use hashbrown::{HashMap, HashSet}; use rayon::iter::{IntoParallelIterator, ParallelIterator}; use rayon::prelude::*; use solana::cluster_info::{ compute_retransmit_peers, ClusterInfo, DATA_PLANE_FANOUT, GROW_LAYER_CAPACITY, NEIGHBORHOOD_SIZE, }; use solana::contact_info::ContactInfo; use solana_sdk::pubkey::Pubkey; use solana_sdk::signature::{Keypair, KeypairUtil}; use std::sync::mpsc::channel; use std::sync::mpsc::TryRecvError; use std::sync::mpsc::{Receiver, Sender}; use std::sync::Mutex; use std::sync::{Arc, RwLock}; use std::time::Instant; type Nodes = HashMap, Receiver<(i32, bool)>)>; fn num_threads() -> usize { sys_info::cpu_num().unwrap_or(10) as usize } /// Search for the a node with the given balance fn find_insert_blob(id: &Pubkey, blob: i32, batches: &mut [Nodes]) { batches.par_iter_mut().for_each(|batch| { if batch.contains_key(id) { let _ = batch.get_mut(id).unwrap().0.insert(blob); } }); } fn run_simulation(num_nodes: u64, fanout: usize, hood_size: usize) { let num_threads = num_threads(); // set timeout to 5 minutes let timeout = 60 * 5; // describe the leader let leader_info = ContactInfo::new_localhost(Keypair::new().pubkey(), 0); let mut cluster_info = ClusterInfo::new(leader_info.clone()); cluster_info.set_leader(leader_info.id); // setup stakes let mut stakes = HashMap::new(); // setup accounts for all nodes (leader has 0 bal) let (s, r) = channel(); let senders: Arc>>> = Arc::new(Mutex::new(HashMap::new())); senders.lock().unwrap().insert(leader_info.id, s); let mut batches: Vec = Vec::with_capacity(num_threads); (0..num_threads).for_each(|_| batches.push(HashMap::new())); batches .get_mut(0) .unwrap() .insert(leader_info.id, (HashSet::new(), r)); let range: Vec<_> = (1..=num_nodes).collect(); let chunk_size = (num_nodes as usize + num_threads - 1) / num_threads; range.chunks(chunk_size).for_each(|chunk| { chunk.into_iter().for_each(|i| { //distribute neighbors across threads to maximize parallel compute let batch_ix = *i as usize % batches.len(); let node = ContactInfo::new_localhost(Keypair::new().pubkey(), 0); stakes.insert(node.id, *i); cluster_info.insert_info(node.clone()); let (s, r) = channel(); batches .get_mut(batch_ix) .unwrap() .insert(node.id, (HashSet::new(), r)); senders.lock().unwrap().insert(node.id, s); }) }); let c_info = cluster_info.clone(); // create some "blobs". let blobs: Vec<(_, _)> = (0..100).into_par_iter().map(|i| (i as i32, true)).collect(); // pretend to broadcast from leader - cluster_info::create_broadcast_orders let mut broadcast_table = cluster_info.sorted_tvu_peers(&stakes); broadcast_table.truncate(fanout); let orders = ClusterInfo::create_broadcast_orders(false, &blobs, &broadcast_table); // send blobs to layer 1 nodes orders.iter().for_each(|(b, vc)| { vc.iter().for_each(|c| { find_insert_blob(&c.id, b.0, &mut batches); }) }); assert!(!batches.is_empty()); // start avalanche simulation let now = Instant::now(); batches.par_iter_mut().for_each(|batch| { let mut cluster = c_info.clone(); let batch_size = batch.len(); let mut remaining = batch_size; let senders: HashMap<_, _> = senders.lock().unwrap().clone(); // A map that holds neighbors and children senders for a given node let mut mapped_peers: HashMap< Pubkey, (Vec>, Vec>), > = HashMap::new(); while remaining > 0 { for (id, (recv, r)) in batch.iter_mut() { assert!(now.elapsed().as_secs() < timeout, "Timed out"); cluster.gossip.set_self(*id); if !mapped_peers.contains_key(id) { let (neighbors, children) = compute_retransmit_peers( &stakes, &Arc::new(RwLock::new(cluster.clone())), fanout, hood_size, GROW_LAYER_CAPACITY, ); let vec_children: Vec<_> = children .iter() .map(|p| { let s = senders.get(&p.id).unwrap(); recv.iter().for_each(|i| { let _ = s.send((*i, true)); }); s.clone() }) .collect(); let vec_neighbors: Vec<_> = neighbors .iter() .map(|p| { let s = senders.get(&p.id).unwrap(); recv.iter().for_each(|i| { let _ = s.send((*i, false)); }); s.clone() }) .collect(); mapped_peers.insert(*id, (vec_neighbors, vec_children)); } let (vec_neighbors, vec_children) = mapped_peers.get(id).unwrap(); //send and recv if recv.len() < blobs.len() { loop { match r.try_recv() { Ok((data, retransmit)) => { if recv.insert(data) { vec_children.iter().for_each(|s| { let _ = s.send((data, retransmit)); }); if retransmit { vec_neighbors.iter().for_each(|s| { let _ = s.send((data, false)); }) } if recv.len() == blobs.len() { remaining -= 1; break; } } } Err(TryRecvError::Disconnected) => break, Err(TryRecvError::Empty) => break, }; } } } } }); } // Recommended to not run these tests in parallel (they are resource heavy and want all the compute) //todo add tests with network failures // Run with a single layer #[test] fn test_retransmit_small() { run_simulation( DATA_PLANE_FANOUT as u64, DATA_PLANE_FANOUT, NEIGHBORHOOD_SIZE, ); } // Make sure at least 2 layers are used #[test] fn test_retransmit_medium() { let num_nodes = DATA_PLANE_FANOUT as u64 * 10; run_simulation(num_nodes, DATA_PLANE_FANOUT, NEIGHBORHOOD_SIZE); } // Scale down the network and make sure at least 3 layers are used #[test] fn test_retransmit_large() { let num_nodes = DATA_PLANE_FANOUT as u64 * 20; run_simulation(num_nodes, DATA_PLANE_FANOUT / 10, NEIGHBORHOOD_SIZE / 10); }