//! The `bank` module tracks client accounts and the progress of on-chain //! programs. It offers a high-level API that signs transactions //! on behalf of the caller, and a low-level API for when they have //! already been signed and verified. use crate::accounts::{Accounts, ErrorCounters, InstructionAccounts, InstructionLoaders}; use crate::last_id_queue::LastIdQueue; use crate::leader_schedule::LeaderSchedule; use crate::runtime::{self, RuntimeError}; use crate::status_cache::StatusCache; use bincode::serialize; use hashbrown::HashMap; use log::{debug, info, warn}; use solana_metrics::counter::Counter; use solana_sdk::account::Account; use solana_sdk::bpf_loader; use solana_sdk::budget_program; use solana_sdk::genesis_block::GenesisBlock; use solana_sdk::hash::{extend_and_hash, Hash}; use solana_sdk::native_loader; use solana_sdk::native_program::ProgramError; use solana_sdk::pubkey::Pubkey; use solana_sdk::signature::{Keypair, Signature}; use solana_sdk::storage_program; use solana_sdk::system_program; use solana_sdk::system_transaction::SystemTransaction; use solana_sdk::timing::{duration_as_us, MAX_ENTRY_IDS, NUM_TICKS_PER_SECOND}; use solana_sdk::token_program; use solana_sdk::transaction::Transaction; use solana_sdk::vote_program::{self, VoteState}; use std::collections::HashSet; use std::result; use std::sync::{Arc, RwLock}; use std::time::Instant; /// Reasons a transaction might be rejected. #[derive(Debug, PartialEq, Eq, Clone)] pub enum BankError { /// This Pubkey is being processed in another transaction AccountInUse, /// Pubkey appears twice in the same transaction, typically in a pay-to-self /// transaction. AccountLoadedTwice, /// Attempt to debit from `Pubkey`, but no found no record of a prior credit. AccountNotFound, /// The from `Pubkey` does not have sufficient balance to pay the fee to schedule the transaction InsufficientFundsForFee, /// The bank has seen `Signature` before. This can occur under normal operation /// when a UDP packet is duplicated, as a user error from a client not updating /// its `last_id`, or as a double-spend attack. DuplicateSignature, /// The bank has not seen the given `last_id` or the transaction is too old and /// the `last_id` has been discarded. LastIdNotFound, /// Proof of History verification failed. LedgerVerificationFailed, /// The program returned an error ProgramError(u8, ProgramError), /// Recoding into PoH failed RecordFailure, /// Loader call chain too deep CallChainTooDeep, /// Transaction has a fee but has no signature present MissingSignatureForFee, } pub type Result = result::Result; type BankStatusCache = StatusCache; /// Manager for the state of all accounts and programs after processing its entries. #[derive(Default)] pub struct Bank { accounts: Accounts, /// A cache of signature statuses status_cache: RwLock, /// FIFO queue of `last_id` items last_id_queue: RwLock, /// Previous checkpoint of this bank parent: RwLock>>, /// Hash of this Bank's state. Only meaningful after freezing. hash: RwLock, /// Hash of this Bank's parent's state parent_hash: Hash, /// Bank fork id id: u64, /// The number of ticks in each slot. ticks_per_slot: u64, /// The number of slots in each epoch. slots_per_epoch: u64, /// A number of slots before slot_index 0. Used to calculate finalized staked nodes. stakers_slot_offset: u64, /// The pubkey to send transactions fees to. collector_id: Pubkey, } impl Bank { pub fn new(genesis_block: &GenesisBlock) -> Self { let mut bank = Self::default(); bank.process_genesis_block(genesis_block); bank.add_builtin_programs(); bank } /// Create a new bank that points to an immutable checkpoint of another bank. pub fn new_from_parent_and_id(parent: &Arc, collector_id: Pubkey, id: u64) -> Self { parent.freeze(); let mut bank = Self::default(); bank.last_id_queue = RwLock::new(parent.last_id_queue.read().unwrap().clone()); bank.ticks_per_slot = parent.ticks_per_slot; bank.slots_per_epoch = parent.slots_per_epoch; bank.stakers_slot_offset = parent.stakers_slot_offset; bank.id = id; bank.parent = RwLock::new(Some(parent.clone())); bank.parent_hash = parent.hash(); bank.collector_id = collector_id; bank } /// Create a new bank that points to an immutable checkpoint of another bank. /// TODO: remove me in favor of _and_id(), id should not be an assumed value pub fn new_from_parent(parent: &Arc) -> Self { let collector_id = parent.collector_id; Self::new_from_parent_and_id(parent, collector_id, parent.id() + 1) } pub fn id(&self) -> u64 { self.id } pub fn hash(&self) -> Hash { *self.hash.read().unwrap() } pub fn is_frozen(&self) -> bool { *self.hash.read().unwrap() != Hash::default() } pub fn freeze(&self) { let mut hash = self.hash.write().unwrap(); if *hash == Hash::default() { // freeze is a one-way trip, idempotent *hash = self.hash_internal_state(); } } /// squash the parent's state up into this Bank, /// this Bank becomes a root pub fn squash(&self) { self.freeze(); let parents = self.parents(); *self.parent.write().unwrap() = None; let parent_accounts: Vec<_> = parents.iter().map(|b| &b.accounts).collect(); self.accounts.squash(&parent_accounts); let parent_caches: Vec<_> = parents .iter() .map(|b| b.status_cache.read().unwrap()) .collect(); self.status_cache.write().unwrap().squash(&parent_caches); } /// Return the more recent checkpoint of this bank instance. pub fn parent(&self) -> Option> { self.parent.read().unwrap().clone() } /// Returns whether this bank is the root pub fn is_root(&self) -> bool { self.parent.read().unwrap().is_none() } fn process_genesis_block(&mut self, genesis_block: &GenesisBlock) { assert!(genesis_block.mint_id != Pubkey::default()); assert!(genesis_block.bootstrap_leader_id != Pubkey::default()); assert!(genesis_block.bootstrap_leader_vote_account_id != Pubkey::default()); assert!(genesis_block.tokens >= genesis_block.bootstrap_leader_tokens); assert!(genesis_block.bootstrap_leader_tokens >= 2); // Bootstrap leader collects fees until `new_from_parent_and_id` is called. self.collector_id = genesis_block.bootstrap_leader_id; let mint_tokens = genesis_block.tokens - genesis_block.bootstrap_leader_tokens; self.deposit(&genesis_block.mint_id, mint_tokens); let bootstrap_leader_tokens = genesis_block.bootstrap_leader_tokens - 1; self.deposit(&genesis_block.bootstrap_leader_id, bootstrap_leader_tokens); // Construct a vote account for the bootstrap_leader such that the leader_scheduler // will be forced to select it as the leader for height 0 let mut bootstrap_leader_vote_account = Account { tokens: 1, userdata: vec![0; vote_program::get_max_size() as usize], owner: vote_program::id(), executable: false, }; let mut vote_state = VoteState::new( genesis_block.bootstrap_leader_id, genesis_block.bootstrap_leader_id, ); vote_state.votes.push_back(vote_program::Vote::new(0)); vote_state .serialize(&mut bootstrap_leader_vote_account.userdata) .unwrap(); self.accounts.store_slow( self.is_root(), &genesis_block.bootstrap_leader_vote_account_id, &bootstrap_leader_vote_account, ); self.last_id_queue .write() .unwrap() .genesis_last_id(&genesis_block.last_id()); self.ticks_per_slot = genesis_block.ticks_per_slot; self.slots_per_epoch = genesis_block.slots_per_epoch; self.stakers_slot_offset = genesis_block.stakers_slot_offset; } pub fn add_native_program(&self, name: &str, program_id: &Pubkey) { let account = native_loader::create_program_account(name); self.accounts .store_slow(self.is_root(), program_id, &account); } fn add_builtin_programs(&self) { self.add_native_program("solana_system_program", &system_program::id()); self.add_native_program("solana_vote_program", &vote_program::id()); self.add_native_program("solana_storage_program", &storage_program::id()); self.add_native_program("solana_bpf_loader", &bpf_loader::id()); self.add_native_program("solana_budget_program", &budget_program::id()); self.add_native_program("solana_erc20", &token_program::id()); } /// Return the last entry ID registered. pub fn last_id(&self) -> Hash { self.last_id_queue.read().unwrap().last_id() } /// Forget all signatures. Useful for benchmarking. pub fn clear_signatures(&self) { self.status_cache.write().unwrap().clear(); } fn update_transaction_statuses(&self, txs: &[Transaction], res: &[Result<()>]) { let mut status_cache = self.status_cache.write().unwrap(); for (i, tx) in txs.iter().enumerate() { match &res[i] { Ok(_) => status_cache.add(&tx.signatures[0]), Err(BankError::LastIdNotFound) => (), Err(BankError::DuplicateSignature) => (), Err(BankError::AccountNotFound) => (), Err(e) => { status_cache.add(&tx.signatures[0]); status_cache.save_failure_status(&tx.signatures[0], e.clone()); } } } } /// Looks through a list of tick heights and stakes, and finds the latest /// tick that has achieved confirmation pub fn get_confirmation_timestamp( &self, ticks_and_stakes: &mut [(u64, u64)], supermajority_stake: u64, ) -> Option { let last_ids = self.last_id_queue.read().unwrap(); last_ids.get_confirmation_timestamp(ticks_and_stakes, supermajority_stake) } /// Tell the bank which Entry IDs exist on the ledger. This function /// assumes subsequent calls correspond to later entries, and will boot /// the oldest ones once its internal cache is full. Once boot, the /// bank will reject transactions using that `last_id`. pub fn register_tick(&self, last_id: &Hash) { if self.is_frozen() { warn!("=========== FIXME: working on a frozen bank! ================"); } // TODO: put this assert back in // assert!(!self.is_frozen()); let current_tick_height = { //atomic register and read the tick let mut last_id_queue = self.last_id_queue.write().unwrap(); inc_new_counter_info!("bank-register_tick-registered", 1); last_id_queue.register_tick(last_id); last_id_queue.tick_height() }; if current_tick_height % NUM_TICKS_PER_SECOND as u64 == 0 { self.status_cache.write().unwrap().new_cache(last_id); } } /// Process a Transaction. This is used for unit tests and simply calls the vector Bank::process_transactions method. pub fn process_transaction(&self, tx: &Transaction) -> Result<()> { let txs = vec![tx.clone()]; match self.process_transactions(&txs)[0] { Err(ref e) => { info!("process_transaction error: {:?}", e); Err((*e).clone()) } Ok(_) => Ok(()), } } pub fn lock_accounts(&self, txs: &[Transaction]) -> Vec> { if self.is_frozen() { warn!("=========== FIXME: working on a frozen bank! ================"); } // TODO: put this assert back in // assert!(!self.is_frozen()); self.accounts.lock_accounts(txs) } pub fn unlock_accounts(&self, txs: &[Transaction], results: &[Result<()>]) { self.accounts.unlock_accounts(txs, results) } fn load_accounts( &self, txs: &[Transaction], results: Vec>, error_counters: &mut ErrorCounters, ) -> Vec> { let parents = self.parents(); let mut accounts = vec![&self.accounts]; accounts.extend(parents.iter().map(|b| &b.accounts)); Accounts::load_accounts(&accounts, txs, results, error_counters) } fn check_age( &self, txs: &[Transaction], lock_results: Vec>, max_age: usize, error_counters: &mut ErrorCounters, ) -> Vec> { let last_ids = self.last_id_queue.read().unwrap(); txs.iter() .zip(lock_results.into_iter()) .map(|(tx, lock_res)| { if lock_res.is_ok() && !last_ids.check_entry_id_age(tx.last_id, max_age) { error_counters.reserve_last_id += 1; Err(BankError::LastIdNotFound) } else { lock_res } }) .collect() } fn check_signatures( &self, txs: &[Transaction], lock_results: Vec>, error_counters: &mut ErrorCounters, ) -> Vec> { let parents = self.parents(); let mut caches = vec![self.status_cache.read().unwrap()]; caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap())); txs.iter() .zip(lock_results.into_iter()) .map(|(tx, lock_res)| { if lock_res.is_ok() && StatusCache::has_signature_all(&caches, &tx.signatures[0]) { error_counters.duplicate_signature += 1; Err(BankError::DuplicateSignature) } else { lock_res } }) .collect() } #[allow(clippy::type_complexity)] pub fn load_and_execute_transactions( &self, txs: &[Transaction], lock_results: Vec>, max_age: usize, ) -> ( Vec>, Vec>, ) { debug!("processing transactions: {}", txs.len()); let mut error_counters = ErrorCounters::default(); let now = Instant::now(); let age_results = self.check_age(txs, lock_results, max_age, &mut error_counters); let sig_results = self.check_signatures(txs, age_results, &mut error_counters); let mut loaded_accounts = self.load_accounts(txs, sig_results, &mut error_counters); let tick_height = self.tick_height(); let load_elapsed = now.elapsed(); let now = Instant::now(); let executed: Vec> = loaded_accounts .iter_mut() .zip(txs.iter()) .map(|(accs, tx)| match accs { Err(e) => Err(e.clone()), Ok((ref mut accounts, ref mut loaders)) => { runtime::execute_transaction(tx, loaders, accounts, tick_height).map_err( |RuntimeError::ProgramError(index, err)| { BankError::ProgramError(index, err) }, ) } }) .collect(); let execution_elapsed = now.elapsed(); debug!( "load: {}us execute: {}us txs_len={}", duration_as_us(&load_elapsed), duration_as_us(&execution_elapsed), txs.len(), ); let mut tx_count = 0; let mut err_count = 0; for (r, tx) in executed.iter().zip(txs.iter()) { if r.is_ok() { tx_count += 1; } else { if err_count == 0 { info!("tx error: {:?} {:?}", r, tx); } err_count += 1; } } if err_count > 0 { info!("{} errors of {} txs", err_count, err_count + tx_count); inc_new_counter_info!( "bank-process_transactions-account_not_found", error_counters.account_not_found ); inc_new_counter_info!("bank-process_transactions-error_count", err_count); } self.accounts.increment_transaction_count(tx_count); inc_new_counter_info!("bank-process_transactions-txs", tx_count); if 0 != error_counters.last_id_not_found { inc_new_counter_info!( "bank-process_transactions-error-last_id_not_found", error_counters.last_id_not_found ); } if 0 != error_counters.reserve_last_id { inc_new_counter_info!( "bank-process_transactions-error-reserve_last_id", error_counters.reserve_last_id ); } if 0 != error_counters.duplicate_signature { inc_new_counter_info!( "bank-process_transactions-error-duplicate_signature", error_counters.duplicate_signature ); } if 0 != error_counters.insufficient_funds { inc_new_counter_info!( "bank-process_transactions-error-insufficient_funds", error_counters.insufficient_funds ); } if 0 != error_counters.account_loaded_twice { inc_new_counter_info!( "bank-process_transactions-account_loaded_twice", error_counters.account_loaded_twice ); } (loaded_accounts, executed) } fn filter_program_errors_and_collect_fee( &self, txs: &[Transaction], executed: &[Result<()>], ) -> Vec> { let mut fees = 0; let results = txs .iter() .zip(executed.iter()) .map(|(tx, res)| match *res { Err(BankError::ProgramError(_, _)) => { // Charge the transaction fee even in case of ProgramError self.withdraw(&tx.account_keys[0], tx.fee)?; fees += tx.fee; Ok(()) } Ok(()) => { fees += tx.fee; Ok(()) } _ => res.clone(), }) .collect(); self.deposit(&self.collector_id, fees); results } pub fn commit_transactions( &self, txs: &[Transaction], loaded_accounts: &[Result<(InstructionAccounts, InstructionLoaders)>], executed: &[Result<()>], ) -> Vec> { if self.is_frozen() { warn!("=========== FIXME: working on a frozen bank! ================"); } // TODO: put this assert back in // assert!(!self.is_frozen()); let now = Instant::now(); self.accounts .store_accounts(self.is_root(), txs, executed, loaded_accounts); // once committed there is no way to unroll let write_elapsed = now.elapsed(); debug!( "store: {}us txs_len={}", duration_as_us(&write_elapsed), txs.len(), ); self.update_transaction_statuses(txs, &executed); self.filter_program_errors_and_collect_fee(txs, executed) } /// Process a batch of transactions. #[must_use] pub fn load_execute_and_commit_transactions( &self, txs: &[Transaction], lock_results: Vec>, max_age: usize, ) -> Vec> { let (loaded_accounts, executed) = self.load_and_execute_transactions(txs, lock_results, max_age); self.commit_transactions(txs, &loaded_accounts, &executed) } #[must_use] pub fn process_transactions(&self, txs: &[Transaction]) -> Vec> { let lock_results = self.lock_accounts(txs); let results = self.load_execute_and_commit_transactions(txs, lock_results, MAX_ENTRY_IDS); self.unlock_accounts(txs, &results); results } /// Create, sign, and process a Transaction from `keypair` to `to` of /// `n` tokens where `last_id` is the last Entry ID observed by the client. pub fn transfer( &self, n: u64, keypair: &Keypair, to: Pubkey, last_id: Hash, ) -> Result { let tx = SystemTransaction::new_account(keypair, to, n, last_id, 0); let signature = tx.signatures[0]; self.process_transaction(&tx).map(|_| signature) } pub fn read_balance(account: &Account) -> u64 { // TODO: Re-instate budget_program special case? /* if budget_program::check_id(&account.owner) { return budget_program::get_balance(account); } */ account.tokens } /// Each program would need to be able to introspect its own state /// this is hard-coded to the Budget language pub fn get_balance(&self, pubkey: &Pubkey) -> u64 { self.get_account(pubkey) .map(|x| Self::read_balance(&x)) .unwrap_or(0) } /// Compute all the parents of the bank in order fn parents(&self) -> Vec> { let mut parents = vec![]; let mut bank = self.parent(); while let Some(parent) = bank { parents.push(parent.clone()); bank = parent.parent(); } parents } pub fn withdraw(&self, pubkey: &Pubkey, tokens: u64) -> Result<()> { match self.get_account(pubkey) { Some(mut account) => { if tokens > account.tokens { return Err(BankError::InsufficientFundsForFee); } account.tokens -= tokens; self.accounts.store_slow(true, pubkey, &account); Ok(()) } None => Err(BankError::AccountNotFound), } } pub fn deposit(&self, pubkey: &Pubkey, tokens: u64) { let mut account = self.get_account(pubkey).unwrap_or_default(); account.tokens += tokens; self.accounts.store_slow(self.is_root(), pubkey, &account); } pub fn get_account(&self, pubkey: &Pubkey) -> Option { let parents = self.parents(); let mut accounts = vec![&self.accounts]; accounts.extend(parents.iter().map(|b| &b.accounts)); Accounts::load_slow(&accounts, pubkey) } pub fn get_account_modified_since_parent(&self, pubkey: &Pubkey) -> Option { Accounts::load_slow(&[&self.accounts], pubkey) } pub fn transaction_count(&self) -> u64 { self.accounts.transaction_count() } pub fn get_signature_status(&self, signature: &Signature) -> Option> { let parents = self.parents(); let mut caches = vec![self.status_cache.read().unwrap()]; caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap())); StatusCache::get_signature_status_all(&caches, signature) } pub fn has_signature(&self, signature: &Signature) -> bool { let parents = self.parents(); let mut caches = vec![self.status_cache.read().unwrap()]; caches.extend(parents.iter().map(|b| b.status_cache.read().unwrap())); StatusCache::has_signature_all(&caches, signature) } /// Hash the `accounts` HashMap. This represents a validator's interpretation /// of the delta of the ledger since the last vote and up to now fn hash_internal_state(&self) -> Hash { // If there are no accounts, return the same hash as we did before // checkpointing. let accounts = &self.accounts.accounts_db.read().unwrap().accounts; if accounts.is_empty() { return self.parent_hash; } let accounts_delta_hash = self.accounts.hash_internal_state(); extend_and_hash(&self.parent_hash, &serialize(&accounts_delta_hash).unwrap()) } pub fn vote_states(&self, cond: F) -> Vec where F: Fn(&VoteState) -> bool, { let parents = self.parents(); let mut accounts = vec![&self.accounts]; accounts.extend(parents.iter().map(|b| &b.accounts)); let mut exists = HashSet::new(); accounts .iter() .flat_map(|account| { let accounts_db = account.accounts_db.read().unwrap(); let vote_states: Vec<_> = accounts_db .accounts .iter() .filter_map(|(key, account)| { if exists.contains(key) { None } else { exists.insert(key.clone()); if vote_program::check_id(&account.owner) { if let Ok(vote_state) = VoteState::deserialize(&account.userdata) { if cond(&vote_state) { return Some(vote_state); } } } None } }) .collect(); vote_states }) .collect() } /// Collect the node Pubkey and staker account balance for nodes /// that have non-zero balance in their corresponding staker accounts pub fn staked_nodes(&self) -> HashMap { self.vote_states(|state| self.get_balance(&state.staker_id) > 0) .iter() .map(|state| (state.node_id, self.get_balance(&state.staker_id))) .collect() } /// Return the checkpointed stakes that should be used to generate a leader schedule. fn staked_nodes_at_slot(&self, slot_height: u64) -> HashMap { let parents = self.parents(); let mut banks = vec![self]; banks.extend(parents.iter().map(|x| x.as_ref())); let bank = banks .iter() .find(|bank| bank.slot_height() <= slot_height) .unwrap_or_else(|| banks.last().unwrap()); bank.staked_nodes() } /// Return the number of ticks per slot that should be used calls to slot_height(). pub fn ticks_per_slot(&self) -> u64 { self.ticks_per_slot } /// Return the number of slots per tick that should be used calls to epoch_height(). pub fn slots_per_epoch(&self) -> u64 { self.slots_per_epoch } /// Return the checkpointed stakes that should be used to generate a leader schedule. fn staked_nodes_at_epoch(&self, epoch_height: u64) -> HashMap { let epoch_slot_height = epoch_height * self.slots_per_epoch(); let slot_height = epoch_slot_height.saturating_sub(self.stakers_slot_offset); self.staked_nodes_at_slot(slot_height) } /// Return the leader schedule for the given epoch. fn leader_schedule(&self, epoch_height: u64) -> LeaderSchedule { let stakes = self.staked_nodes_at_epoch(epoch_height); let mut seed = [0u8; 32]; seed[0..8].copy_from_slice(&epoch_height.to_le_bytes()); let stakes: Vec<_> = stakes.into_iter().collect(); LeaderSchedule::new(&stakes, seed, self.slots_per_epoch()) } /// Return the leader for the slot at the slot_index and epoch_height returned /// by the given function. pub fn slot_leader_by(&self, get_slot_index: F) -> Pubkey where F: Fn(u64, u64, u64) -> (u64, u64), { let (slot_index, epoch_height) = get_slot_index( self.slot_index(), self.epoch_height(), self.slots_per_epoch(), ); let leader_schedule = self.leader_schedule(epoch_height); leader_schedule[slot_index as usize] } /// Return the leader for the current slot. pub fn slot_leader(&self) -> Pubkey { self.slot_leader_by(|slot_index, epoch_height, _| (slot_index, epoch_height)) } /// Return the epoch height and slot index of the slot before the current slot. fn prev_slot_leader_index( slot_index: u64, epoch_height: u64, slots_per_epoch: u64, ) -> (u64, u64) { if epoch_height == 0 && slot_index == 0 { return (0, 0); } if slot_index == 0 { (slots_per_epoch - 1, epoch_height - 1) } else { (slot_index - 1, epoch_height) } } /// Return the slot_index and epoch height of the slot following the current slot. fn next_slot_leader_index( slot_index: u64, epoch_height: u64, slots_per_epoch: u64, ) -> (u64, u64) { if slot_index + 1 == slots_per_epoch { (0, epoch_height + 1) } else { (slot_index + 1, epoch_height) } } /// Return the leader for the slot before the current slot. pub fn prev_slot_leader(&self) -> Pubkey { self.slot_leader_by(Self::prev_slot_leader_index) } /// Return the leader for the slot following the current slot. pub fn next_slot_leader(&self) -> Pubkey { self.slot_leader_by(Self::next_slot_leader_index) } /// Return the number of ticks since genesis. pub fn tick_height(&self) -> u64 { self.last_id_queue.read().unwrap().tick_height() } /// Return the number of ticks since the last slot boundary. pub fn tick_index(&self) -> u64 { self.tick_height() % self.ticks_per_slot() } /// Return the slot_height of the last registered tick. pub fn slot_height(&self) -> u64 { self.tick_height() / self.ticks_per_slot() } /// Return the number of slots since the last epoch boundary. pub fn slot_index(&self) -> u64 { self.slot_height() % self.slots_per_epoch() } /// Return the epoch height of the last registered tick. pub fn epoch_height(&self) -> u64 { self.slot_height() / self.slots_per_epoch() } #[cfg(test)] pub fn last_ids(&self) -> &RwLock { &self.last_id_queue } } #[cfg(test)] mod tests { use super::*; use hashbrown::HashSet; use solana_sdk::genesis_block::BOOTSTRAP_LEADER_TOKENS; use solana_sdk::native_program::ProgramError; use solana_sdk::signature::{Keypair, KeypairUtil}; use solana_sdk::system_instruction::SystemInstruction; use solana_sdk::system_transaction::SystemTransaction; use solana_sdk::transaction::Instruction; #[test] fn test_bank_new() { let (genesis_block, _) = GenesisBlock::new(10_000); let bank = Bank::new(&genesis_block); assert_eq!(bank.get_balance(&genesis_block.mint_id), 10_000); } #[test] fn test_bank_new_with_leader() { let dummy_leader_id = Keypair::new().pubkey(); let dummy_leader_tokens = BOOTSTRAP_LEADER_TOKENS; let (genesis_block, _) = GenesisBlock::new_with_leader(10_000, dummy_leader_id, dummy_leader_tokens); assert_eq!(genesis_block.bootstrap_leader_tokens, dummy_leader_tokens); let bank = Bank::new(&genesis_block); assert_eq!( bank.get_balance(&genesis_block.mint_id), 10_000 - dummy_leader_tokens ); assert_eq!( bank.get_balance(&dummy_leader_id), dummy_leader_tokens - 1 /* 1 token goes to the vote account associated with dummy_leader_tokens */ ); } #[test] fn test_two_payments_to_one_party() { let (genesis_block, mint_keypair) = GenesisBlock::new(10_000); let pubkey = Keypair::new().pubkey(); let bank = Bank::new(&genesis_block); assert_eq!(bank.last_id(), genesis_block.last_id()); bank.transfer(1_000, &mint_keypair, pubkey, genesis_block.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 1_000); bank.transfer(500, &mint_keypair, pubkey, genesis_block.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 1_500); assert_eq!(bank.transaction_count(), 2); } #[test] fn test_one_source_two_tx_one_batch() { let (genesis_block, mint_keypair) = GenesisBlock::new(1); let key1 = Keypair::new().pubkey(); let key2 = Keypair::new().pubkey(); let bank = Bank::new(&genesis_block); assert_eq!(bank.last_id(), genesis_block.last_id()); let t1 = SystemTransaction::new_move(&mint_keypair, key1, 1, genesis_block.last_id(), 0); let t2 = SystemTransaction::new_move(&mint_keypair, key2, 1, genesis_block.last_id(), 0); let res = bank.process_transactions(&vec![t1.clone(), t2.clone()]); assert_eq!(res.len(), 2); assert_eq!(res[0], Ok(())); assert_eq!(res[1], Err(BankError::AccountInUse)); assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0); assert_eq!(bank.get_balance(&key1), 1); assert_eq!(bank.get_balance(&key2), 0); assert_eq!(bank.get_signature_status(&t1.signatures[0]), Some(Ok(()))); // TODO: Transactions that fail to pay a fee could be dropped silently assert_eq!( bank.get_signature_status(&t2.signatures[0]), Some(Err(BankError::AccountInUse)) ); } #[test] fn test_one_tx_two_out_atomic_fail() { let (genesis_block, mint_keypair) = GenesisBlock::new(1); let key1 = Keypair::new().pubkey(); let key2 = Keypair::new().pubkey(); let bank = Bank::new(&genesis_block); let spend = SystemInstruction::Move { tokens: 1 }; let instructions = vec![ Instruction { program_ids_index: 0, userdata: serialize(&spend).unwrap(), accounts: vec![0, 1], }, Instruction { program_ids_index: 0, userdata: serialize(&spend).unwrap(), accounts: vec![0, 2], }, ]; let t1 = Transaction::new_with_instructions( &[&mint_keypair], &[key1, key2], genesis_block.last_id(), 0, vec![system_program::id()], instructions, ); let res = bank.process_transactions(&vec![t1.clone()]); assert_eq!(res.len(), 1); assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 1); assert_eq!(bank.get_balance(&key1), 0); assert_eq!(bank.get_balance(&key2), 0); assert_eq!( bank.get_signature_status(&t1.signatures[0]), Some(Err(BankError::ProgramError( 1, ProgramError::ResultWithNegativeTokens ))) ); } #[test] fn test_one_tx_two_out_atomic_pass() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let key1 = Keypair::new().pubkey(); let key2 = Keypair::new().pubkey(); let bank = Bank::new(&genesis_block); let t1 = SystemTransaction::new_move_many( &mint_keypair, &[(key1, 1), (key2, 1)], genesis_block.last_id(), 0, ); let res = bank.process_transactions(&vec![t1.clone()]); assert_eq!(res.len(), 1); assert_eq!(res[0], Ok(())); assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0); assert_eq!(bank.get_balance(&key1), 1); assert_eq!(bank.get_balance(&key2), 1); assert_eq!(bank.get_signature_status(&t1.signatures[0]), Some(Ok(()))); } // This test demonstrates that fees are paid even when a program fails. #[test] fn test_detect_failed_duplicate_transactions_issue_1157() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let bank = Bank::new(&genesis_block); let dest = Keypair::new(); // source with 0 program context let tx = SystemTransaction::new_account( &mint_keypair, dest.pubkey(), 2, genesis_block.last_id(), 1, ); let signature = tx.signatures[0]; assert!(!bank.has_signature(&signature)); // Assert that process_transaction has filtered out Program Errors assert_eq!(bank.process_transaction(&tx), Ok(())); assert!(bank.has_signature(&signature)); assert_eq!( bank.get_signature_status(&signature), Some(Err(BankError::ProgramError( 0, ProgramError::ResultWithNegativeTokens ))) ); // The tokens didn't move, but the from address paid the transaction fee. assert_eq!(bank.get_balance(&dest.pubkey()), 0); // This should be the original balance minus the transaction fee. assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 1); } #[test] fn test_account_not_found() { let (genesis_block, mint_keypair) = GenesisBlock::new(0); let bank = Bank::new(&genesis_block); let keypair = Keypair::new(); assert_eq!( bank.transfer(1, &keypair, mint_keypair.pubkey(), genesis_block.last_id()), Err(BankError::AccountNotFound) ); assert_eq!(bank.transaction_count(), 0); } #[test] fn test_insufficient_funds() { let (genesis_block, mint_keypair) = GenesisBlock::new(11_000); let bank = Bank::new(&genesis_block); let pubkey = Keypair::new().pubkey(); bank.transfer(1_000, &mint_keypair, pubkey, genesis_block.last_id()) .unwrap(); assert_eq!(bank.transaction_count(), 1); assert_eq!(bank.get_balance(&pubkey), 1_000); let signature = bank .transfer(10_001, &mint_keypair, pubkey, genesis_block.last_id()) .unwrap(); assert_eq!(bank.transaction_count(), 1); assert!(bank.has_signature(&signature)); assert_eq!( bank.get_signature_status(&signature), Some(Err(BankError::ProgramError( 0, ProgramError::ResultWithNegativeTokens ))) ); let mint_pubkey = mint_keypair.pubkey(); assert_eq!(bank.get_balance(&mint_pubkey), 10_000); assert_eq!(bank.get_balance(&pubkey), 1_000); } #[test] fn test_transfer_to_newb() { let (genesis_block, mint_keypair) = GenesisBlock::new(10_000); let bank = Bank::new(&genesis_block); let pubkey = Keypair::new().pubkey(); bank.transfer(500, &mint_keypair, pubkey, genesis_block.last_id()) .unwrap(); assert_eq!(bank.get_balance(&pubkey), 500); } #[test] fn test_bank_deposit() { let (genesis_block, _mint_keypair) = GenesisBlock::new(100); let bank = Bank::new(&genesis_block); // Test new account let key = Keypair::new(); bank.deposit(&key.pubkey(), 10); assert_eq!(bank.get_balance(&key.pubkey()), 10); // Existing account bank.deposit(&key.pubkey(), 3); assert_eq!(bank.get_balance(&key.pubkey()), 13); } #[test] fn test_bank_withdraw() { let (genesis_block, _mint_keypair) = GenesisBlock::new(100); let bank = Bank::new(&genesis_block); // Test no account let key = Keypair::new(); assert_eq!( bank.withdraw(&key.pubkey(), 10), Err(BankError::AccountNotFound) ); bank.deposit(&key.pubkey(), 3); assert_eq!(bank.get_balance(&key.pubkey()), 3); // Low balance assert_eq!( bank.withdraw(&key.pubkey(), 10), Err(BankError::InsufficientFundsForFee) ); // Enough balance assert_eq!(bank.withdraw(&key.pubkey(), 2), Ok(())); assert_eq!(bank.get_balance(&key.pubkey()), 1); } #[test] fn test_bank_tx_fee() { let leader = Keypair::new().pubkey(); let (genesis_block, mint_keypair) = GenesisBlock::new_with_leader(100, leader, 2); let bank = Bank::new(&genesis_block); let key1 = Keypair::new(); let key2 = Keypair::new(); let tx = SystemTransaction::new_move( &mint_keypair, key1.pubkey(), 2, genesis_block.last_id(), 3, ); let initial_balance = bank.get_balance(&leader); assert_eq!(bank.process_transaction(&tx), Ok(())); assert_eq!(bank.get_balance(&leader), initial_balance + 3); assert_eq!(bank.get_balance(&key1.pubkey()), 2); assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 100 - 4 - 3); let tx = SystemTransaction::new_move(&key1, key2.pubkey(), 1, genesis_block.last_id(), 1); assert_eq!(bank.process_transaction(&tx), Ok(())); assert_eq!(bank.get_balance(&leader), initial_balance + 4); assert_eq!(bank.get_balance(&key1.pubkey()), 0); assert_eq!(bank.get_balance(&key2.pubkey()), 1); assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 100 - 4 - 3); } #[test] fn test_filter_program_errors_and_collect_fee() { let leader = Keypair::new().pubkey(); let (genesis_block, mint_keypair) = GenesisBlock::new_with_leader(100, leader, 2); let bank = Bank::new(&genesis_block); let key = Keypair::new(); let tx1 = SystemTransaction::new_move(&mint_keypair, key.pubkey(), 2, genesis_block.last_id(), 3); let tx2 = SystemTransaction::new_move(&mint_keypair, key.pubkey(), 5, genesis_block.last_id(), 1); let results = vec![ Ok(()), Err(BankError::ProgramError( 1, ProgramError::ResultWithNegativeTokens, )), ]; let initial_balance = bank.get_balance(&leader); let results = bank.filter_program_errors_and_collect_fee(&vec![tx1, tx2], &results); assert_eq!(bank.get_balance(&leader), initial_balance + 3 + 1); assert_eq!(results[0], Ok(())); assert_eq!(results[1], Ok(())); } #[test] fn test_debits_before_credits() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let bank = Bank::new(&genesis_block); let keypair = Keypair::new(); let tx0 = SystemTransaction::new_account( &mint_keypair, keypair.pubkey(), 2, genesis_block.last_id(), 0, ); let tx1 = SystemTransaction::new_account( &keypair, mint_keypair.pubkey(), 1, genesis_block.last_id(), 0, ); let txs = vec![tx0, tx1]; let results = bank.process_transactions(&txs); assert!(results[1].is_err()); // Assert bad transactions aren't counted. assert_eq!(bank.transaction_count(), 1); } #[test] fn test_process_genesis() { let dummy_leader_id = Keypair::new().pubkey(); let dummy_leader_tokens = 2; let (genesis_block, _) = GenesisBlock::new_with_leader(5, dummy_leader_id, dummy_leader_tokens); let bank = Bank::new(&genesis_block); assert_eq!(bank.get_balance(&genesis_block.mint_id), 3); assert_eq!(bank.get_balance(&dummy_leader_id), 1); } // Register n ticks and return the tick, slot and epoch indexes. fn register_ticks(bank: &Bank, n: u64) -> (u64, u64, u64) { for _ in 0..n { bank.register_tick(&Hash::default()); } (bank.tick_index(), bank.slot_index(), bank.epoch_height()) } #[test] fn test_tick_slot_epoch_indexes() { let (genesis_block, _) = GenesisBlock::new(5); let bank = Bank::new(&genesis_block); let ticks_per_slot = bank.ticks_per_slot(); let slots_per_epoch = bank.slots_per_epoch(); let ticks_per_epoch = ticks_per_slot * slots_per_epoch; // All indexes are zero-based. assert_eq!(register_ticks(&bank, 0), (0, 0, 0)); // Slot index remains zero through the last tick. assert_eq!( register_ticks(&bank, ticks_per_slot - 1), (ticks_per_slot - 1, 0, 0) ); // Cross a slot boundary. assert_eq!(register_ticks(&bank, 1), (0, 1, 0)); // Cross an epoch boundary. assert_eq!(register_ticks(&bank, ticks_per_epoch), (0, 1, 1)); } #[test] fn test_bank_staked_nodes_at_epoch() { let pubkey = Keypair::new().pubkey(); let bootstrap_tokens = 2; let (genesis_block, _) = GenesisBlock::new_with_leader(2, pubkey, bootstrap_tokens); let bank = Bank::new(&genesis_block); let bank = Bank::new_from_parent(&Arc::new(bank)); let ticks_per_offset = bank.stakers_slot_offset * bank.ticks_per_slot(); register_ticks(&bank, ticks_per_offset); assert_eq!(bank.slot_height(), bank.stakers_slot_offset); let mut expected = HashMap::new(); expected.insert(pubkey, bootstrap_tokens - 1); let bank = Bank::new_from_parent(&Arc::new(bank)); assert_eq!(bank.staked_nodes_at_epoch(bank.epoch_height()), expected,); } #[test] fn test_bank_leader_schedule_basic() { let pubkey = Keypair::new().pubkey(); let (genesis_block, _mint_keypair) = GenesisBlock::new_with_leader(2, pubkey, 2); let bank = Bank::new(&genesis_block); let ids_and_stakes: Vec<_> = bank.staked_nodes().into_iter().collect(); let mut seed = [0u8; 32]; seed[0..8].copy_from_slice(&bank.epoch_height().to_le_bytes()); let leader_schedule = LeaderSchedule::new(&ids_and_stakes, seed, bank.slots_per_epoch()); assert_eq!(leader_schedule[0], pubkey); assert_eq!(leader_schedule[1], pubkey); assert_eq!(leader_schedule[2], pubkey); } #[test] fn test_interleaving_locks() { let (genesis_block, mint_keypair) = GenesisBlock::new(3); let bank = Bank::new(&genesis_block); let alice = Keypair::new(); let bob = Keypair::new(); let tx1 = SystemTransaction::new_account( &mint_keypair, alice.pubkey(), 1, genesis_block.last_id(), 0, ); let pay_alice = vec![tx1]; let lock_result = bank.lock_accounts(&pay_alice); let results_alice = bank.load_execute_and_commit_transactions(&pay_alice, lock_result, MAX_ENTRY_IDS); assert_eq!(results_alice[0], Ok(())); // try executing an interleaved transfer twice assert_eq!( bank.transfer(1, &mint_keypair, bob.pubkey(), genesis_block.last_id()), Err(BankError::AccountInUse) ); // the second time should fail as well // this verifies that `unlock_accounts` doesn't unlock `AccountInUse` accounts assert_eq!( bank.transfer(1, &mint_keypair, bob.pubkey(), genesis_block.last_id()), Err(BankError::AccountInUse) ); bank.unlock_accounts(&pay_alice, &results_alice); assert!(bank .transfer(2, &mint_keypair, bob.pubkey(), genesis_block.last_id()) .is_ok()); } #[test] fn test_program_ids() { let system = Pubkey::new(&[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let native = Pubkey::new(&[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let bpf = Pubkey::new(&[ 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let budget = Pubkey::new(&[ 129, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let storage = Pubkey::new(&[ 130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let token = Pubkey::new(&[ 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); let vote = Pubkey::new(&[ 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); assert_eq!(system_program::id(), system); assert_eq!(native_loader::id(), native); assert_eq!(bpf_loader::id(), bpf); assert_eq!(budget_program::id(), budget); assert_eq!(storage_program::id(), storage); assert_eq!(token_program::id(), token); assert_eq!(vote_program::id(), vote); } #[test] fn test_program_id_uniqueness() { let mut unique = HashSet::new(); let ids = vec![ system_program::id(), native_loader::id(), bpf_loader::id(), budget_program::id(), storage_program::id(), token_program::id(), vote_program::id(), ]; assert!(ids.into_iter().all(move |id| unique.insert(id))); } #[test] fn test_bank_pay_to_self() { let (genesis_block, mint_keypair) = GenesisBlock::new(1); let key1 = Keypair::new(); let bank = Bank::new(&genesis_block); bank.transfer(1, &mint_keypair, key1.pubkey(), genesis_block.last_id()) .unwrap(); assert_eq!(bank.get_balance(&key1.pubkey()), 1); let tx = SystemTransaction::new_move(&key1, key1.pubkey(), 1, genesis_block.last_id(), 0); let res = bank.process_transactions(&vec![tx.clone()]); assert_eq!(res.len(), 1); assert_eq!(bank.get_balance(&key1.pubkey()), 1); res[0].clone().unwrap_err(); } /// Verify that the parent's vector is computed correctly #[test] fn test_bank_parents() { let (genesis_block, _) = GenesisBlock::new(1); let parent = Arc::new(Bank::new(&genesis_block)); let bank = Bank::new_from_parent(&parent); assert!(Arc::ptr_eq(&bank.parents()[0], &parent)); } /// Verifies that last ids and status cache are correctly referenced from parent #[test] fn test_bank_parent_duplicate_signature() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let key1 = Keypair::new(); let parent = Arc::new(Bank::new(&genesis_block)); let tx = SystemTransaction::new_move( &mint_keypair, key1.pubkey(), 1, genesis_block.last_id(), 0, ); assert_eq!(parent.process_transaction(&tx), Ok(())); let bank = Bank::new_from_parent(&parent); assert_eq!( bank.process_transaction(&tx), Err(BankError::DuplicateSignature) ); } /// Verifies that last ids and accounts are correctly referenced from parent #[test] fn test_bank_parent_account_spend() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let key1 = Keypair::new(); let key2 = Keypair::new(); let parent = Arc::new(Bank::new(&genesis_block)); let tx = SystemTransaction::new_move( &mint_keypair, key1.pubkey(), 1, genesis_block.last_id(), 0, ); assert_eq!(parent.process_transaction(&tx), Ok(())); let bank = Bank::new_from_parent(&parent); let tx = SystemTransaction::new_move(&key1, key2.pubkey(), 1, genesis_block.last_id(), 0); assert_eq!(bank.process_transaction(&tx), Ok(())); assert_eq!(parent.get_signature_status(&tx.signatures[0]), None); } #[test] fn test_bank_hash_internal_state() { let (genesis_block, mint_keypair) = GenesisBlock::new(2_000); let bank0 = Bank::new(&genesis_block); let bank1 = Bank::new(&genesis_block); let initial_state = bank0.hash_internal_state(); assert_eq!(bank1.hash_internal_state(), initial_state); let pubkey = Keypair::new().pubkey(); bank0 .transfer(1_000, &mint_keypair, pubkey, bank0.last_id()) .unwrap(); assert_ne!(bank0.hash_internal_state(), initial_state); bank1 .transfer(1_000, &mint_keypair, pubkey, bank1.last_id()) .unwrap(); assert_eq!(bank0.hash_internal_state(), bank1.hash_internal_state()); // Checkpointing should not change its state let bank2 = Bank::new_from_parent(&Arc::new(bank1)); assert_eq!(bank0.hash_internal_state(), bank2.hash_internal_state()); } #[test] fn test_hash_internal_state_genesis() { let bank0 = Bank::new(&GenesisBlock::new(10).0); let bank1 = Bank::new(&GenesisBlock::new(20).0); assert_ne!(bank0.hash_internal_state(), bank1.hash_internal_state()); } #[test] fn test_bank_hash_internal_state_squash() { let collector_id = Pubkey::default(); let bank0 = Arc::new(Bank::new(&GenesisBlock::new(10).0)); let bank1 = Bank::new_from_parent_and_id(&bank0, collector_id, 1); // no delta in bank1, hashes match assert_eq!(bank0.hash_internal_state(), bank1.hash_internal_state()); // remove parent bank1.squash(); assert!(bank1.parents().is_empty()); // hash should still match assert_eq!(bank0.hash(), bank1.hash()); } /// Verifies that last ids and accounts are correctly referenced from parent #[test] fn test_bank_squash() { let (genesis_block, mint_keypair) = GenesisBlock::new(2); let key1 = Keypair::new(); let key2 = Keypair::new(); let parent = Arc::new(Bank::new(&genesis_block)); let tx_move_mint_to_1 = SystemTransaction::new_move( &mint_keypair, key1.pubkey(), 1, genesis_block.last_id(), 0, ); assert_eq!(parent.process_transaction(&tx_move_mint_to_1), Ok(())); let bank = Bank::new_from_parent(&parent); let tx_move_1_to_2 = SystemTransaction::new_move(&key1, key2.pubkey(), 1, genesis_block.last_id(), 0); assert_eq!(bank.process_transaction(&tx_move_1_to_2), Ok(())); assert_eq!( parent.get_signature_status(&tx_move_1_to_2.signatures[0]), None ); for _ in 0..3 { // first time these should match what happened above, assert that parents are ok assert_eq!(bank.get_balance(&key1.pubkey()), 0); assert_eq!(bank.get_balance(&key2.pubkey()), 1); assert_eq!( bank.get_signature_status(&tx_move_mint_to_1.signatures[0]), Some(Ok(())) ); assert_eq!( bank.get_signature_status(&tx_move_1_to_2.signatures[0]), Some(Ok(())) ); // works iteration 0, no-ops on iteration 1 and 2 bank.squash(); } } #[test] fn test_bank_slot_leader_basic() { let pubkey = Keypair::new().pubkey(); let bank = Bank::new(&GenesisBlock::new_with_leader(2, pubkey, 2).0); assert_eq!(bank.slot_leader(), pubkey); } #[test] fn test_bank_prev_slot_leader_index() { assert_eq!(Bank::prev_slot_leader_index(0, 0, 2), (0, 0)); assert_eq!(Bank::prev_slot_leader_index(1, 0, 2), (0, 0)); assert_eq!(Bank::prev_slot_leader_index(0, 1, 2), (1, 0)); } #[test] fn test_bank_next_slot_leader_index() { assert_eq!(Bank::next_slot_leader_index(0, 0, 2), (1, 0)); assert_eq!(Bank::next_slot_leader_index(1, 0, 2), (0, 1)); } }