let size = 4096; let accounts = AccountsDB::new_sized(paths, size); let mut keys = vec![]; for i in 0..9 { let key = Pubkey::new_rand(); let account = Account::new(i + 1, size as usize / 4, &key); accounts.store(0, &[(&key, &account)]); keys.push(key); } let ancestors = vec![(0, 0)].into_iter().collect(); for (i, key) in keys.iter().enumerate() { assert_eq!( accounts.load_slow(&ancestors, &key).unwrap().0.lamports, (i as u64) + 1 ); } let mut append_vec_histogram = HashMap::new(); for storage in accounts .storage .read() .unwrap() .0 .values() .flat_map(|x| x.values()) { *append_vec_histogram.entry(storage.slot).or_insert(0) += 1; } for count in append_vec_histogram.values() { assert!(*count >= 2); } } #[test] fn test_account_grow() { let accounts = AccountsDB::new_single(); let count = [0, 1]; let status = [AccountStorageStatus::Available, AccountStorageStatus::Full]; let pubkey1 = Pubkey::new_rand(); let account1 = Account::new(1, DEFAULT_FILE_SIZE as usize / 2, &pubkey1); accounts.store(0, &[(&pubkey1, &account1)]); { let stores = accounts.storage.read().unwrap(); assert_eq!(stores.0.len(), 1); assert_eq!(stores.0[&0][&0].count(), 1); assert_eq!(stores.0[&0][&0].status(), AccountStorageStatus::Available); } let pubkey2 = Pubkey::new_rand(); let account2 = Account::new(1, DEFAULT_FILE_SIZE as usize / 2, &pubkey2); accounts.store(0, &[(&pubkey2, &account2)]); { let stores = accounts.storage.read().unwrap(); assert_eq!(stores.0.len(), 1); assert_eq!(stores.0[&0].len(), 2); assert_eq!(stores.0[&0][&0].count(), 1); assert_eq!(stores.0[&0][&0].status(), AccountStorageStatus::Full); assert_eq!(stores.0[&0][&1].count(), 1); assert_eq!(stores.0[&0][&1].status(), AccountStorageStatus::Available); } let ancestors = vec![(0, 0)].into_iter().collect(); assert_eq!( accounts.load_slow(&ancestors, &pubkey1).unwrap().0, account1 ); assert_eq!( accounts.load_slow(&ancestors, &pubkey2).unwrap().0, account2 ); // lots of stores, but 3 storages should be enough for everything for i in 0..25 { let index = i % 2; accounts.store(0, &[(&pubkey1, &account1)]); { let stores = accounts.storage.read().unwrap(); assert_eq!(stores.0.len(), 1); assert_eq!(stores.0[&0].len(), 3); assert_eq!(stores.0[&0][&0].count(), count[index]); assert_eq!(stores.0[&0][&0].status(), status[0]); assert_eq!(stores.0[&0][&1].count(), 1); assert_eq!(stores.0[&0][&1].status(), status[1]); assert_eq!(stores.0[&0][&2].count(), count[index ^ 1]); assert_eq!(stores.0[&0][&2].status(), status[0]); } let ancestors = vec![(0, 0)].into_iter().collect(); assert_eq!( accounts.load_slow(&ancestors, &pubkey1).unwrap().0, account1 ); assert_eq!( accounts.load_slow(&ancestors, &pubkey2).unwrap().0, account2 ); } } #[test] fn test_purge_slot_not_root() { let accounts = AccountsDB::new(Vec::new()); let mut pubkeys: Vec = vec![]; create_account(&accounts, &mut pubkeys, 0, 1, 0, 0); let ancestors = vec![(0, 0)].into_iter().collect(); assert!(accounts.load_slow(&ancestors, &pubkeys[0]).is_some()); accounts.purge_slot(0); assert!(accounts.load_slow(&ancestors, &pubkeys[0]).is_none()); } #[test] fn test_purge_slot_after_root() { let accounts = AccountsDB::new(Vec::new()); let mut pubkeys: Vec = vec![]; create_account(&accounts, &mut pubkeys, 0, 1, 0, 0); let ancestors = vec![(0, 0)].into_iter().collect(); accounts.add_root(0); accounts.purge_slot(0); assert!(accounts.load_slow(&ancestors, &pubkeys[0]).is_some()); } #[test] fn test_lazy_gc_slot() { solana_logger::setup(); //This test is pedantic //A slot is purged when a non root bank is cleaned up. If a slot is behind root but it is //not root, it means we are retaining dead banks. let accounts = AccountsDB::new(Vec::new()); let pubkey = Pubkey::new_rand(); let account = Account::new(1, 0, &Account::default().owner); //store an account accounts.store(0, &[(&pubkey, &account)]); let ancestors = vec![(0, 0)].into_iter().collect(); let id = { let index = accounts.accounts_index.read().unwrap(); let (list, idx) = index.get(&pubkey, &ancestors).unwrap(); list[idx].1.store_id }; accounts.add_root(1); //slot is still there, since gc is lazy assert!(accounts.storage.read().unwrap().0[&0].get(&id).is_some()); //store causes clean accounts.store(1, &[(&pubkey, &account)]); //slot is gone print_accounts("pre-clean", &accounts); accounts.clean_accounts(); accounts.process_dead_slots(); assert!(accounts.storage.read().unwrap().0.get(&0).is_none()); //new value is there let ancestors = vec![(1, 1)].into_iter().collect(); assert_eq!(accounts.load_slow(&ancestors, &pubkey), Some((account, 1))); } impl AccountsDB { fn alive_account_count_in_store(&self, slot: Slot) -> usize { let storage = self.storage.read().unwrap(); let slot_storage = storage.0.get(&slot); if let Some(slot_storage) = slot_storage { slot_storage.values().map(|store| store.count()).sum() } else { 0 } } fn all_account_count_in_append_vec(&self, slot: Slot) -> usize { let storage = self.storage.read().unwrap(); let slot_storage = storage.0.get(&slot); if let Some(slot_storage) = slot_storage { slot_storage .values() .map(|store| store.accounts.accounts(0).len()) .sum() } else { 0 } } fn ref_count_for_pubkey(&self, pubkey: &Pubkey) -> RefCount { self.accounts_index .read() .unwrap() .ref_count_from_storage(&pubkey) } fn uncleaned_root_count(&self) -> usize { self.accounts_index.read().unwrap().uncleaned_roots.len() } } #[test] fn test_clean_old_with_normal_account() { solana_logger::setup(); let accounts = AccountsDB::new(Vec::new()); let pubkey = Pubkey::new_rand(); let account = Account::new(1, 0, &Account::default().owner); //store an account accounts.store(0, &[(&pubkey, &account)]); accounts.store(1, &[(&pubkey, &account)]); // simulate slots are rooted after while accounts.add_root(0); accounts.add_root(1); //even if rooted, old state isn't cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 1); assert_eq!(accounts.alive_account_count_in_store(1), 1); accounts.clean_accounts(); //now old state is cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 0); assert_eq!(accounts.alive_account_count_in_store(1), 1); } #[test] fn test_clean_old_with_zero_lamport_account() { solana_logger::setup(); let accounts = AccountsDB::new(Vec::new()); let pubkey1 = Pubkey::new_rand(); let pubkey2 = Pubkey::new_rand(); let normal_account = Account::new(1, 0, &Account::default().owner); let zero_account = Account::new(0, 0, &Account::default().owner); //store an account accounts.store(0, &[(&pubkey1, &normal_account)]); accounts.store(1, &[(&pubkey1, &zero_account)]); accounts.store(0, &[(&pubkey2, &normal_account)]); accounts.store(1, &[(&pubkey2, &normal_account)]); //simulate slots are rooted after while accounts.add_root(0); accounts.add_root(1); //even if rooted, old state isn't cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 2); assert_eq!(accounts.alive_account_count_in_store(1), 2); accounts.clean_accounts(); //still old state behind zero-lamport account isn't cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 1); assert_eq!(accounts.alive_account_count_in_store(1), 2); } #[test] fn test_clean_old_with_both_normal_and_zero_lamport_accounts() { solana_logger::setup(); let accounts = AccountsDB::new(Vec::new()); let pubkey1 = Pubkey::new_rand(); let pubkey2 = Pubkey::new_rand(); let normal_account = Account::new(1, 0, &Account::default().owner); let zero_account = Account::new(0, 0, &Account::default().owner); //store an account accounts.store(0, &[(&pubkey1, &normal_account)]); accounts.store(1, &[(&pubkey1, &zero_account)]); accounts.store(0, &[(&pubkey2, &normal_account)]); accounts.store(2, &[(&pubkey2, &normal_account)]); //simulate slots are rooted after while accounts.add_root(0); accounts.add_root(1); accounts.add_root(2); //even if rooted, old state isn't cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 2); assert_eq!(accounts.alive_account_count_in_store(1), 1); assert_eq!(accounts.alive_account_count_in_store(2), 1); accounts.clean_accounts(); //both zero lamport and normal accounts are cleaned up assert_eq!(accounts.alive_account_count_in_store(0), 0); assert_eq!(accounts.alive_account_count_in_store(1), 0); assert_eq!(accounts.alive_account_count_in_store(2), 1); } #[test] fn test_uncleaned_roots_with_account() { solana_logger::setup(); let accounts = AccountsDB::new(Vec::new()); let pubkey = Pubkey::new_rand(); let account = Account::new(1, 0, &Account::default().owner); //store an account accounts.store(0, &[(&pubkey, &account)]); assert_eq!(accounts.uncleaned_root_count(), 0); // simulate slots are rooted after while accounts.add_root(0); assert_eq!(accounts.uncleaned_root_count(), 1); //now uncleaned roots are cleaned up accounts.clean_accounts(); assert_eq!(accounts.uncleaned_root_count(), 0); } #[test] fn test_uncleaned_roots_with_no_account() { solana_logger::setup(); let accounts = AccountsDB::new(Vec::new()); assert_eq!(accounts.uncleaned_root_count(), 0); // simulate slots are rooted after while accounts.add_root(0); assert_eq!(accounts.uncleaned_root_count(), 1); //now uncleaned roots are cleaned up accounts.clean_accounts(); assert_eq!(accounts.uncleaned_root_count(), 0); } fn print_accounts(label: &'static str, accounts: &AccountsDB) { print_index(label, accounts); print_count_and_status(label, accounts); } fn print_index(label: &'static str, accounts: &AccountsDB) { let mut roots: Vec<_> = accounts .accounts_index .read() .unwrap() .roots .iter() .cloned() .collect(); roots.sort(); info!("{}: accounts.accounts_index roots: {:?}", label, roots,); for (pubkey, list) in &accounts.accounts_index.read().unwrap().account_maps { info!(" key: {}", pubkey); info!(" slots: {:?}", *list.1.read().unwrap()); } } fn print_count_and_status(label: &'static str, accounts: &AccountsDB) { let storage = accounts.storage.read().unwrap(); let mut slots: Vec<_> = storage.0.keys().cloned().collect(); slots.sort(); info!("{}: count_and status for {} slots:", label, slots.len()); for slot in &slots { let slot_stores = storage.0.get(slot).unwrap(); let mut ids: Vec<_> = slot_stores.keys().cloned().collect(); ids.sort(); for id in &ids { let entry = slot_stores.get(id).unwrap(); info!( " slot: {} id: {} count_and_status: {:?}", slot, id, *entry.count_and_status.read().unwrap() ); } } } #[test] fn test_accounts_db_serialize1() { solana_logger::setup(); let accounts = AccountsDB::new_single(); let mut pubkeys: Vec = vec![]; // Create 100 accounts in slot 0 create_account(&accounts, &mut pubkeys, 0, 100, 0, 0); assert_eq!(check_storage(&accounts, 0, 100), true); check_accounts(&accounts, &pubkeys, 0, 100, 1); // do some updates to those accounts and re-check modify_accounts(&accounts, &pubkeys, 0, 100, 2); check_accounts(&accounts, &pubkeys, 0, 100, 2); accounts.add_root(0); let mut pubkeys1: Vec = vec![]; let latest_slot = 1; // Modify the first 10 of the slot 0 accounts as updates in slot 1 modify_accounts(&accounts, &pubkeys, latest_slot, 10, 3); // Create 10 new accounts in slot 1 create_account(&accounts, &mut pubkeys1, latest_slot, 10, 0, 0); // Store a lamports=0 account in slot 1 let account = Account::new(0, 0, &Account::default().owner); accounts.store(latest_slot, &[(&pubkeys[30], &account)]); accounts.add_root(latest_slot); info!("added root 1"); let latest_slot = 2; let mut pubkeys2: Vec = vec![]; // Modify original slot 0 accounts in slot 2 modify_accounts(&accounts, &pubkeys, latest_slot, 20, 4); // Create 10 new accounts in slot 2 create_account(&accounts, &mut pubkeys2, latest_slot, 10, 0, 0); // Store a lamports=0 account in slot 2 let account = Account::new(0, 0, &Account::default().owner); accounts.store(latest_slot, &[(&pubkeys[31], &account)]); accounts.add_root(latest_slot); assert!(check_storage(&accounts, 0, 90)); assert!(check_storage(&accounts, 1, 21)); assert!(check_storage(&accounts, 2, 31)); let daccounts = reconstruct_accounts_db_via_serialization(&accounts, latest_slot); assert_eq!( daccounts.write_version.load(Ordering::Relaxed), accounts.write_version.load(Ordering::Relaxed) ); assert_eq!( daccounts.next_id.load(Ordering::Relaxed), accounts.next_id.load(Ordering::Relaxed) ); // Get the hash for the latest slot, which should be the only hash in the // bank_hashes map on the deserialized AccountsDb assert_eq!(daccounts.bank_hashes.read().unwrap().len(), 2); assert_eq!( daccounts.bank_hashes.read().unwrap().get(&latest_slot), accounts.bank_hashes.read().unwrap().get(&latest_slot) ); print_count_and_status("daccounts", &daccounts); // Don't check the first 35 accounts which have not been modified on slot 0 check_accounts(&daccounts, &pubkeys[35..], 0, 65, 37); check_accounts(&daccounts, &pubkeys1, 1, 10, 1); assert!(check_storage(&daccounts, 0, 100)); assert!(check_storage(&daccounts, 1, 21)); assert!(check_storage(&daccounts, 2, 31)); let ancestors = linear_ancestors(latest_slot); assert_eq!( daccounts.update_accounts_hash(latest_slot, &ancestors), accounts.update_accounts_hash(latest_slot, &ancestors) ); } fn assert_load_account( accounts: &AccountsDB, slot: Slot, pubkey: Pubkey, expected_lamports: u64, ) { let ancestors = vec![(slot, 0)].into_iter().collect(); let (account, slot) = accounts.load_slow(&ancestors, &pubkey).unwrap(); assert_eq!((account.lamports, slot), (expected_lamports, slot)); } fn assert_not_load_account(accounts: &AccountsDB, slot: Slot, pubkey: Pubkey) { let ancestors = vec![(slot, 0)].into_iter().collect(); assert!(accounts.load_slow(&ancestors, &pubkey).is_none()); } fn reconstruct_accounts_db_via_serialization(accounts: &AccountsDB, slot: Slot) -> AccountsDB { let daccounts = crate::serde_snapshot::reconstruct_accounts_db_via_serialization(accounts, slot); print_count_and_status("daccounts", &daccounts); daccounts } fn assert_no_stores(accounts: &AccountsDB, slot: Slot) { let stores = accounts.storage.read().unwrap(); info!("{:?}", stores.0.get(&slot)); assert!(stores.0.get(&slot).is_none() || stores.0.get(&slot).unwrap().is_empty()); } #[test] fn test_accounts_db_purge_keep_live() { solana_logger::setup(); let some_lamport = 223; let zero_lamport = 0; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let pubkey = Pubkey::new_rand(); let account2 = Account::new(some_lamport, no_data, &owner); let pubkey2 = Pubkey::new_rand(); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let accounts = AccountsDB::new_single(); accounts.add_root(0); let mut current_slot = 1; accounts.store(current_slot, &[(&pubkey, &account)]); // Store another live account to slot 1 which will prevent any purge // since the store count will not be zero accounts.store(current_slot, &[(&pubkey2, &account2)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&pubkey, &zero_lamport_account)]); accounts.add_root(current_slot); assert_load_account(&accounts, current_slot, pubkey, zero_lamport); current_slot += 1; accounts.add_root(current_slot); print_accounts("pre_purge", &accounts); accounts.clean_accounts(); print_accounts("post_purge", &accounts); // Make sure the index is not touched assert_eq!( accounts .accounts_index .read() .unwrap() .account_maps .get(&pubkey) .unwrap() .1 .read() .unwrap() .len(), 2 ); // slot 1 & 2 should have stores check_storage(&accounts, 1, 2); check_storage(&accounts, 2, 1); } #[test] fn test_accounts_db_purge1() { solana_logger::setup(); let some_lamport = 223; let zero_lamport = 0; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let pubkey = Pubkey::new_rand(); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let accounts = AccountsDB::new_single(); accounts.add_root(0); let mut current_slot = 1; accounts.set_hash(current_slot, current_slot - 1); accounts.store(current_slot, &[(&pubkey, &account)]); accounts.add_root(current_slot); current_slot += 1; accounts.set_hash(current_slot, current_slot - 1); accounts.store(current_slot, &[(&pubkey, &zero_lamport_account)]); accounts.add_root(current_slot); assert_load_account(&accounts, current_slot, pubkey, zero_lamport); // Otherwise slot 2 will not be removed current_slot += 1; accounts.set_hash(current_slot, current_slot - 1); accounts.add_root(current_slot); print_accounts("pre_purge", &accounts); let ancestors = linear_ancestors(current_slot); info!("ancestors: {:?}", ancestors); let hash = accounts.update_accounts_hash(current_slot, &ancestors); accounts.clean_accounts(); accounts.process_dead_slots(); assert_eq!( accounts.update_accounts_hash(current_slot, &ancestors), hash ); print_accounts("post_purge", &accounts); // Make sure the index is for pubkey cleared assert!(accounts .accounts_index .read() .unwrap() .account_maps .get(&pubkey) .is_none()); // slot 1 & 2 should not have any stores assert_no_stores(&accounts, 1); assert_no_stores(&accounts, 2); } #[test] fn test_accounts_db_serialize_zero_and_free() { solana_logger::setup(); let some_lamport = 223; let zero_lamport = 0; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let pubkey = Pubkey::new_rand(); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let account2 = Account::new(some_lamport + 1, no_data, &owner); let pubkey2 = Pubkey::new_rand(); let filler_account = Account::new(some_lamport, no_data, &owner); let filler_account_pubkey = Pubkey::new_rand(); let accounts = AccountsDB::new_single(); let mut current_slot = 1; accounts.store(current_slot, &[(&pubkey, &account)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&pubkey, &zero_lamport_account)]); accounts.store(current_slot, &[(&pubkey2, &account2)]); // Store enough accounts such that an additional store for slot 2 is created. while accounts .storage .read() .unwrap() .0 .get(¤t_slot) .unwrap() .len() < 2 { accounts.store(current_slot, &[(&filler_account_pubkey, &filler_account)]); } accounts.add_root(current_slot); assert_load_account(&accounts, current_slot, pubkey, zero_lamport); print_accounts("accounts", &accounts); accounts.clean_accounts(); print_accounts("accounts_post_purge", &accounts); let accounts = reconstruct_accounts_db_via_serialization(&accounts, current_slot); print_accounts("reconstructed", &accounts); assert_load_account(&accounts, current_slot, pubkey, zero_lamport); } fn with_chained_zero_lamport_accounts(f: F) where F: Fn(AccountsDB, Slot) -> AccountsDB, { let some_lamport = 223; let zero_lamport = 0; let dummy_lamport = 999; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let account2 = Account::new(some_lamport + 100_001, no_data, &owner); let account3 = Account::new(some_lamport + 100_002, no_data, &owner); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let pubkey = Pubkey::new_rand(); let purged_pubkey1 = Pubkey::new_rand(); let purged_pubkey2 = Pubkey::new_rand(); let dummy_account = Account::new(dummy_lamport, no_data, &owner); let dummy_pubkey = Pubkey::default(); let accounts = AccountsDB::new_single(); let mut current_slot = 1; accounts.store(current_slot, &[(&pubkey, &account)]); accounts.store(current_slot, &[(&purged_pubkey1, &account2)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey1, &zero_lamport_account)]); accounts.store(current_slot, &[(&purged_pubkey2, &account3)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey2, &zero_lamport_account)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&dummy_pubkey, &dummy_account)]); accounts.add_root(current_slot); print_accounts("pre_f", &accounts); accounts.update_accounts_hash(4, &HashMap::default()); let accounts = f(accounts, current_slot); print_accounts("post_f", &accounts); assert_load_account(&accounts, current_slot, pubkey, some_lamport); assert_load_account(&accounts, current_slot, purged_pubkey1, 0); assert_load_account(&accounts, current_slot, purged_pubkey2, 0); assert_load_account(&accounts, current_slot, dummy_pubkey, dummy_lamport); accounts.verify_bank_hash(4, &HashMap::default()).unwrap(); } #[test] fn test_accounts_purge_chained_purge_before_snapshot_restore() { solana_logger::setup(); with_chained_zero_lamport_accounts(|accounts, current_slot| { accounts.clean_accounts(); reconstruct_accounts_db_via_serialization(&accounts, current_slot) }); } #[test] fn test_accounts_purge_chained_purge_after_snapshot_restore() { solana_logger::setup(); with_chained_zero_lamport_accounts(|accounts, current_slot| { let accounts = reconstruct_accounts_db_via_serialization(&accounts, current_slot); print_accounts("after_reconstruct", &accounts); accounts.clean_accounts(); reconstruct_accounts_db_via_serialization(&accounts, current_slot) }); } #[test] #[ignore] fn test_store_account_stress() { let slot = 42; let num_threads = 2; let min_file_bytes = std::mem::size_of::() + std::mem::size_of::(); let db = Arc::new(AccountsDB::new_sized(Vec::new(), min_file_bytes as u64)); db.add_root(slot); let thread_hdls: Vec<_> = (0..num_threads) .map(|_| { let db = db.clone(); std::thread::Builder::new() .name("account-writers".to_string()) .spawn(move || { let pubkey = Pubkey::new_rand(); let mut account = Account::new(1, 0, &pubkey); let mut i = 0; loop { let account_bal = thread_rng().gen_range(1, 99); account.lamports = account_bal; db.store(slot, &[(&pubkey, &account)]); let (account, slot) = db.load_slow(&HashMap::new(), &pubkey).unwrap_or_else(|| { panic!("Could not fetch stored account {}, iter {}", pubkey, i) }); assert_eq!(slot, slot); assert_eq!(account.lamports, account_bal); i += 1; } }) .unwrap() }) .collect(); for t in thread_hdls { t.join().unwrap(); } } #[test] fn test_accountsdb_scan_accounts() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let key0 = Pubkey::new_rand(); let account0 = Account::new(1, 0, &key); db.store(0, &[(&key0, &account0)]); let key1 = Pubkey::new_rand(); let account1 = Account::new(2, 0, &key); db.store(1, &[(&key1, &account1)]); let ancestors = vec![(0, 0)].into_iter().collect(); let accounts: Vec = db.scan_accounts(&ancestors, |accounts: &mut Vec, option| { if let Some(data) = option { accounts.push(data.1); } }); assert_eq!(accounts, vec![account0]); let ancestors = vec![(1, 1), (0, 0)].into_iter().collect(); let accounts: Vec = db.scan_accounts(&ancestors, |accounts: &mut Vec, option| { if let Some(data) = option { accounts.push(data.1); } }); assert_eq!(accounts.len(), 2); } #[test] fn test_store_large_account() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let data_len = DEFAULT_FILE_SIZE as usize + 7; let account = Account::new(1, data_len, &key); db.store(0, &[(&key, &account)]); let ancestors = vec![(0, 0)].into_iter().collect(); let ret = db.load_slow(&ancestors, &key).unwrap(); assert_eq!(ret.0.data.len(), data_len); } pub fn copy_append_vecs>( accounts_db: &AccountsDB, output_dir: P, ) -> IOResult<()> { let storage_entries = accounts_db.get_snapshot_storages(Slot::max_value()); for storage in storage_entries.iter().flatten() { let storage_path = storage.get_path(); let output_path = output_dir.as_ref().join( storage_path .file_name() .expect("Invalid AppendVec file path"), ); fs::copy(storage_path, output_path)?; } Ok(()) } #[test] fn test_hash_frozen_account_data() { let account = Account::new(1, 42, &Pubkey::default()); let hash = AccountsDB::hash_frozen_account_data(&account); assert_ne!(hash, Hash::default()); // Better not be the default Hash // Lamports changes to not affect the hash let mut account_modified = account.clone(); account_modified.lamports -= 1; assert_eq!( hash, AccountsDB::hash_frozen_account_data(&account_modified) ); // Rent epoch may changes to not affect the hash let mut account_modified = account.clone(); account_modified.rent_epoch += 1; assert_eq!( hash, AccountsDB::hash_frozen_account_data(&account_modified) ); // Account data may not be modified let mut account_modified = account.clone(); account_modified.data[0] = 42; assert_ne!( hash, AccountsDB::hash_frozen_account_data(&account_modified) ); // Owner may not be modified let mut account_modified = account.clone(); account_modified.owner = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap(); assert_ne!( hash, AccountsDB::hash_frozen_account_data(&account_modified) ); // Executable may not be modified let mut account_modified = account; account_modified.executable = true; assert_ne!( hash, AccountsDB::hash_frozen_account_data(&account_modified) ); } #[test] fn test_frozen_account_lamport_increase() { let frozen_pubkey = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap(); let mut db = AccountsDB::new(Vec::new()); let mut account = Account::new(1, 42, &frozen_pubkey); db.store(0, &[(&frozen_pubkey, &account)]); let ancestors = vec![(0, 0)].into_iter().collect(); db.freeze_accounts(&ancestors, &[frozen_pubkey]); // Store with no account changes is ok db.store(0, &[(&frozen_pubkey, &account)]); // Store with an increase in lamports is ok account.lamports = 2; db.store(0, &[(&frozen_pubkey, &account)]); // Store with an decrease that does not go below the frozen amount of lamports is tolerated account.lamports = 1; db.store(0, &[(&frozen_pubkey, &account)]); // A store of any value over the frozen value of '1' across different slots is also ok account.lamports = 3; db.store(1, &[(&frozen_pubkey, &account)]); account.lamports = 2; db.store(2, &[(&frozen_pubkey, &account)]); account.lamports = 1; db.store(3, &[(&frozen_pubkey, &account)]); } #[test] #[should_panic( expected = "Frozen account My11111111111111111111111111111111111111111 modified. Lamports decreased from 1 to 0" )] fn test_frozen_account_lamport_decrease() { let frozen_pubkey = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap(); let mut db = AccountsDB::new(Vec::new()); let mut account = Account::new(1, 42, &frozen_pubkey); db.store(0, &[(&frozen_pubkey, &account)]); let ancestors = vec![(0, 0)].into_iter().collect(); db.freeze_accounts(&ancestors, &[frozen_pubkey]); // Store with a decrease below the frozen amount of lamports is not ok account.lamports -= 1; db.store(0, &[(&frozen_pubkey, &account)]); } #[test] #[should_panic( expected = "Unable to freeze an account that does not exist: My11111111111111111111111111111111111111111" )] fn test_frozen_account_nonexistent() { let frozen_pubkey = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap(); let mut db = AccountsDB::new(Vec::new()); let ancestors = vec![(0, 0)].into_iter().collect(); db.freeze_accounts(&ancestors, &[frozen_pubkey]); } #[test] #[should_panic( expected = "Frozen account My11111111111111111111111111111111111111111 modified. Hash changed from 8wHcxDkjiwdrkPAsDnmNrF1UDGJFAtZzPQBSVweY3yRA to JdscGYB1uczVssmYuJusDD1Bfe6wpNeeho8XjcH8inN" )] fn test_frozen_account_data_modified() { let frozen_pubkey = Pubkey::from_str("My11111111111111111111111111111111111111111").unwrap(); let mut db = AccountsDB::new(Vec::new()); let mut account = Account::new(1, 42, &frozen_pubkey); db.store(0, &[(&frozen_pubkey, &account)]); let ancestors = vec![(0, 0)].into_iter().collect(); db.freeze_accounts(&ancestors, &[frozen_pubkey]); account.data[0] = 42; db.store(0, &[(&frozen_pubkey, &account)]); } #[test] fn test_hash_stored_account() { // This test uses some UNSAFE trick to detect most of account's field // addition and deletion without changing the hash code const ACCOUNT_DATA_LEN: usize = 3; // the type of InputTuple elements must not contain references; // they should be simple scalars or data blobs type InputTuple = ( Slot, StoredMeta, AccountMeta, [u8; ACCOUNT_DATA_LEN], usize, // for StoredAccount::offset Hash, ); const INPUT_LEN: usize = std::mem::size_of::(); type InputBlob = [u8; INPUT_LEN]; let mut blob: InputBlob = [0u8; INPUT_LEN]; // spray memory with decreasing counts so that, data layout can be detected. for (i, byte) in blob.iter_mut().enumerate() { *byte = (INPUT_LEN - i) as u8; } //UNSAFE: forcibly cast the special byte pattern to actual account fields. let (slot, meta, account_meta, data, offset, hash): InputTuple = unsafe { std::mem::transmute::(blob) }; let stored_account = StoredAccount { meta: &meta, account_meta: &account_meta, data: &data, offset, hash: &hash, }; let account = stored_account.clone_account(); let expected_account_hash = Hash::from_str("5iRNZVcAnq9JLYjSF2ibFhGEeq48r9Eq9HXxwm3BxywN").unwrap(); assert_eq!( AccountsDB::hash_stored_account(slot, &stored_account), expected_account_hash, "StoredAccount's data layout might be changed; update hashing if needed." ); assert_eq!( AccountsDB::hash_account(slot, &account, &stored_account.meta.pubkey), expected_account_hash, "Account-based hashing must be consistent with StoredAccount-based one." ); } #[test] fn test_bank_hash_stats() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let some_data_len = 5; let some_slot: Slot = 0; let account = Account::new(1, some_data_len, &key); let ancestors = vec![(some_slot, 0)].into_iter().collect(); db.store(some_slot, &[(&key, &account)]); let mut account = db.load_slow(&ancestors, &key).unwrap().0; account.lamports -= 1; account.executable = true; db.store(some_slot, &[(&key, &account)]); db.add_root(some_slot); let bank_hashes = db.bank_hashes.read().unwrap(); let bank_hash = bank_hashes.get(&some_slot).unwrap(); assert_eq!(bank_hash.stats.num_updated_accounts, 1); assert_eq!(bank_hash.stats.num_removed_accounts, 1); assert_eq!(bank_hash.stats.num_lamports_stored, 1); assert_eq!(bank_hash.stats.total_data_len, 2 * some_data_len as u64); assert_eq!(bank_hash.stats.num_executable_accounts, 1); } #[test] fn test_verify_bank_hash() { use BankHashVerificationError::*; solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let some_data_len = 0; let some_slot: Slot = 0; let account = Account::new(1, some_data_len, &key); let ancestors = vec![(some_slot, 0)].into_iter().collect(); db.store(some_slot, &[(&key, &account)]); db.add_root(some_slot); db.update_accounts_hash(some_slot, &ancestors); assert_matches!(db.verify_bank_hash(some_slot, &ancestors), Ok(_)); db.bank_hashes.write().unwrap().remove(&some_slot).unwrap(); assert_matches!( db.verify_bank_hash(some_slot, &ancestors), Err(MissingBankHash) ); let some_bank_hash = Hash::new(&[0xca; HASH_BYTES]); let bank_hash_info = BankHashInfo { hash: some_bank_hash, snapshot_hash: Hash::new(&[0xca; HASH_BYTES]), stats: BankHashStats::default(), }; db.bank_hashes .write() .unwrap() .insert(some_slot, bank_hash_info); assert_matches!( db.verify_bank_hash(some_slot, &ancestors), Err(MismatchedBankHash) ); } #[test] fn test_verify_bank_hash_no_account() { solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let some_slot: Slot = 0; let ancestors = vec![(some_slot, 0)].into_iter().collect(); db.bank_hashes .write() .unwrap() .insert(some_slot, BankHashInfo::default()); db.add_root(some_slot); db.update_accounts_hash(some_slot, &ancestors); assert_matches!(db.verify_bank_hash(some_slot, &ancestors), Ok(_)); } #[test] fn test_verify_bank_hash_bad_account_hash() { use BankHashVerificationError::*; solana_logger::setup(); let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let some_data_len = 0; let some_slot: Slot = 0; let account = Account::new(1, some_data_len, &key); let ancestors = vec![(some_slot, 0)].into_iter().collect(); let accounts = &[(&key, &account)]; // update AccountsDB's bank hash but discard real account hashes db.hash_accounts(some_slot, accounts); // provide bogus account hashes let some_hash = Hash::new(&[0xca; HASH_BYTES]); db.store_with_hashes(some_slot, accounts, &[some_hash]); db.add_root(some_slot); assert_matches!( db.verify_bank_hash(some_slot, &ancestors), Err(MismatchedAccountHash) ); } #[test] fn test_bad_bank_hash() { use solana_sdk::signature::{Keypair, Signer}; let db = AccountsDB::new(Vec::new()); let some_slot: Slot = 0; let ancestors: Ancestors = [(some_slot, 0)].iter().copied().collect(); for _ in 0..10_000 { let num_accounts = thread_rng().gen_range(0, 100); let accounts_keys: Vec<_> = (0..num_accounts) .map(|_| { let key = Keypair::new().pubkey(); let lamports = thread_rng().gen_range(0, 100); let some_data_len = thread_rng().gen_range(0, 1000); let account = Account::new(lamports, some_data_len, &key); (key, account) }) .collect(); let account_refs: Vec<_> = accounts_keys .iter() .map(|(key, account)| (key, account)) .collect(); db.store(some_slot, &account_refs); for (key, account) in &accounts_keys { assert_eq!( db.load_account_hash(&ancestors, key), AccountsDB::hash_account(some_slot, &account, &key) ); } } } #[test] fn test_get_snapshot_storages_empty() { let db = AccountsDB::new(Vec::new()); assert!(db.get_snapshot_storages(0).is_empty()); } #[test] fn test_get_snapshot_storages_only_older_than_or_equal_to_snapshot_slot() { let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account = Account::new(1, 0, &key); let before_slot = 0; let base_slot = before_slot + 1; let after_slot = base_slot + 1; db.add_root(base_slot); db.store(base_slot, &[(&key, &account)]); assert!(db.get_snapshot_storages(before_slot).is_empty()); assert_eq!(1, db.get_snapshot_storages(base_slot).len()); assert_eq!(1, db.get_snapshot_storages(after_slot).len()); } #[test] fn test_get_snapshot_storages_only_non_empty() { let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account = Account::new(1, 0, &key); let base_slot = 0; let after_slot = base_slot + 1; db.store(base_slot, &[(&key, &account)]); db.storage .write() .unwrap() .0 .get_mut(&base_slot) .unwrap() .clear(); db.add_root(base_slot); assert!(db.get_snapshot_storages(after_slot).is_empty()); db.store(base_slot, &[(&key, &account)]); assert_eq!(1, db.get_snapshot_storages(after_slot).len()); } #[test] fn test_get_snapshot_storages_only_roots() { let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account = Account::new(1, 0, &key); let base_slot = 0; let after_slot = base_slot + 1; db.store(base_slot, &[(&key, &account)]); assert!(db.get_snapshot_storages(after_slot).is_empty()); db.add_root(base_slot); assert_eq!(1, db.get_snapshot_storages(after_slot).len()); } #[test] fn test_get_snapshot_storages_exclude_empty() { let db = AccountsDB::new(Vec::new()); let key = Pubkey::default(); let account = Account::new(1, 0, &key); let base_slot = 0; let after_slot = base_slot + 1; db.store(base_slot, &[(&key, &account)]); db.add_root(base_slot); assert_eq!(1, db.get_snapshot_storages(after_slot).len()); let storage = db.storage.read().unwrap(); storage.0[&0].values().next().unwrap().remove_account(); assert!(db.get_snapshot_storages(after_slot).is_empty()); } #[test] #[should_panic(expected = "double remove of account in slot: 0/store: 0!!")] fn test_storage_remove_account_double_remove() { let accounts = AccountsDB::new(Vec::new()); let pubkey = Pubkey::new_rand(); let account = Account::new(1, 0, &Account::default().owner); accounts.store(0, &[(&pubkey, &account)]); let storage = accounts.storage.read().unwrap(); let storage_entry = storage.0[&0].values().next().unwrap(); storage_entry.remove_account(); storage_entry.remove_account(); } #[test] fn test_accounts_purge_long_chained_after_snapshot_restore() { solana_logger::setup(); let old_lamport = 223; let zero_lamport = 0; let no_data = 0; let owner = Account::default().owner; let account = Account::new(old_lamport, no_data, &owner); let account2 = Account::new(old_lamport + 100_001, no_data, &owner); let account3 = Account::new(old_lamport + 100_002, no_data, &owner); let dummy_account = Account::new(99_999_999, no_data, &owner); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let pubkey = Pubkey::new_rand(); let dummy_pubkey = Pubkey::new_rand(); let purged_pubkey1 = Pubkey::new_rand(); let purged_pubkey2 = Pubkey::new_rand(); let mut current_slot = 0; let accounts = AccountsDB::new_single(); // create intermidiate updates to purged_pubkey1 so that // generate_index must add slots as root last at once current_slot += 1; accounts.store(current_slot, &[(&pubkey, &account)]); accounts.store(current_slot, &[(&purged_pubkey1, &account2)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey1, &account2)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey1, &account2)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey1, &zero_lamport_account)]); accounts.store(current_slot, &[(&purged_pubkey2, &account3)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&purged_pubkey2, &zero_lamport_account)]); accounts.add_root(current_slot); current_slot += 1; accounts.store(current_slot, &[(&dummy_pubkey, &dummy_account)]); accounts.add_root(current_slot); print_count_and_status("before reconstruct", &accounts); let accounts = reconstruct_accounts_db_via_serialization(&accounts, current_slot); print_count_and_status("before purge zero", &accounts); accounts.clean_accounts(); print_count_and_status("after purge zero", &accounts); assert_load_account(&accounts, current_slot, pubkey, old_lamport); assert_load_account(&accounts, current_slot, purged_pubkey1, 0); assert_load_account(&accounts, current_slot, purged_pubkey2, 0); } #[test] fn test_accounts_clean_after_snapshot_restore_then_old_revives() { solana_logger::setup(); let old_lamport = 223; let zero_lamport = 0; let no_data = 0; let dummy_lamport = 999_999; let owner = Account::default().owner; let account = Account::new(old_lamport, no_data, &owner); let account2 = Account::new(old_lamport + 100_001, no_data, &owner); let account3 = Account::new(old_lamport + 100_002, no_data, &owner); let dummy_account = Account::new(dummy_lamport, no_data, &owner); let zero_lamport_account = Account::new(zero_lamport, no_data, &owner); let pubkey1 = Pubkey::new_rand(); let pubkey2 = Pubkey::new_rand(); let dummy_pubkey = Pubkey::new_rand(); let mut current_slot = 0; let accounts = AccountsDB::new_single(); // A: Initialize AccountsDB with pubkey1 and pubkey2 current_slot += 1; accounts.store(current_slot, &[(&pubkey1, &account)]); accounts.store(current_slot, &[(&pubkey2, &account)]); accounts.add_root(current_slot); // B: Test multiple updates to pubkey1 in a single slot/storage current_slot += 1; assert_eq!(0, accounts.alive_account_count_in_store(current_slot)); assert_eq!(1, accounts.ref_count_for_pubkey(&pubkey1)); accounts.store(current_slot, &[(&pubkey1, &account2)]); accounts.store(current_slot, &[(&pubkey1, &account2)]); assert_eq!(1, accounts.alive_account_count_in_store(current_slot)); assert_eq!(3, accounts.ref_count_for_pubkey(&pubkey1)); accounts.add_root(current_slot); // C: Yet more update to trigger lazy clean of step A current_slot += 1; assert_eq!(3, accounts.ref_count_for_pubkey(&pubkey1)); accounts.store(current_slot, &[(&pubkey1, &account3)]); assert_eq!(4, accounts.ref_count_for_pubkey(&pubkey1)); accounts.add_root(current_slot); // D: Make pubkey1 0-lamport; also triggers clean of step B current_slot += 1; assert_eq!(4, accounts.ref_count_for_pubkey(&pubkey1)); accounts.store(current_slot, &[(&pubkey1, &zero_lamport_account)]); accounts.process_dead_slots(); assert_eq!( 3, /* == 4 - 2 + 1 */ accounts.ref_count_for_pubkey(&pubkey1) ); accounts.add_root(current_slot); // E: Avoid missing bank hash error current_slot += 1; accounts.store(current_slot, &[(&dummy_pubkey, &dummy_account)]); accounts.add_root(current_slot); assert_load_account(&accounts, current_slot, pubkey1, zero_lamport); assert_load_account(&accounts, current_slot, pubkey2, old_lamport); assert_load_account(&accounts, current_slot, dummy_pubkey, dummy_lamport); // At this point, there is no index entries for A and B // If step C and step D should be purged, snapshot restore would cause // pubkey1 to be revived as the state of step A. // So, prevent that from happening by introducing refcount accounts.clean_accounts(); let accounts = reconstruct_accounts_db_via_serialization(&accounts, current_slot); accounts.clean_accounts(); assert_load_account(&accounts, current_slot, pubkey1, zero_lamport); assert_load_account(&accounts, current_slot, pubkey2, old_lamport); assert_load_account(&accounts, current_slot, dummy_pubkey, dummy_lamport); // F: Finally, make Step A cleanable current_slot += 1; accounts.store(current_slot, &[(&pubkey2, &account)]); accounts.add_root(current_slot); // Do clean accounts.clean_accounts(); // Ensure pubkey2 is cleaned from the index finally assert_not_load_account(&accounts, current_slot, pubkey1); assert_load_account(&accounts, current_slot, pubkey2, old_lamport); assert_load_account(&accounts, current_slot, dummy_pubkey, dummy_lamport); } #[test] fn test_clean_dead_slots_empty() { let accounts = AccountsDB::new_single(); let mut dead_slots = HashSet::new(); dead_slots.insert(10); accounts.clean_dead_slots(&dead_slots); } #[test] fn test_shrink_stale_slots_none() { let accounts = AccountsDB::new_single(); for _ in 0..10 { accounts.process_stale_slot(); } accounts.shrink_all_stale_slots(); } #[test] fn test_shrink_next_slots() { let accounts = AccountsDB::new_single(); let mut current_slot = 7; assert_eq!( vec![None, None, None], (0..3) .map(|_| accounts.next_shrink_slot()) .collect::>() ); accounts.add_root(current_slot); assert_eq!( vec![Some(7), Some(7), Some(7)], (0..3) .map(|_| accounts.next_shrink_slot()) .collect::>() ); current_slot += 1; accounts.add_root(current_slot); let slots = (0..6) .map(|_| accounts.next_shrink_slot()) .collect::>(); // Because the origin of this data is HashMap (not BTreeMap), key order is arbitrary per cycle. assert!( vec![Some(7), Some(8), Some(7), Some(8), Some(7), Some(8)] == slots || vec![Some(8), Some(7), Some(8), Some(7), Some(8), Some(7)] == slots ); } #[test] fn test_shrink_stale_slots_processed() { solana_logger::setup(); let accounts = AccountsDB::new_single(); let pubkey_count = 100; let pubkeys: Vec<_> = (0..pubkey_count).map(|_| Pubkey::new_rand()).collect(); let some_lamport = 223; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let mut current_slot = 0; current_slot += 1; for pubkey in &pubkeys { accounts.store(current_slot, &[(&pubkey, &account)]); } let shrink_slot = current_slot; accounts.add_root(current_slot); current_slot += 1; let pubkey_count_after_shrink = 10; let updated_pubkeys = &pubkeys[0..pubkey_count - pubkey_count_after_shrink]; for pubkey in updated_pubkeys { accounts.store(current_slot, &[(&pubkey, &account)]); } accounts.add_root(current_slot); accounts.clean_accounts(); assert_eq!( pubkey_count, accounts.all_account_count_in_append_vec(shrink_slot) ); accounts.shrink_all_stale_slots(); assert_eq!( pubkey_count_after_shrink, accounts.all_account_count_in_append_vec(shrink_slot) ); let no_ancestors = HashMap::default(); accounts.update_accounts_hash(current_slot, &no_ancestors); accounts .verify_bank_hash(current_slot, &no_ancestors) .unwrap(); let accounts = reconstruct_accounts_db_via_serialization(&accounts, current_slot); accounts .verify_bank_hash(current_slot, &no_ancestors) .unwrap(); // repeating should be no-op accounts.shrink_all_stale_slots(); assert_eq!( pubkey_count_after_shrink, accounts.all_account_count_in_append_vec(shrink_slot) ); } #[test] fn test_shrink_stale_slots_skipped() { solana_logger::setup(); let accounts = AccountsDB::new_single(); let pubkey_count = 100; let pubkeys: Vec<_> = (0..pubkey_count).map(|_| Pubkey::new_rand()).collect(); let some_lamport = 223; let no_data = 0; let owner = Account::default().owner; let account = Account::new(some_lamport, no_data, &owner); let mut current_slot = 0; current_slot += 1; for pubkey in &pubkeys { accounts.store(current_slot, &[(&pubkey, &account)]); } let shrink_slot = current_slot; accounts.add_root(current_slot); current_slot += 1; let pubkey_count_after_shrink = 90; let updated_pubkeys = &pubkeys[0..pubkey_count - pubkey_count_after_shrink]; for pubkey in updated_pubkeys { accounts.store(current_slot, &[(&pubkey, &account)]); } accounts.add_root(current_slot); accounts.clean_accounts(); assert_eq!( pubkey_count, accounts.all_account_count_in_append_vec(shrink_slot) ); accounts.shrink_all_stale_slots(); assert_eq!( pubkey_count, accounts.all_account_count_in_append_vec(shrink_slot) ); } #[test] fn test_delete_dependencies() { solana_logger::setup(); let mut accounts_index = AccountsIndex::default(); let key0 = Pubkey::new_from_array([0u8; 32]); let key1 = Pubkey::new_from_array([1u8; 32]); let key2 = Pubkey::new_from_array([2u8; 32]); let info0 = AccountInfo { store_id: 0, offset: 0, lamports: 0, }; let info1 = AccountInfo { store_id: 1, offset: 0, lamports: 0, }; let info2 = AccountInfo { store_id: 2, offset: 0, lamports: 0, }; let info3 = AccountInfo { store_id: 3, offset: 0, lamports: 0, }; let mut reclaims = vec![]; accounts_index.insert(0, &key0, info0, &mut reclaims); accounts_index.insert(1, &key0, info1.clone(), &mut reclaims); accounts_index.insert(1, &key1, info1, &mut reclaims); accounts_index.insert(2, &key1, info2.clone(), &mut reclaims); accounts_index.insert(2, &key2, info2, &mut reclaims); accounts_index.insert(3, &key2, info3, &mut reclaims); accounts_index.add_root(0); accounts_index.add_root(1); accounts_index.add_root(2); accounts_index.add_root(3); let mut purges = HashMap::new(); purges.insert(key0, accounts_index.would_purge(&key0)); purges.insert(key1, accounts_index.would_purge(&key1)); purges.insert(key2, accounts_index.would_purge(&key2)); for (key, list) in &purges { info!(" purge {} =>", key); for x in list { info!(" {:?}", x); } } let mut store_counts = HashMap::new(); store_counts.insert(0, 0); store_counts.insert(1, 0); store_counts.insert(2, 0); store_counts.insert(3, 1); AccountsDB::calc_delete_dependencies(&accounts_index, &purges, &mut store_counts); let mut stores: Vec<_> = store_counts.keys().cloned().collect(); stores.sort(); for store in &stores { info!("store: {:?} : {}", store, store_counts.get(&store).unwrap()); } for x in 0..3 { assert!(store_counts[&x] >= 1); } } }