//! The `block_tree` module provides functions for parallel verification of the //! Proof of History ledger as well as iterative read, append write, and random //! access read to a persistent file-based ledger. use crate::entry::Entry; use crate::erasure::ErasureConfig; use crate::result::{Error, Result}; use crate::shred::{Shred, Shredder}; #[cfg(feature = "kvstore")] use solana_kvstore as kvstore; use bincode::deserialize; use std::collections::HashMap; #[cfg(not(feature = "kvstore"))] use rocksdb; use solana_metrics::{datapoint_error, datapoint_info}; use solana_sdk::genesis_block::GenesisBlock; use solana_sdk::hash::Hash; use solana_sdk::signature::{Keypair, KeypairUtil}; use std::borrow::Borrow; use std::cell::RefCell; use std::cmp; use std::fs; use std::path::{Path, PathBuf}; use std::rc::Rc; use std::sync::mpsc::{sync_channel, Receiver, SyncSender, TrySendError}; use std::sync::{Arc, RwLock}; pub use self::meta::*; pub use self::rooted_slot_iterator::*; use crate::leader_schedule_cache::LeaderScheduleCache; use solana_sdk::clock::Slot; mod db; mod meta; mod rooted_slot_iterator; macro_rules! db_imports { { $mod:ident, $db:ident, $db_path:expr } => { mod $mod; use $mod::$db; use db::{columns as cf, IteratorMode, IteratorDirection}; pub use db::columns; pub type Database = db::Database<$db>; pub type Cursor = db::Cursor<$db, C>; pub type LedgerColumn = db::LedgerColumn<$db, C>; pub type WriteBatch = db::WriteBatch<$db>; type BatchProcessor = db::BatchProcessor<$db>; pub trait Column: db::Column<$db> {} impl> Column for C {} pub const BLOCKTREE_DIRECTORY: &str = $db_path; }; } #[cfg(not(feature = "kvstore"))] db_imports! {rocks, Rocks, "rocksdb"} #[cfg(feature = "kvstore")] db_imports! {kvs, Kvs, "kvstore"} pub const MAX_COMPLETED_SLOTS_IN_CHANNEL: usize = 100_000; pub type SlotMetaWorkingSetEntry = (Rc>, Option); pub type CompletedSlotsReceiver = Receiver>; #[derive(Debug)] pub enum BlocktreeError { ShredForIndexExists, InvalidShredData(Box), RocksDb(rocksdb::Error), #[cfg(feature = "kvstore")] KvsDb(kvstore::Error), SlotNotRooted, } // ledger window pub struct Blocktree { db: Arc, meta_cf: LedgerColumn, dead_slots_cf: LedgerColumn, erasure_meta_cf: LedgerColumn, orphans_cf: LedgerColumn, index_cf: LedgerColumn, data_shred_cf: LedgerColumn, code_shred_cf: LedgerColumn, batch_processor: Arc>, last_root: Arc>, pub new_shreds_signals: Vec>, pub completed_slots_senders: Vec>>, } // Column family for metadata about a leader slot pub const META_CF: &str = "meta"; // Column family for slots that have been marked as dead pub const DEAD_SLOTS_CF: &str = "dead_slots"; pub const ERASURE_META_CF: &str = "erasure_meta"; // Column family for orphans data pub const ORPHANS_CF: &str = "orphans"; // Column family for root data pub const ROOT_CF: &str = "root"; /// Column family for indexes pub const INDEX_CF: &str = "index"; /// Column family for Data Shreds pub const DATA_SHRED_CF: &str = "data_shred"; /// Column family for Code Shreds pub const CODE_SHRED_CF: &str = "code_shred"; impl Blocktree { /// Opens a Ledger in directory, provides "infinite" window of shreds pub fn open(ledger_path: &Path) -> Result { fs::create_dir_all(&ledger_path)?; let blocktree_path = ledger_path.join(BLOCKTREE_DIRECTORY); // Open the database let db = Database::open(&blocktree_path)?; let batch_processor = unsafe { Arc::new(RwLock::new(db.batch_processor())) }; // Create the metadata column family let meta_cf = db.column(); // Create the dead slots column family let dead_slots_cf = db.column(); let erasure_meta_cf = db.column(); // Create the orphans column family. An "orphan" is defined as // the head of a detached chain of slots, i.e. a slot with no // known parent let orphans_cf = db.column(); let index_cf = db.column(); let data_shred_cf = db.column(); let code_shred_cf = db.column(); let db = Arc::new(db); // Get max root or 0 if it doesn't exist let max_root = db .iter::(IteratorMode::End)? .next() .map(|(slot, _)| slot) .unwrap_or(0); let last_root = Arc::new(RwLock::new(max_root)); Ok(Blocktree { db, meta_cf, dead_slots_cf, erasure_meta_cf, orphans_cf, index_cf, data_shred_cf, code_shred_cf, new_shreds_signals: vec![], batch_processor, completed_slots_senders: vec![], last_root, }) } pub fn open_with_signal( ledger_path: &Path, ) -> Result<(Self, Receiver, CompletedSlotsReceiver)> { let mut blocktree = Self::open(ledger_path)?; let (signal_sender, signal_receiver) = sync_channel(1); let (completed_slots_sender, completed_slots_receiver) = sync_channel(MAX_COMPLETED_SLOTS_IN_CHANNEL); blocktree.new_shreds_signals = vec![signal_sender]; blocktree.completed_slots_senders = vec![completed_slots_sender]; Ok((blocktree, signal_receiver, completed_slots_receiver)) } pub fn destroy(ledger_path: &Path) -> Result<()> { // Database::destroy() fails if the path doesn't exist fs::create_dir_all(ledger_path)?; let blocktree_path = ledger_path.join(BLOCKTREE_DIRECTORY); Database::destroy(&blocktree_path) } pub fn meta(&self, slot: u64) -> Result> { self.meta_cf.get(slot) } pub fn is_full(&self, slot: u64) -> bool { if let Ok(meta) = self.meta_cf.get(slot) { if let Some(meta) = meta { return meta.is_full(); } } false } /// Silently deletes all blocktree column families starting at the given slot until the `to` slot /// Dangerous; Use with care: /// Does not check for integrity and does not update slot metas that refer to deleted slots /// Modifies multiple column families simultaneously pub fn purge_slots(&self, mut from_slot: Slot, to_slot: Option) { // split the purge request into batches of 1000 slots const PURGE_BATCH_SIZE: u64 = 1000; let mut batch_end = to_slot .unwrap_or(from_slot + PURGE_BATCH_SIZE) .min(from_slot + PURGE_BATCH_SIZE); while from_slot < batch_end { if let Ok(end) = self.run_purge_batch(from_slot, batch_end) { // no more slots to iter or reached the upper bound if end { break; } else { // update the next batch bounds from_slot = batch_end; batch_end = to_slot .unwrap_or(batch_end + PURGE_BATCH_SIZE) .min(batch_end + PURGE_BATCH_SIZE); } } } } // Returns whether or not all iterators have reached their end fn run_purge_batch(&self, from_slot: Slot, batch_end: Slot) -> Result { let from_slot = Some(from_slot); let batch_end = Some(batch_end); unsafe { let mut batch_processor = self.db.batch_processor(); let mut write_batch = batch_processor .batch() .expect("Database Error: Failed to get write batch"); let end = self .meta_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .erasure_meta_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .data_shred_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .code_shred_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .orphans_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .index_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .dead_slots_cf .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false) && self .db .column::() .delete_slot(&mut write_batch, from_slot, batch_end) .unwrap_or(false); if let Err(e) = batch_processor.write(write_batch) { error!( "Error: {:?} while submitting write batch for slot {:?} retrying...", e, from_slot ); Err(e)?; } Ok(end) } } pub fn erasure_meta(&self, slot: u64, set_index: u64) -> Result> { self.erasure_meta_cf.get((slot, set_index)) } pub fn orphan(&self, slot: u64) -> Result> { self.orphans_cf.get(slot) } pub fn rooted_slot_iterator(&self, slot: u64) -> Result { RootedSlotIterator::new(slot, self) } pub fn slot_meta_iterator(&self, slot: u64) -> Result> { let meta_iter = self .db .iter::(IteratorMode::From(slot, IteratorDirection::Forward))?; Ok(meta_iter.map(|(slot, slot_meta_bytes)| { ( slot, deserialize(&slot_meta_bytes) .unwrap_or_else(|_| panic!("Could not deserialize SlotMeta for slot {}", slot)), ) })) } pub fn slot_data_iterator( &self, slot: u64, ) -> Result)>> { let slot_iterator = self .db .iter::(IteratorMode::From((slot, 0), IteratorDirection::Forward))?; Ok(slot_iterator.take_while(move |((shred_slot, _), _)| *shred_slot == slot)) } fn try_shred_recovery( db: &Database, erasure_metas: &HashMap<(u64, u64), ErasureMeta>, index_working_set: &HashMap, prev_inserted_datas: &mut HashMap<(u64, u64), Shred>, prev_inserted_codes: &mut HashMap<(u64, u64), Shred>, ) -> Vec { let data_cf = db.column::(); let code_cf = db.column::(); let mut recovered_data_shreds = vec![]; // Recovery rules: // 1. Only try recovery around indexes for which new data or coding shreds are received // 2. For new data shreds, check if an erasure set exists. If not, don't try recovery // 3. Before trying recovery, check if enough number of shreds have been received // 3a. Enough number of shreds = (#data + #coding shreds) > erasure.num_data for (&(slot, set_index), erasure_meta) in erasure_metas.iter() { let submit_metrics = |attempted: bool, status: String| { datapoint_info!( "blocktree-erasure", ("slot", slot as i64, i64), ("start_index", set_index as i64, i64), ("end_index", erasure_meta.end_indexes().0 as i64, i64), ("recovery_attempted", attempted, bool), ("recovery_status", status, String), ); }; let index = index_working_set.get(&slot).expect("Index"); match erasure_meta.status(&index) { ErasureMetaStatus::CanRecover => { // Find shreds for this erasure set and try recovery let slot = index.slot; let mut available_shreds = vec![]; (set_index..set_index + erasure_meta.config.num_data() as u64).for_each(|i| { if index.data().is_present(i) { if let Some(shred) = prev_inserted_datas.remove(&(slot, i)).or_else(|| { let some_data = data_cf .get_bytes((slot, i)) .expect("Database failure, could not fetch data shred"); if let Some(data) = some_data { Shred::new_from_serialized_shred(data).ok() } else { warn!("Data shred deleted while reading for recovery"); None } }) { available_shreds.push(shred); } } }); (set_index..set_index + erasure_meta.config.num_coding() as u64).for_each( |i| { if index.coding().is_present(i) { if let Some(shred) = prev_inserted_codes.remove(&(slot, i)).or_else(|| { let some_code = code_cf .get_bytes((slot, i)) .expect("Database failure, could not fetch code shred"); if let Some(code) = some_code { Shred::new_from_serialized_shred(code).ok() } else { warn!("Code shred deleted while reading for recovery"); None } }) { available_shreds.push(shred); } } }, ); if let Ok(mut result) = Shredder::try_recovery( available_shreds, erasure_meta.config.num_data(), erasure_meta.config.num_coding(), set_index as usize, slot, ) { submit_metrics(true, "complete".into()); recovered_data_shreds.append(&mut result); } else { submit_metrics(true, "incomplete".into()); } } ErasureMetaStatus::DataFull => { submit_metrics(false, "complete".into()); } ErasureMetaStatus::StillNeed(needed) => { submit_metrics(false, format!("still need: {}", needed)); } }; } recovered_data_shreds } pub fn insert_shreds( &self, shreds: Vec, leader_schedule: Option<&Arc>, ) -> Result<()> { let db = &*self.db; let mut batch_processor = self.batch_processor.write().unwrap(); let mut write_batch = batch_processor.batch()?; let mut just_inserted_coding_shreds = HashMap::new(); let mut just_inserted_data_shreds = HashMap::new(); let mut erasure_metas = HashMap::new(); let mut slot_meta_working_set = HashMap::new(); let mut index_working_set = HashMap::new(); shreds.into_iter().for_each(|shred| { if shred.is_data() { self.check_insert_data_shred( shred, &mut index_working_set, &mut slot_meta_working_set, &mut write_batch, &mut just_inserted_data_shreds, ); } else { self.check_insert_coding_shred( shred, &mut erasure_metas, &mut index_working_set, &mut write_batch, &mut just_inserted_coding_shreds, ); } }); if let Some(leader_schedule_cache) = leader_schedule { let recovered_data = Self::try_shred_recovery( &db, &erasure_metas, &index_working_set, &mut just_inserted_data_shreds, &mut just_inserted_coding_shreds, ); recovered_data.into_iter().for_each(|shred| { if let Some(leader) = leader_schedule_cache.slot_leader_at(shred.slot(), None) { if shred.verify(&leader) { self.check_insert_data_shred( shred, &mut index_working_set, &mut slot_meta_working_set, &mut write_batch, &mut just_inserted_coding_shreds, ) } } }); } // Handle chaining for the working set handle_chaining(&self.db, &mut write_batch, &slot_meta_working_set)?; let (should_signal, newly_completed_slots) = commit_slot_meta_working_set( &slot_meta_working_set, &self.completed_slots_senders, &mut write_batch, )?; for ((slot, set_index), erasure_meta) in erasure_metas { write_batch.put::((slot, set_index), &erasure_meta)?; } for (&slot, index) in index_working_set.iter() { write_batch.put::(slot, index)?; } batch_processor.write(write_batch)?; if should_signal { for signal in &self.new_shreds_signals { let _ = signal.try_send(true); } } send_signals( &self.new_shreds_signals, &self.completed_slots_senders, should_signal, newly_completed_slots, )?; Ok(()) } fn check_insert_coding_shred( &self, shred: Shred, erasure_metas: &mut HashMap<(u64, u64), ErasureMeta>, index_working_set: &mut HashMap, write_batch: &mut WriteBatch, just_inserted_coding_shreds: &mut HashMap<(u64, u64), Shred>, ) { let slot = shred.slot(); let shred_index = u64::from(shred.index()); let (index_meta, mut new_index_meta) = get_index_meta_entry(&self.db, slot, index_working_set); let index_meta = index_meta.unwrap_or_else(|| new_index_meta.as_mut().unwrap()); // This gives the index of first coding shred in this FEC block // So, all coding shreds in a given FEC block will have the same set index if Blocktree::should_insert_coding_shred(&shred, index_meta.coding(), &self.last_root) { if let Ok(()) = self.insert_coding_shred(erasure_metas, index_meta, &shred, write_batch) { just_inserted_coding_shreds .entry((slot, shred_index)) .or_insert_with(|| shred); new_index_meta.map(|n| index_working_set.insert(slot, n)); } } } fn check_insert_data_shred( &self, shred: Shred, index_working_set: &mut HashMap, slot_meta_working_set: &mut HashMap, write_batch: &mut WriteBatch, just_inserted_data_shreds: &mut HashMap<(u64, u64), Shred>, ) { let slot = shred.slot(); let shred_index = u64::from(shred.index()); let (index_meta, mut new_index_meta) = get_index_meta_entry(&self.db, slot, index_working_set); let (slot_meta_entry, mut new_slot_meta_entry) = get_slot_meta_entry(&self.db, slot_meta_working_set, slot, shred.parent()); let insert_success = { let index_meta = index_meta.unwrap_or_else(|| new_index_meta.as_mut().unwrap()); let entry = slot_meta_entry.unwrap_or_else(|| new_slot_meta_entry.as_mut().unwrap()); let mut slot_meta = entry.0.borrow_mut(); if Blocktree::should_insert_data_shred( &shred, &slot_meta, index_meta.data(), &self.last_root, ) { if let Ok(()) = self.insert_data_shred( &mut slot_meta, index_meta.data_mut(), &shred, write_batch, ) { just_inserted_data_shreds.insert((slot, shred_index), shred); new_index_meta.map(|n| index_working_set.insert(slot, n)); true } else { false } } else { false } }; if insert_success { new_slot_meta_entry.map(|n| slot_meta_working_set.insert(slot, n)); } } fn should_insert_coding_shred( shred: &Shred, coding_index: &CodingIndex, last_root: &RwLock, ) -> bool { let slot = shred.slot(); let shred_index = shred.index(); let (_, num_coding, pos) = shred .coding_params() .expect("should_insert_coding_shred called with non-coding shred"); if shred_index < u32::from(pos) { return false; } let set_index = shred_index - u32::from(pos); !(num_coding == 0 || pos >= num_coding || std::u32::MAX - set_index < u32::from(num_coding) - 1 || coding_index.is_present(u64::from(shred_index)) || slot <= *last_root.read().unwrap()) } fn insert_coding_shred( &self, erasure_metas: &mut HashMap<(u64, u64), ErasureMeta>, index_meta: &mut Index, shred: &Shred, write_batch: &mut WriteBatch, ) -> Result<()> { let slot = shred.slot(); let shred_index = u64::from(shred.index()); let (num_data, num_coding, pos) = shred .coding_params() .expect("insert_coding_shred called with non-coding shred"); // Assert guaranteed by integrity checks on the shred that happen before // `insert_coding_shred` is called if shred_index < u64::from(pos) { error!("Due to earlier validation, shred index must be >= pos"); return Err(Error::BlocktreeError(BlocktreeError::InvalidShredData( Box::new(bincode::ErrorKind::Custom("shred index < pos".to_string())), ))); } let set_index = shred_index - u64::from(pos); let erasure_config = ErasureConfig::new(num_data as usize, num_coding as usize); let erasure_meta = erasure_metas.entry((slot, set_index)).or_insert_with(|| { self.erasure_meta_cf .get((slot, set_index)) .expect("Expect database get to succeed") .unwrap_or_else(|| ErasureMeta::new(set_index, &erasure_config)) }); if erasure_config != erasure_meta.config { // ToDo: This is a potential slashing condition warn!("Received multiple erasure configs for the same erasure set!!!"); warn!( "Stored config: {:#?}, new config: {:#?}", erasure_meta.config, erasure_config ); } // Commit step: commit all changes to the mutable structures at once, or none at all. // We don't want only a subset of these changes going through. write_batch.put_bytes::((slot, shred_index), &shred.payload)?; index_meta.coding_mut().set_present(shred_index, true); Ok(()) } fn should_insert_data_shred( shred: &Shred, slot_meta: &SlotMeta, data_index: &DataIndex, last_root: &RwLock, ) -> bool { let shred_index = u64::from(shred.index()); let slot = shred.slot(); let last_in_slot = if shred.last_in_slot() { debug!("got last in slot"); true } else { false }; // Check that the data shred doesn't already exist in blocktree if shred_index < slot_meta.consumed || data_index.is_present(shred_index) { return false; } // Check that we do not receive shred_index >= than the last_index // for the slot let last_index = slot_meta.last_index; if shred_index >= last_index { datapoint_error!( "blocktree_error", ( "error", format!( "Received index {} >= slot.last_index {}", shred_index, last_index ), String ) ); return false; } // Check that we do not receive a blob with "last_index" true, but shred_index // less than our current received if last_in_slot && shred_index < slot_meta.received { datapoint_error!( "blocktree_error", ( "error", format!( "Received shred_index {} < slot.received {}", shred_index, slot_meta.received ), String ) ); return false; } let last_root = *last_root.read().unwrap(); verify_shred_slots(slot, slot_meta.parent_slot, last_root); true } fn insert_data_shred( &self, slot_meta: &mut SlotMeta, data_index: &mut DataIndex, shred: &Shred, write_batch: &mut WriteBatch, ) -> Result<()> { let slot = shred.slot(); let index = u64::from(shred.index()); let parent = shred.parent(); let last_in_slot = if shred.last_in_slot() { debug!("got last in slot"); true } else { false }; if is_orphan(slot_meta) { slot_meta.parent_slot = parent; } let data_cf = self.db.column::(); let check_data_cf = |slot, index| { data_cf .get_bytes((slot, index)) .map(|opt| opt.is_some()) .unwrap_or(false) }; let new_consumed = if slot_meta.consumed == index { let mut current_index = index + 1; while data_index.is_present(current_index) || check_data_cf(slot, current_index) { current_index += 1; } current_index } else { slot_meta.consumed }; // Commit step: commit all changes to the mutable structures at once, or none at all. // We don't want only a subset of these changes going through. write_batch.put_bytes::((slot, index), &shred.payload)?; update_slot_meta(last_in_slot, slot_meta, index, new_consumed); data_index.set_present(index, true); trace!("inserted shred into slot {:?} and index {:?}", slot, index); Ok(()) } pub fn get_data_shred(&self, slot: u64, index: u64) -> Result>> { self.data_shred_cf.get_bytes((slot, index)) } pub fn get_data_shreds( &self, slot: u64, from_index: u64, to_index: u64, buffer: &mut [u8], ) -> Result<(u64, usize)> { let meta_cf = self.db.column::(); let mut buffer_offset = 0; let mut last_index = 0; if let Some(meta) = meta_cf.get(slot)? { if !meta.is_full() { warn!("The slot is not yet full. Will not return any shreds"); return Ok((last_index, buffer_offset)); } let to_index = cmp::min(to_index, meta.consumed); for index in from_index..to_index { if let Some(shred_data) = self.get_data_shred(slot, index)? { let shred_len = shred_data.len(); if buffer.len().saturating_sub(buffer_offset) >= shred_len { buffer[buffer_offset..buffer_offset + shred_len] .copy_from_slice(&shred_data[..shred_len]); buffer_offset += shred_len; last_index = index; // All shreds are of the same length. // Let's check if we have scope to accomodate another shred // If not, let's break right away, as it'll save on 1 DB read if buffer.len().saturating_sub(buffer_offset) < shred_len { break; } } else { break; } } } } Ok((last_index, buffer_offset)) } pub fn get_coding_shred(&self, slot: u64, index: u64) -> Result>> { self.code_shred_cf.get_bytes((slot, index)) } pub fn write_entries( &self, start_slot: u64, num_ticks_in_start_slot: u64, start_index: u64, ticks_per_slot: u64, parent: Option, is_full_slot: bool, keypair: &Arc, entries: I, ) -> Result where I: IntoIterator, I::Item: Borrow, { assert!(num_ticks_in_start_slot < ticks_per_slot); let mut remaining_ticks_in_slot = ticks_per_slot - num_ticks_in_start_slot; let mut current_slot = start_slot; let mut parent_slot = parent.map_or( if current_slot == 0 { current_slot } else { current_slot - 1 }, |v| v, ); let mut shredder = Shredder::new(current_slot, parent_slot, 0.0, keypair, start_index as u32) .expect("Failed to create entry shredder"); let mut all_shreds = vec![]; // Find all the entries for start_slot for entry in entries { if remaining_ticks_in_slot == 0 { current_slot += 1; parent_slot = current_slot - 1; remaining_ticks_in_slot = ticks_per_slot; shredder.finalize_slot(); all_shreds.append(&mut shredder.shreds); shredder = Shredder::new(current_slot, parent_slot, 0.0, &Arc::new(Keypair::new()), 0) .expect("Failed to create entry shredder"); } if entry.borrow().is_tick() { remaining_ticks_in_slot -= 1; } bincode::serialize_into(&mut shredder, &vec![entry.borrow().clone()]) .expect("Expect to write all entries to shreds"); if remaining_ticks_in_slot == 0 { shredder.finalize_slot(); } else { shredder.finalize_data(); } } if is_full_slot && remaining_ticks_in_slot != 0 { shredder.finalize_slot(); } all_shreds.append(&mut shredder.shreds); let num_shreds = all_shreds.len(); self.insert_shreds(all_shreds, None)?; Ok(num_shreds) } pub fn get_index(&self, slot: u64) -> Result> { self.index_cf.get(slot) } /// Manually update the meta for a slot. /// Can interfere with automatic meta update and potentially break chaining. /// Dangerous. Use with care. pub fn put_meta_bytes(&self, slot: u64, bytes: &[u8]) -> Result<()> { self.meta_cf.put_bytes(slot, bytes) } // Given a start and end entry index, find all the missing // indexes in the ledger in the range [start_index, end_index) // for the slot with the specified slot fn find_missing_indexes( db_iterator: &mut Cursor, slot: u64, start_index: u64, end_index: u64, max_missing: usize, ) -> Vec where C: Column, { if start_index >= end_index || max_missing == 0 { return vec![]; } let mut missing_indexes = vec![]; // Seek to the first shred with index >= start_index db_iterator.seek((slot, start_index)); // The index of the first missing shred in the slot let mut prev_index = start_index; 'outer: loop { if !db_iterator.valid() { for i in prev_index..end_index { missing_indexes.push(i); if missing_indexes.len() == max_missing { break; } } break; } let (current_slot, index) = db_iterator.key().expect("Expect a valid key"); let current_index = { if current_slot > slot { end_index } else { index } }; let upper_index = cmp::min(current_index, end_index); for i in prev_index..upper_index { missing_indexes.push(i); if missing_indexes.len() == max_missing { break 'outer; } } if current_slot > slot { break; } if current_index >= end_index { break; } prev_index = current_index + 1; db_iterator.next(); } missing_indexes } pub fn find_missing_data_indexes( &self, slot: u64, start_index: u64, end_index: u64, max_missing: usize, ) -> Vec { if let Ok(mut db_iterator) = self.db.cursor::() { Self::find_missing_indexes(&mut db_iterator, slot, start_index, end_index, max_missing) } else { vec![] } } /// Returns the entry vector for the slot starting with `shred_start_index` pub fn get_slot_entries( &self, slot: u64, shred_start_index: u64, _max_entries: Option, ) -> Result> { self.get_slot_entries_with_shred_count(slot, shred_start_index) .map(|x| x.0) } pub fn get_slot_entries_with_shred_count( &self, slot: u64, mut start_index: u64, ) -> Result<(Vec, usize)> { // Find the next consecutive block of shreds. let mut serialized_shreds: Vec> = vec![]; let data_cf = self.db.column::(); while let Some(serialized_shred) = data_cf.get_bytes((slot, start_index))? { serialized_shreds.push(serialized_shred); start_index += 1; } trace!( "Found {:?} shreds for slot {:?}", serialized_shreds.len(), slot ); let mut shreds: Vec = serialized_shreds .into_iter() .filter_map(|serialized_shred| Shred::new_from_serialized_shred(serialized_shred).ok()) .collect(); let mut all_entries = vec![]; let mut num = 0; loop { let mut look_for_last_shred = true; let mut shred_chunk = vec![]; while look_for_last_shred && !shreds.is_empty() { let shred = shreds.remove(0); if shred.data_complete() || shred.last_in_slot() { look_for_last_shred = false; } shred_chunk.push(shred); } debug!( "{:?} shreds in last FEC set. Looking for last shred {:?}", shred_chunk.len(), look_for_last_shred ); // Break if we didn't find the last shred (as more data is required) if look_for_last_shred { break; } if let Ok(deshred_payload) = Shredder::deshred(&shred_chunk) { let entries: Vec = bincode::deserialize(&deshred_payload)?; trace!("Found entries: {:#?}", entries); all_entries.extend(entries); num += shred_chunk.len(); } else { debug!("Failed in deshredding shred payloads"); break; } } trace!("Found {:?} entries", all_entries.len()); Ok((all_entries, num)) } // Returns slots connecting to any element of the list `slots`. pub fn get_slots_since(&self, slots: &[u64]) -> Result>> { // Return error if there was a database error during lookup of any of the // slot indexes let slot_metas: Result>> = slots.iter().map(|slot| self.meta(*slot)).collect(); let slot_metas = slot_metas?; let result: HashMap> = slots .iter() .zip(slot_metas) .filter_map(|(height, meta)| { meta.map(|meta| { let valid_next_slots: Vec = meta .next_slots .iter() .cloned() .filter(|s| !self.is_dead(*s)) .collect(); (*height, valid_next_slots) }) }) .collect(); Ok(result) } pub fn is_root(&self, slot: u64) -> bool { if let Ok(Some(true)) = self.db.get::(slot) { true } else { false } } pub fn set_roots(&self, rooted_slots: &[u64]) -> Result<()> { unsafe { let mut batch_processor = self.db.batch_processor(); let mut write_batch = batch_processor.batch()?; for slot in rooted_slots { write_batch.put::(*slot, &true)?; } batch_processor.write(write_batch)?; } let mut last_root = self.last_root.write().unwrap(); if *last_root == std::u64::MAX { *last_root = 0; } *last_root = cmp::max(*rooted_slots.iter().max().unwrap(), *last_root); Ok(()) } pub fn is_dead(&self, slot: u64) -> bool { if let Some(true) = self .db .get::(slot) .expect("fetch from DeadSlots column family failed") { true } else { false } } pub fn set_dead_slot(&self, slot: u64) -> Result<()> { self.dead_slots_cf.put(slot, &true) } pub fn get_orphans(&self, max: Option) -> Vec { let mut results = vec![]; let mut iter = self.db.cursor::().unwrap(); iter.seek_to_first(); while iter.valid() { if let Some(max) = max { if results.len() > max { break; } } results.push(iter.key().unwrap()); iter.next(); } results } /// Prune blocktree such that slots higher than `target_slot` are deleted and all references to /// higher slots are removed pub fn prune(&self, target_slot: u64) { let mut meta = self .meta(target_slot) .expect("couldn't read slot meta") .expect("no meta for target slot"); meta.next_slots.clear(); self.put_meta_bytes( target_slot, &bincode::serialize(&meta).expect("couldn't get meta bytes"), ) .expect("unable to update meta for target slot"); self.purge_slots(target_slot + 1, None); // fixup anything that refers to non-root slots and delete the rest for (slot, mut meta) in self .slot_meta_iterator(0) .expect("unable to iterate over meta") { if slot > target_slot { break; } meta.next_slots.retain(|slot| *slot <= target_slot); self.put_meta_bytes( slot, &bincode::serialize(&meta).expect("couldn't update meta"), ) .expect("couldn't update meta"); } } pub fn last_root(&self) -> u64 { *self.last_root.read().unwrap() } } fn update_slot_meta( is_last_in_slot: bool, slot_meta: &mut SlotMeta, index: u64, new_consumed: u64, ) { // Index is zero-indexed, while the "received" height starts from 1, // so received = index + 1 for the same shred. slot_meta.received = cmp::max(index + 1, slot_meta.received); slot_meta.consumed = new_consumed; slot_meta.last_index = { // If the last index in the slot hasn't been set before, then // set it to this shred index if slot_meta.last_index == std::u64::MAX { if is_last_in_slot { index } else { std::u64::MAX } } else { slot_meta.last_index } }; } fn get_index_meta_entry<'a>( db: &Database, slot: u64, index_working_set: &'a mut HashMap, ) -> (Option<&'a mut Index>, Option) { let index_cf = db.column::(); index_working_set .get_mut(&slot) .map(|i| (Some(i), None)) .unwrap_or_else(|| { let newly_inserted_meta = Some( index_cf .get(slot) .unwrap() .unwrap_or_else(|| Index::new(slot)), ); (None, newly_inserted_meta) }) } fn get_slot_meta_entry<'a>( db: &Database, slot_meta_working_set: &'a mut HashMap, slot: u64, parent_slot: u64, ) -> ( Option<&'a mut SlotMetaWorkingSetEntry>, Option, ) { let meta_cf = db.column::(); // Check if we've already inserted the slot metadata for this blob's slot slot_meta_working_set .get_mut(&slot) .map(|s| (Some(s), None)) .unwrap_or_else(|| { // Store a 2-tuple of the metadata (working copy, backup copy) if let Some(mut meta) = meta_cf.get(slot).expect("Expect database get to succeed") { let backup = Some(meta.clone()); // If parent_slot == std::u64::MAX, then this is one of the orphans inserted // during the chaining process, see the function find_slot_meta_in_cached_state() // for details. Slots that are orphans are missing a parent_slot, so we should // fill in the parent now that we know it. if is_orphan(&meta) { meta.parent_slot = parent_slot; } (None, Some((Rc::new(RefCell::new(meta)), backup))) } else { ( None, Some(( Rc::new(RefCell::new(SlotMeta::new(slot, parent_slot))), None, )), ) } }) } fn is_valid_write_to_slot_0(slot_to_write: u64, parent_slot: u64, last_root: u64) -> bool { slot_to_write == 0 && last_root == 0 && parent_slot == 0 } fn send_signals( new_shreds_signals: &[SyncSender], completed_slots_senders: &[SyncSender>], should_signal: bool, newly_completed_slots: Vec, ) -> Result<()> { if should_signal { for signal in new_shreds_signals { let _ = signal.try_send(true); } } if !completed_slots_senders.is_empty() && !newly_completed_slots.is_empty() { let mut slots: Vec<_> = (0..completed_slots_senders.len() - 1) .map(|_| newly_completed_slots.clone()) .collect(); slots.push(newly_completed_slots); for (signal, slots) in completed_slots_senders.iter().zip(slots.into_iter()) { let res = signal.try_send(slots); if let Err(TrySendError::Full(_)) = res { datapoint_error!( "blocktree_error", ( "error", "Unable to send newly completed slot because channel is full".to_string(), String ), ); } } } Ok(()) } fn commit_slot_meta_working_set( slot_meta_working_set: &HashMap, completed_slots_senders: &[SyncSender>], write_batch: &mut WriteBatch, ) -> Result<(bool, Vec)> { let mut should_signal = false; let mut newly_completed_slots = vec![]; // Check if any metadata was changed, if so, insert the new version of the // metadata into the write batch for (slot, (meta, meta_backup)) in slot_meta_working_set.iter() { let meta: &SlotMeta = &RefCell::borrow(&*meta); if !completed_slots_senders.is_empty() && is_newly_completed_slot(meta, meta_backup) { newly_completed_slots.push(*slot); } // Check if the working copy of the metadata has changed if Some(meta) != meta_backup.as_ref() { should_signal = should_signal || slot_has_updates(meta, &meta_backup); write_batch.put::(*slot, &meta)?; } } Ok((should_signal, newly_completed_slots)) } // 1) Find the slot metadata in the cache of dirty slot metadata we've previously touched, // else: // 2) Search the database for that slot metadata. If still no luck, then: // 3) Create a dummy orphan slot in the database fn find_slot_meta_else_create<'a>( db: &Database, working_set: &'a HashMap, chained_slots: &'a mut HashMap>>, slot_index: u64, ) -> Result>> { let result = find_slot_meta_in_cached_state(working_set, chained_slots, slot_index)?; if let Some(slot) = result { Ok(slot) } else { find_slot_meta_in_db_else_create(db, slot_index, chained_slots) } } // Search the database for that slot metadata. If still no luck, then // create a dummy orphan slot in the database fn find_slot_meta_in_db_else_create<'a>( db: &Database, slot: u64, insert_map: &'a mut HashMap>>, ) -> Result>> { if let Some(slot_meta) = db.column::().get(slot)? { insert_map.insert(slot, Rc::new(RefCell::new(slot_meta))); Ok(insert_map.get(&slot).unwrap().clone()) } else { // If this slot doesn't exist, make a orphan slot. This way we // remember which slots chained to this one when we eventually get a real shred // for this slot insert_map.insert( slot, Rc::new(RefCell::new(SlotMeta::new(slot, std::u64::MAX))), ); Ok(insert_map.get(&slot).unwrap().clone()) } } // Find the slot metadata in the cache of dirty slot metadata we've previously touched fn find_slot_meta_in_cached_state<'a>( working_set: &'a HashMap, chained_slots: &'a HashMap>>, slot: u64, ) -> Result>>> { if let Some((entry, _)) = working_set.get(&slot) { Ok(Some(entry.clone())) } else if let Some(entry) = chained_slots.get(&slot) { Ok(Some(entry.clone())) } else { Ok(None) } } // Chaining based on latest discussion here: https://github.com/solana-labs/solana/pull/2253 fn handle_chaining( db: &Database, write_batch: &mut WriteBatch, working_set: &HashMap, ) -> Result<()> { let mut new_chained_slots = HashMap::new(); let working_set_slots: Vec<_> = working_set.iter().map(|s| *s.0).collect(); for slot in working_set_slots { handle_chaining_for_slot(db, write_batch, working_set, &mut new_chained_slots, slot)?; } // Write all the newly changed slots in new_chained_slots to the write_batch for (slot, meta) in new_chained_slots.iter() { let meta: &SlotMeta = &RefCell::borrow(&*meta); write_batch.put::(*slot, meta)?; } Ok(()) } fn handle_chaining_for_slot( db: &Database, write_batch: &mut WriteBatch, working_set: &HashMap, new_chained_slots: &mut HashMap>>, slot: u64, ) -> Result<()> { let (meta, meta_backup) = working_set .get(&slot) .expect("Slot must exist in the working_set hashmap"); { let mut meta_mut = meta.borrow_mut(); let was_orphan_slot = meta_backup.is_some() && is_orphan(meta_backup.as_ref().unwrap()); // If: // 1) This is a new slot // 2) slot != 0 // then try to chain this slot to a previous slot if slot != 0 { let prev_slot = meta_mut.parent_slot; // Check if the slot represented by meta_mut is either a new slot or a orphan. // In both cases we need to run the chaining logic b/c the parent on the slot was // previously unknown. if meta_backup.is_none() || was_orphan_slot { let prev_slot_meta = find_slot_meta_else_create(db, working_set, new_chained_slots, prev_slot)?; // This is a newly inserted slot/orphan so run the chaining logic to link it to a // newly discovered parent chain_new_slot_to_prev_slot(&mut prev_slot_meta.borrow_mut(), slot, &mut meta_mut); // If the parent of `slot` is a newly inserted orphan, insert it into the orphans // column family if is_orphan(&RefCell::borrow(&*prev_slot_meta)) { write_batch.put::(prev_slot, &true)?; } } } // At this point this slot has received a parent, so it's no longer an orphan if was_orphan_slot { write_batch.delete::(slot)?; } } // If this is a newly inserted slot, then we know the children of this slot were not previously // connected to the trunk of the ledger. Thus if slot.is_connected is now true, we need to // update all child slots with `is_connected` = true because these children are also now newly // connected to trunk of the ledger let should_propagate_is_connected = is_newly_completed_slot(&RefCell::borrow(&*meta), meta_backup) && RefCell::borrow(&*meta).is_connected; if should_propagate_is_connected { // slot_function returns a boolean indicating whether to explore the children // of the input slot let slot_function = |slot: &mut SlotMeta| { slot.is_connected = true; // We don't want to set the is_connected flag on the children of non-full // slots slot.is_full() }; traverse_children_mut( db, slot, &meta, working_set, new_chained_slots, slot_function, )?; } Ok(()) } fn traverse_children_mut( db: &Database, slot: u64, slot_meta: &Rc>, working_set: &HashMap, new_chained_slots: &mut HashMap>>, slot_function: F, ) -> Result<()> where F: Fn(&mut SlotMeta) -> bool, { let mut next_slots: Vec<(u64, Rc>)> = vec![(slot, slot_meta.clone())]; while !next_slots.is_empty() { let (_, current_slot) = next_slots.pop().unwrap(); // Check whether we should explore the children of this slot if slot_function(&mut current_slot.borrow_mut()) { let current_slot = &RefCell::borrow(&*current_slot); for next_slot_index in current_slot.next_slots.iter() { let next_slot = find_slot_meta_else_create( db, working_set, new_chained_slots, *next_slot_index, )?; next_slots.push((*next_slot_index, next_slot)); } } } Ok(()) } fn is_orphan(meta: &SlotMeta) -> bool { // If we have no parent, then this is the head of a detached chain of // slots !meta.is_parent_set() } // 1) Chain current_slot to the previous slot defined by prev_slot_meta // 2) Determine whether to set the is_connected flag fn chain_new_slot_to_prev_slot( prev_slot_meta: &mut SlotMeta, current_slot: u64, current_slot_meta: &mut SlotMeta, ) { prev_slot_meta.next_slots.push(current_slot); current_slot_meta.is_connected = prev_slot_meta.is_connected && prev_slot_meta.is_full(); } fn is_newly_completed_slot(slot_meta: &SlotMeta, backup_slot_meta: &Option) -> bool { slot_meta.is_full() && (backup_slot_meta.is_none() || slot_meta.consumed != backup_slot_meta.as_ref().unwrap().consumed) } fn slot_has_updates(slot_meta: &SlotMeta, slot_meta_backup: &Option) -> bool { // We should signal that there are updates if we extended the chain of consecutive blocks starting // from block 0, which is true iff: // 1) The block with index prev_block_index is itself part of the trunk of consecutive blocks // starting from block 0, slot_meta.is_connected && // AND either: // 1) The slot didn't exist in the database before, and now we have a consecutive // block for that slot ((slot_meta_backup.is_none() && slot_meta.consumed != 0) || // OR // 2) The slot did exist, but now we have a new consecutive block for that slot (slot_meta_backup.is_some() && slot_meta_backup.as_ref().unwrap().consumed != slot_meta.consumed)) } // Creates a new ledger with slot 0 full of ticks (and only ticks). // // Returns the blockhash that can be used to append entries with. pub fn create_new_ledger(ledger_path: &Path, genesis_block: &GenesisBlock) -> Result { let ticks_per_slot = genesis_block.ticks_per_slot; Blocktree::destroy(ledger_path)?; genesis_block.write(&ledger_path)?; // Fill slot 0 with ticks that link back to the genesis_block to bootstrap the ledger. let blocktree = Blocktree::open(ledger_path)?; let entries = crate::entry::create_ticks(ticks_per_slot, genesis_block.hash()); let mut shredder = Shredder::new(0, 0, 0.0, &Arc::new(Keypair::new()), 0) .expect("Failed to create entry shredder"); let last_hash = entries.last().unwrap().hash; bincode::serialize_into(&mut shredder, &entries) .expect("Expect to write all entries to shreds"); shredder.finalize_slot(); let shreds: Vec = shredder.shreds.drain(..).collect(); blocktree.insert_shreds(shreds, None)?; blocktree.set_roots(&[0])?; Ok(last_hash) } #[macro_export] macro_rules! tmp_ledger_name { () => { &format!("{}-{}", file!(), line!()) }; } #[macro_export] macro_rules! get_tmp_ledger_path { () => { get_tmp_ledger_path(tmp_ledger_name!()) }; } pub fn get_tmp_ledger_path(name: &str) -> PathBuf { use std::env; let out_dir = env::var("FARF_DIR").unwrap_or_else(|_| "farf".to_string()); let keypair = Keypair::new(); let path = [ out_dir, "ledger".to_string(), format!("{}-{}", name, keypair.pubkey()), ] .iter() .collect(); // whack any possible collision let _ignored = fs::remove_dir_all(&path); path } #[macro_export] macro_rules! create_new_tmp_ledger { ($genesis_block:expr) => { create_new_tmp_ledger(tmp_ledger_name!(), $genesis_block) }; } pub fn verify_shred_slots(slot: u64, parent_slot: u64, last_root: u64) -> bool { if !is_valid_write_to_slot_0(slot, parent_slot, last_root) { // Check that the parent_slot < slot if parent_slot >= slot { return false; } // Ignore blobs that chain to slots before the last root if parent_slot < last_root { return false; } // Above two checks guarantee that by this point, slot > last_root } true } // Same as `create_new_ledger()` but use a temporary ledger name based on the provided `name` // // Note: like `create_new_ledger` the returned ledger will have slot 0 full of ticks (and only // ticks) pub fn create_new_tmp_ledger(name: &str, genesis_block: &GenesisBlock) -> (PathBuf, Hash) { let ledger_path = get_tmp_ledger_path(name); let blockhash = create_new_ledger(&ledger_path, genesis_block).unwrap(); (ledger_path, blockhash) } pub fn entries_to_test_shreds( entries: Vec, slot: u64, parent_slot: u64, is_full_slot: bool, ) -> Vec { let mut shredder = Shredder::new(slot, parent_slot, 0.0, &Arc::new(Keypair::new()), 0 as u32) .expect("Failed to create entry shredder"); bincode::serialize_into(&mut shredder, &entries) .expect("Expect to write all entries to shreds"); if is_full_slot { shredder.finalize_slot(); } else { shredder.finalize_data(); } shredder.shreds.drain(..).collect() } #[cfg(test)] pub mod tests { use super::*; use crate::entry::{create_ticks, Entry}; use itertools::Itertools; use rand::seq::SliceRandom; use rand::thread_rng; use solana_sdk::hash::Hash; use solana_sdk::packet::PACKET_DATA_SIZE; use std::iter::FromIterator; use std::time::Duration; #[test] fn test_write_entries() { solana_logger::setup(); let ledger_path = get_tmp_ledger_path!(); { let ticks_per_slot = 10; let num_slots = 10; let ledger = Blocktree::open(&ledger_path).unwrap(); let mut ticks = vec![]; //let mut shreds_per_slot = 0 as u64; let mut shreds_per_slot = vec![]; for i in 0..num_slots { let mut new_ticks = create_ticks(ticks_per_slot, Hash::default()); let num_shreds = ledger .write_entries( i, 0, 0, ticks_per_slot, Some(i.saturating_sub(1)), true, &Arc::new(Keypair::new()), new_ticks.clone(), ) .unwrap() as u64; shreds_per_slot.push(num_shreds); ticks.append(&mut new_ticks); } for i in 0..num_slots { let meta = ledger.meta(i).unwrap().unwrap(); let num_shreds = shreds_per_slot[i as usize]; assert_eq!(meta.consumed, num_shreds); assert_eq!(meta.received, num_shreds); assert_eq!(meta.last_index, num_shreds - 1); if i == num_slots - 1 { assert!(meta.next_slots.is_empty()); } else { assert_eq!(meta.next_slots, vec![i + 1]); } if i == 0 { assert_eq!(meta.parent_slot, 0); } else { assert_eq!(meta.parent_slot, i - 1); } assert_eq!( &ticks[(i * ticks_per_slot) as usize..((i + 1) * ticks_per_slot) as usize], &ledger.get_slot_entries(i, 0, None).unwrap()[..] ); } /* // Simulate writing to the end of a slot with existing ticks ledger .write_entries( num_slots, ticks_per_slot - 1, ticks_per_slot - 2, ticks_per_slot, &ticks[0..2], ) .unwrap(); let meta = ledger.meta(num_slots).unwrap().unwrap(); assert_eq!(meta.consumed, 0); // received shred was ticks_per_slot - 2, so received should be ticks_per_slot - 2 + 1 assert_eq!(meta.received, ticks_per_slot - 1); // last shred index ticks_per_slot - 2 because that's the shred that made tick_height == ticks_per_slot // for the slot assert_eq!(meta.last_index, ticks_per_slot - 2); assert_eq!(meta.parent_slot, num_slots - 1); assert_eq!(meta.next_slots, vec![num_slots + 1]); assert_eq!( &ticks[0..1], &ledger .get_slot_entries(num_slots, ticks_per_slot - 2, None) .unwrap()[..] ); // We wrote two entries, the second should spill into slot num_slots + 1 let meta = ledger.meta(num_slots + 1).unwrap().unwrap(); assert_eq!(meta.consumed, 1); assert_eq!(meta.received, 1); assert_eq!(meta.last_index, std::u64::MAX); assert_eq!(meta.parent_slot, num_slots); assert!(meta.next_slots.is_empty()); assert_eq!( &ticks[1..2], &ledger.get_slot_entries(num_slots + 1, 0, None).unwrap()[..] ); */ } Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn test_put_get_simple() { let ledger_path = get_tmp_ledger_path("test_put_get_simple"); let ledger = Blocktree::open(&ledger_path).unwrap(); // Test meta column family let meta = SlotMeta::new(0, 1); ledger.meta_cf.put(0, &meta).unwrap(); let result = ledger .meta_cf .get(0) .unwrap() .expect("Expected meta object to exist"); assert_eq!(result, meta); // Test erasure column family let erasure = vec![1u8; 16]; let erasure_key = (0, 0); ledger .code_shred_cf .put_bytes(erasure_key, &erasure) .unwrap(); let result = ledger .code_shred_cf .get_bytes(erasure_key) .unwrap() .expect("Expected erasure object to exist"); assert_eq!(result, erasure); // Test data column family let data = vec![2u8; 16]; let data_key = (0, 0); ledger.data_shred_cf.put_bytes(data_key, &data).unwrap(); let result = ledger .data_shred_cf .get_bytes(data_key) .unwrap() .expect("Expected data object to exist"); assert_eq!(result, data); // Destroying database without closing it first is undefined behavior drop(ledger); Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn test_read_shred_bytes() { let slot = 0; let (shreds, _) = make_slot_entries(slot, 0, 100); let num_shreds = shreds.len() as u64; let shred_bufs: Vec<_> = shreds.iter().map(|shred| shred.payload.clone()).collect(); let ledger_path = get_tmp_ledger_path("test_read_shreds_bytes"); let ledger = Blocktree::open(&ledger_path).unwrap(); ledger.insert_shreds(shreds, None).unwrap(); let mut buf = [0; 4096]; let (_, bytes) = ledger.get_data_shreds(slot, 0, 1, &mut buf).unwrap(); assert_eq!(buf[..bytes], shred_bufs[0][..bytes]); let (last_index, bytes2) = ledger.get_data_shreds(slot, 0, 2, &mut buf).unwrap(); assert_eq!(last_index, 1); assert!(bytes2 > bytes); { let shred_data_1 = &buf[..bytes]; assert_eq!(shred_data_1, &shred_bufs[0][..bytes]); let shred_data_2 = &buf[bytes..bytes2]; assert_eq!(shred_data_2, &shred_bufs[1][..bytes2 - bytes]); } // buf size part-way into shred[1], should just return shred[0] let mut buf = vec![0; bytes + 1]; let (last_index, bytes3) = ledger.get_data_shreds(slot, 0, 2, &mut buf).unwrap(); assert_eq!(last_index, 0); assert_eq!(bytes3, bytes); let mut buf = vec![0; bytes2 - 1]; let (last_index, bytes4) = ledger.get_data_shreds(slot, 0, 2, &mut buf).unwrap(); assert_eq!(last_index, 0); assert_eq!(bytes4, bytes); let mut buf = vec![0; bytes * 2]; let (last_index, bytes6) = ledger .get_data_shreds(slot, num_shreds - 1, num_shreds, &mut buf) .unwrap(); assert_eq!(last_index, num_shreds - 1); { let shred_data = &buf[..bytes6]; assert_eq!(shred_data, &shred_bufs[(num_shreds - 1) as usize][..bytes6]); } // Read out of range let (last_index, bytes6) = ledger .get_data_shreds(slot, num_shreds, num_shreds + 2, &mut buf) .unwrap(); assert_eq!(last_index, 0); assert_eq!(bytes6, 0); // Destroying database without closing it first is undefined behavior drop(ledger); Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn test_insert_data_shreds_basic() { let num_entries = 5; assert!(num_entries > 1); let (mut shreds, entries) = make_slot_entries(0, 0, num_entries); let num_shreds = shreds.len() as u64; let ledger_path = get_tmp_ledger_path("test_insert_data_shreds_basic"); let ledger = Blocktree::open(&ledger_path).unwrap(); // Insert last shred, we're missing the other shreds, so no consecutive // shreds starting from slot 0, index 0 should exist. let last_shred = shreds.pop().unwrap(); ledger.insert_shreds(vec![last_shred], None).unwrap(); assert!(ledger.get_slot_entries(0, 0, None).unwrap().is_empty()); let meta = ledger .meta(0) .unwrap() .expect("Expected new metadata object to be created"); assert!(meta.consumed == 0 && meta.received == num_shreds); // Insert the other shreds, check for consecutive returned entries ledger.insert_shreds(shreds, None).unwrap(); let result = ledger.get_slot_entries(0, 0, None).unwrap(); assert_eq!(result, entries); let meta = ledger .meta(0) .unwrap() .expect("Expected new metadata object to exist"); assert_eq!(meta.consumed, num_shreds); assert_eq!(meta.received, num_shreds); assert_eq!(meta.parent_slot, 0); assert_eq!(meta.last_index, num_shreds - 1); assert!(meta.next_slots.is_empty()); assert!(meta.is_connected); // Destroying database without closing it first is undefined behavior drop(ledger); Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn test_insert_data_shreds_reverse() { let num_entries = 10; let (mut shreds, entries) = make_slot_entries(0, 0, num_entries); let num_shreds = shreds.len() as u64; let ledger_path = get_tmp_ledger_path("test_insert_data_shreds_reverse"); let ledger = Blocktree::open(&ledger_path).unwrap(); // Insert shreds in reverse, check for consecutive returned shreds for i in (0..num_shreds).rev() { let shred = shreds.pop().unwrap(); ledger.insert_shreds(vec![shred], None).unwrap(); let result = ledger.get_slot_entries(0, 0, None).unwrap(); let meta = ledger .meta(0) .unwrap() .expect("Expected metadata object to exist"); assert_eq!(meta.last_index, num_shreds - 1); if i != 0 { assert_eq!(result.len(), 0); assert!(meta.consumed == 0 && meta.received == num_shreds as u64); } else { assert_eq!(meta.parent_slot, 0); assert_eq!(result, entries); assert!(meta.consumed == num_shreds as u64 && meta.received == num_shreds as u64); } } // Destroying database without closing it first is undefined behavior drop(ledger); Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn test_insert_slots() { test_insert_data_shreds_slots("test_insert_data_shreds_slots_single", false); test_insert_data_shreds_slots("test_insert_data_shreds_slots_bulk", true); } /* #[test] pub fn test_iteration_order() { let slot = 0; let blocktree_path = get_tmp_ledger_path("test_iteration_order"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Write entries let num_entries = 8; let entries = make_tiny_test_entries(num_entries); let mut shreds = entries.to_single_entry_shreds(); for (i, b) in shreds.iter_mut().enumerate() { b.set_index(1 << (i * 8)); b.set_slot(0); } blocktree .write_shreds(&shreds) .expect("Expected successful write of shreds"); let mut db_iterator = blocktree .db .cursor::() .expect("Expected to be able to open database iterator"); db_iterator.seek((slot, 1)); // Iterate through ledger for i in 0..num_entries { assert!(db_iterator.valid()); let (_, current_index) = db_iterator.key().expect("Expected a valid key"); assert_eq!(current_index, (1 as u64) << (i * 8)); db_iterator.next(); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } */ #[test] pub fn test_get_slot_entries1() { let blocktree_path = get_tmp_ledger_path("test_get_slot_entries1"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let entries = create_ticks(8, Hash::default()); let shreds = entries_to_test_shreds(entries[0..4].to_vec(), 1, 0, false); blocktree .insert_shreds(shreds, None) .expect("Expected successful write of shreds"); let mut shreds1 = entries_to_test_shreds(entries[4..].to_vec(), 1, 0, false); for (i, b) in shreds1.iter_mut().enumerate() { b.set_index(8 + i as u32); } blocktree .insert_shreds(shreds1, None) .expect("Expected successful write of shreds"); assert_eq!( blocktree.get_slot_entries(1, 0, None).unwrap()[2..4], entries[2..4], ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } // This test seems to be unnecessary with introduction of data shreds. There are no // guarantees that a particular shred index contains a complete entry #[test] #[ignore] pub fn test_get_slot_entries2() { let blocktree_path = get_tmp_ledger_path("test_get_slot_entries2"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Write entries let num_slots = 5 as u64; let mut index = 0; for slot in 0..num_slots { let entries = create_ticks(slot + 1, Hash::default()); let last_entry = entries.last().unwrap().clone(); let mut shreds = entries_to_test_shreds(entries, slot, slot.saturating_sub(1), false); for b in shreds.iter_mut() { b.set_index(index); b.set_slot(slot as u64); index += 1; } blocktree .insert_shreds(shreds, None) .expect("Expected successful write of shreds"); assert_eq!( blocktree .get_slot_entries(slot, u64::from(index - 1), None) .unwrap(), vec![last_entry], ); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_get_slot_entries3() { // Test inserting/fetching shreds which contain multiple entries per shred let blocktree_path = get_tmp_ledger_path("test_get_slot_entries3"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_slots = 5 as u64; let shreds_per_slot = 5 as u64; let entry_serialized_size = bincode::serialized_size(&create_ticks(1, Hash::default())).unwrap(); let entries_per_slot = (shreds_per_slot * PACKET_DATA_SIZE as u64) / entry_serialized_size; // Write entries for slot in 0..num_slots { let entries = create_ticks(entries_per_slot, Hash::default()); let shreds = entries_to_test_shreds(entries.clone(), slot, slot.saturating_sub(1), false); assert!(shreds.len() as u64 >= shreds_per_slot); blocktree .insert_shreds(shreds, None) .expect("Expected successful write of shreds"); assert_eq!(blocktree.get_slot_entries(slot, 0, None).unwrap(), entries); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_insert_data_shreds_consecutive() { let blocktree_path = get_tmp_ledger_path("test_insert_data_shreds_consecutive"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); for i in 0..4 { let slot = i; let parent_slot = if i == 0 { 0 } else { i - 1 }; // Write entries let num_entries = 21 as u64 * (i + 1); let (mut shreds, original_entries) = make_slot_entries(slot, parent_slot, num_entries); let num_shreds = shreds.len() as u64; let mut odd_shreds = vec![]; for i in (0..num_shreds).rev() { if i % 2 != 0 { odd_shreds.insert(0, shreds.remove(i as usize)); } } blocktree.insert_shreds(odd_shreds, None).unwrap(); assert_eq!(blocktree.get_slot_entries(slot, 0, None).unwrap(), vec![]); let meta = blocktree.meta(slot).unwrap().unwrap(); if num_shreds % 2 == 0 { assert_eq!(meta.received, num_shreds); } else { debug!("got here"); assert_eq!(meta.received, num_shreds - 1); } assert_eq!(meta.consumed, 0); if num_shreds % 2 == 0 { assert_eq!(meta.last_index, num_shreds - 1); } else { assert_eq!(meta.last_index, std::u64::MAX); } blocktree.insert_shreds(shreds, None).unwrap(); assert_eq!( blocktree.get_slot_entries(slot, 0, None).unwrap(), original_entries, ); let meta = blocktree.meta(slot).unwrap().unwrap(); assert_eq!(meta.received, num_shreds); assert_eq!(meta.consumed, num_shreds); assert_eq!(meta.parent_slot, parent_slot); assert_eq!(meta.last_index, num_shreds - 1); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_insert_data_shreds_duplicate() { // Create RocksDb ledger let blocktree_path = get_tmp_ledger_path("test_insert_data_shreds_duplicate"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Make duplicate entries and shreds let num_unique_entries = 10; let (mut original_shreds, original_entries) = make_slot_entries(0, 0, num_unique_entries); // Discard first shred original_shreds.remove(0); blocktree.insert_shreds(original_shreds, None).unwrap(); assert_eq!(blocktree.get_slot_entries(0, 0, None).unwrap(), vec![]); let duplicate_shreds = entries_to_test_shreds(original_entries.clone(), 0, 0, true); let num_shreds = duplicate_shreds.len() as u64; blocktree.insert_shreds(duplicate_shreds, None).unwrap(); assert_eq!( blocktree.get_slot_entries(0, 0, None).unwrap(), original_entries ); let meta = blocktree.meta(0).unwrap().unwrap(); assert_eq!(meta.consumed, num_shreds); assert_eq!(meta.received, num_shreds); assert_eq!(meta.parent_slot, 0); assert_eq!(meta.last_index, num_shreds - 1); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_new_shreds_signal() { // Initialize ledger let ledger_path = get_tmp_ledger_path("test_new_shreds_signal"); let (ledger, recvr, _) = Blocktree::open_with_signal(&ledger_path).unwrap(); let ledger = Arc::new(ledger); let entries_per_slot = 50; // Create entries for slot 0 let (mut shreds, _) = make_slot_entries(0, 0, entries_per_slot); let shreds_per_slot = shreds.len() as u64; // Insert second shred, but we're missing the first shred, so no consecutive // shreds starting from slot 0, index 0 should exist. ledger.insert_shreds(vec![shreds.remove(1)], None).unwrap(); let timer = Duration::new(1, 0); assert!(recvr.recv_timeout(timer).is_err()); // Insert first shred, now we've made a consecutive block ledger.insert_shreds(vec![shreds.remove(0)], None).unwrap(); // Wait to get notified of update, should only be one update assert!(recvr.recv_timeout(timer).is_ok()); assert!(recvr.try_recv().is_err()); // Insert the rest of the ticks ledger.insert_shreds(shreds, None).unwrap(); // Wait to get notified of update, should only be one update assert!(recvr.recv_timeout(timer).is_ok()); assert!(recvr.try_recv().is_err()); // Create some other slots, and send batches of ticks for each slot such that each slot // is missing the tick at shred index == slot index - 1. Thus, no consecutive blocks // will be formed let num_slots = shreds_per_slot; let mut shreds = vec![]; let mut missing_shreds = vec![]; for slot in 1..num_slots + 1 { let (mut slot_shreds, _) = make_slot_entries(slot, slot - 1, entries_per_slot); let missing_shred = slot_shreds.remove(slot as usize - 1); shreds.extend(slot_shreds); missing_shreds.push(missing_shred); } // Should be no updates, since no new chains from block 0 were formed ledger.insert_shreds(shreds, None).unwrap(); assert!(recvr.recv_timeout(timer).is_err()); // Insert a shred for each slot that doesn't make a consecutive block, we // should get no updates let shreds: Vec<_> = (1..num_slots + 1) .flat_map(|slot| { let (mut shred, _) = make_slot_entries(slot, slot - 1, 1); shred[0].set_index(2 * num_slots as u32); shred }) .collect(); ledger.insert_shreds(shreds, None).unwrap(); assert!(recvr.recv_timeout(timer).is_err()); // For slots 1..num_slots/2, fill in the holes in one batch insertion, // so we should only get one signal let missing_shreds2 = missing_shreds .drain((num_slots / 2) as usize..) .collect_vec(); ledger.insert_shreds(missing_shreds, None).unwrap(); assert!(recvr.recv_timeout(timer).is_ok()); assert!(recvr.try_recv().is_err()); // Fill in the holes for each of the remaining slots, we should get a single update // for each ledger.insert_shreds(missing_shreds2, None).unwrap(); // Destroying database without closing it first is undefined behavior drop(ledger); Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] pub fn test_completed_shreds_signal() { // Initialize ledger let ledger_path = get_tmp_ledger_path("test_completed_shreds_signal"); let (ledger, _, recvr) = Blocktree::open_with_signal(&ledger_path).unwrap(); let ledger = Arc::new(ledger); let entries_per_slot = 10; // Create shreds for slot 0 let (mut shreds, _) = make_slot_entries(0, 0, entries_per_slot); let shred0 = shreds.remove(0); // Insert all but the first shred in the slot, should not be considered complete ledger.insert_shreds(shreds, None).unwrap(); assert!(recvr.try_recv().is_err()); // Insert first shred, slot should now be considered complete ledger.insert_shreds(vec![shred0], None).unwrap(); assert_eq!(recvr.try_recv().unwrap(), vec![0]); } #[test] pub fn test_completed_shreds_signal_orphans() { // Initialize ledger let ledger_path = get_tmp_ledger_path("test_completed_shreds_signal_orphans"); let (ledger, _, recvr) = Blocktree::open_with_signal(&ledger_path).unwrap(); let ledger = Arc::new(ledger); let entries_per_slot = 10; let slots = vec![2, 5, 10]; let mut all_shreds = make_chaining_slot_entries(&slots[..], entries_per_slot); // Get the shreds for slot 10, chaining to slot 5 let (mut orphan_child, _) = all_shreds.remove(2); // Get the shreds for slot 5 chaining to slot 2 let (mut orphan_shreds, _) = all_shreds.remove(1); // Insert all but the first shred in the slot, should not be considered complete let orphan_child0 = orphan_child.remove(0); ledger.insert_shreds(orphan_child, None).unwrap(); assert!(recvr.try_recv().is_err()); // Insert first shred, slot should now be considered complete ledger.insert_shreds(vec![orphan_child0], None).unwrap(); assert_eq!(recvr.try_recv().unwrap(), vec![slots[2]]); // Insert the shreds for the orphan_slot let orphan_shred0 = orphan_shreds.remove(0); ledger.insert_shreds(orphan_shreds, None).unwrap(); assert!(recvr.try_recv().is_err()); // Insert first shred, slot should now be considered complete ledger.insert_shreds(vec![orphan_shred0], None).unwrap(); assert_eq!(recvr.try_recv().unwrap(), vec![slots[1]]); } #[test] pub fn test_completed_shreds_signal_many() { // Initialize ledger let ledger_path = get_tmp_ledger_path("test_completed_shreds_signal_many"); let (ledger, _, recvr) = Blocktree::open_with_signal(&ledger_path).unwrap(); let ledger = Arc::new(ledger); let entries_per_slot = 10; let mut slots = vec![2, 5, 10]; let mut all_shreds = make_chaining_slot_entries(&slots[..], entries_per_slot); let disconnected_slot = 4; let (shreds0, _) = all_shreds.remove(0); let (shreds1, _) = all_shreds.remove(0); let (shreds2, _) = all_shreds.remove(0); let (shreds3, _) = make_slot_entries(disconnected_slot, 1, entries_per_slot); let mut all_shreds: Vec<_> = vec![shreds0, shreds1, shreds2, shreds3] .into_iter() .flatten() .collect(); all_shreds.shuffle(&mut thread_rng()); ledger.insert_shreds(all_shreds, None).unwrap(); let mut result = recvr.try_recv().unwrap(); result.sort(); slots.push(disconnected_slot); slots.sort(); assert_eq!(result, slots); } #[test] pub fn test_handle_chaining_basic() { let blocktree_path = get_tmp_ledger_path("test_handle_chaining_basic"); { let entries_per_slot = 5; let num_slots = 3; let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Construct the shreds let (mut shreds, _) = make_many_slot_entries(0, num_slots, entries_per_slot); let shreds_per_slot = shreds.len() / num_slots as usize; // 1) Write to the first slot let shreds1 = shreds .drain(shreds_per_slot..2 * shreds_per_slot) .collect_vec(); blocktree.insert_shreds(shreds1, None).unwrap(); let s1 = blocktree.meta(1).unwrap().unwrap(); assert!(s1.next_slots.is_empty()); // Slot 1 is not trunk because slot 0 hasn't been inserted yet assert!(!s1.is_connected); assert_eq!(s1.parent_slot, 0); assert_eq!(s1.last_index, shreds_per_slot as u64 - 1); // 2) Write to the second slot let shreds2 = shreds .drain(shreds_per_slot..2 * shreds_per_slot) .collect_vec(); blocktree.insert_shreds(shreds2, None).unwrap(); let s2 = blocktree.meta(2).unwrap().unwrap(); assert!(s2.next_slots.is_empty()); // Slot 2 is not trunk because slot 0 hasn't been inserted yet assert!(!s2.is_connected); assert_eq!(s2.parent_slot, 1); assert_eq!(s2.last_index, shreds_per_slot as u64 - 1); // Check the first slot again, it should chain to the second slot, // but still isn't part of the trunk let s1 = blocktree.meta(1).unwrap().unwrap(); assert_eq!(s1.next_slots, vec![2]); assert!(!s1.is_connected); assert_eq!(s1.parent_slot, 0); assert_eq!(s1.last_index, shreds_per_slot as u64 - 1); // 3) Write to the zeroth slot, check that every slot // is now part of the trunk blocktree.insert_shreds(shreds, None).unwrap(); for i in 0..3 { let s = blocktree.meta(i).unwrap().unwrap(); // The last slot will not chain to any other slots if i != 2 { assert_eq!(s.next_slots, vec![i + 1]); } if i == 0 { assert_eq!(s.parent_slot, 0); } else { assert_eq!(s.parent_slot, i - 1); } assert_eq!(s.last_index, shreds_per_slot as u64 - 1); assert!(s.is_connected); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_handle_chaining_missing_slots() { let blocktree_path = get_tmp_ledger_path("test_handle_chaining_missing_slots"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_slots = 30; let entries_per_slot = 5; // Separate every other slot into two separate vectors let mut slots = vec![]; let mut missing_slots = vec![]; let mut shreds_per_slot = 2; for slot in 0..num_slots { let parent_slot = { if slot == 0 { 0 } else { slot - 1 } }; let (slot_shreds, _) = make_slot_entries(slot, parent_slot, entries_per_slot); shreds_per_slot = slot_shreds.len(); if slot % 2 == 1 { slots.extend(slot_shreds); } else { missing_slots.extend(slot_shreds); } } // Write the shreds for every other slot blocktree.insert_shreds(slots, None).unwrap(); // Check metadata for i in 0..num_slots { // If "i" is the index of a slot we just inserted, then next_slots should be empty // for slot "i" because no slots chain to that slot, because slot i + 1 is missing. // However, if it's a slot we haven't inserted, aka one of the gaps, then one of the // slots we just inserted will chain to that gap, so next_slots for that orphan slot // won't be empty, but the parent slot is unknown so should equal std::u64::MAX. let s = blocktree.meta(i as u64).unwrap().unwrap(); if i % 2 == 0 { assert_eq!(s.next_slots, vec![i as u64 + 1]); assert_eq!(s.parent_slot, std::u64::MAX); } else { assert!(s.next_slots.is_empty()); assert_eq!(s.parent_slot, i - 1); } if i == 0 { assert!(s.is_connected); } else { assert!(!s.is_connected); } } // Write the shreds for the other half of the slots that we didn't insert earlier blocktree.insert_shreds(missing_slots, None).unwrap(); for i in 0..num_slots { // Check that all the slots chain correctly once the missing slots // have been filled let s = blocktree.meta(i as u64).unwrap().unwrap(); if i != num_slots - 1 { assert_eq!(s.next_slots, vec![i as u64 + 1]); } else { assert!(s.next_slots.is_empty()); } if i == 0 { assert_eq!(s.parent_slot, 0); } else { assert_eq!(s.parent_slot, i - 1); } assert_eq!(s.last_index, shreds_per_slot as u64 - 1); assert!(s.is_connected); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_forward_chaining_is_connected() { let blocktree_path = get_tmp_ledger_path("test_forward_chaining_is_connected"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_slots = 15; let entries_per_slot = 5; assert!(entries_per_slot > 1); let (mut shreds, _) = make_many_slot_entries(0, num_slots, entries_per_slot); let shreds_per_slot = shreds.len() / num_slots as usize; // Write the shreds such that every 3rd slot has a gap in the beginning let mut missing_shreds = vec![]; for slot in 0..num_slots { let mut shreds_for_slot = shreds.drain(..shreds_per_slot).collect_vec(); if slot % 3 == 0 { let shred0 = shreds_for_slot.remove(0); missing_shreds.push(shred0); blocktree.insert_shreds(shreds_for_slot, None).unwrap(); } else { blocktree.insert_shreds(shreds_for_slot, None).unwrap(); } } // Check metadata for i in 0..num_slots { let s = blocktree.meta(i as u64).unwrap().unwrap(); // The last slot will not chain to any other slots if i as u64 != num_slots - 1 { assert_eq!(s.next_slots, vec![i as u64 + 1]); } else { assert!(s.next_slots.is_empty()); } if i == 0 { assert_eq!(s.parent_slot, 0); } else { assert_eq!(s.parent_slot, i - 1); } assert_eq!(s.last_index, shreds_per_slot as u64 - 1); // Other than slot 0, no slots should be part of the trunk if i != 0 { assert!(!s.is_connected); } else { assert!(s.is_connected); } } // Iteratively finish every 3rd slot, and check that all slots up to and including // slot_index + 3 become part of the trunk for slot_index in 0..num_slots { if slot_index % 3 == 0 { let shred = missing_shreds.remove(0); blocktree.insert_shreds(vec![shred], None).unwrap(); for i in 0..num_slots { let s = blocktree.meta(i as u64).unwrap().unwrap(); if i != num_slots - 1 { assert_eq!(s.next_slots, vec![i as u64 + 1]); } else { assert!(s.next_slots.is_empty()); } if i <= slot_index as u64 + 3 { assert!(s.is_connected); } else { assert!(!s.is_connected); } if i == 0 { assert_eq!(s.parent_slot, 0); } else { assert_eq!(s.parent_slot, i - 1); } assert_eq!(s.last_index, shreds_per_slot as u64 - 1); } } } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } /* #[test] pub fn test_chaining_tree() { let blocktree_path = get_tmp_ledger_path("test_chaining_tree"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let num_tree_levels = 6; assert!(num_tree_levels > 1); let branching_factor: u64 = 4; // Number of slots that will be in the tree let num_slots = (branching_factor.pow(num_tree_levels) - 1) / (branching_factor - 1); let erasure_config = ErasureConfig::default(); let entries_per_slot = erasure_config.num_data() as u64; assert!(entries_per_slot > 1); let (mut shreds, _) = make_many_slot_entries(0, num_slots, entries_per_slot); // Insert tree one slot at a time in a random order let mut slots: Vec<_> = (0..num_slots).collect(); // Get shreds for the slot slots.shuffle(&mut thread_rng()); for slot in slots { // Get shreds for the slot "slot" let slot_shreds = &mut shreds [(slot * entries_per_slot) as usize..((slot + 1) * entries_per_slot) as usize]; for shred in slot_shreds.iter_mut() { // Get the parent slot of the slot in the tree let slot_parent = { if slot == 0 { 0 } else { (slot - 1) / branching_factor } }; shred.set_parent(slot_parent); } let shared_shreds: Vec<_> = slot_shreds .iter() .cloned() .map(|shred| Arc::new(RwLock::new(shred))) .collect(); let mut coding_generator = CodingGenerator::new_from_config(&erasure_config); let coding_shreds = coding_generator.next(&shared_shreds); assert_eq!(coding_shreds.len(), erasure_config.num_coding()); let mut rng = thread_rng(); // Randomly pick whether to insert erasure or coding shreds first if rng.gen_bool(0.5) { blocktree.write_shreds(slot_shreds).unwrap(); blocktree.put_shared_coding_shreds(&coding_shreds).unwrap(); } else { blocktree.put_shared_coding_shreds(&coding_shreds).unwrap(); blocktree.write_shreds(slot_shreds).unwrap(); } } // Make sure everything chains correctly let last_level = (branching_factor.pow(num_tree_levels - 1) - 1) / (branching_factor - 1); for slot in 0..num_slots { let slot_meta = blocktree.meta(slot).unwrap().unwrap(); assert_eq!(slot_meta.consumed, entries_per_slot); assert_eq!(slot_meta.received, entries_per_slot); assert!(slot_meta.is_connected); let slot_parent = { if slot == 0 { 0 } else { (slot - 1) / branching_factor } }; assert_eq!(slot_meta.parent_slot, slot_parent); let expected_children: HashSet<_> = { if slot >= last_level { HashSet::new() } else { let first_child_slot = min(num_slots - 1, slot * branching_factor + 1); let last_child_slot = min(num_slots - 1, (slot + 1) * branching_factor); (first_child_slot..last_child_slot + 1).collect() } }; let result: HashSet<_> = slot_meta.next_slots.iter().cloned().collect(); if expected_children.len() != 0 { assert_eq!(slot_meta.next_slots.len(), branching_factor as usize); } else { assert_eq!(slot_meta.next_slots.len(), 0); } assert_eq!(expected_children, result); } // No orphan slots should exist assert!(blocktree.orphans_cf.is_empty().unwrap()) } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } */ #[test] pub fn test_get_slots_since() { let blocktree_path = get_tmp_ledger_path("test_get_slots_since"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Slot doesn't exist assert!(blocktree.get_slots_since(&vec![0]).unwrap().is_empty()); let mut meta0 = SlotMeta::new(0, 0); blocktree.meta_cf.put(0, &meta0).unwrap(); // Slot exists, chains to nothing let expected: HashMap> = HashMap::from_iter(vec![(0, vec![])].into_iter()); assert_eq!(blocktree.get_slots_since(&vec![0]).unwrap(), expected); meta0.next_slots = vec![1, 2]; blocktree.meta_cf.put(0, &meta0).unwrap(); // Slot exists, chains to some other slots let expected: HashMap> = HashMap::from_iter(vec![(0, vec![1, 2])].into_iter()); assert_eq!(blocktree.get_slots_since(&vec![0]).unwrap(), expected); assert_eq!(blocktree.get_slots_since(&vec![0, 1]).unwrap(), expected); let mut meta3 = SlotMeta::new(3, 1); meta3.next_slots = vec![10, 5]; blocktree.meta_cf.put(3, &meta3).unwrap(); let expected: HashMap> = HashMap::from_iter(vec![(0, vec![1, 2]), (3, vec![10, 5])].into_iter()); assert_eq!(blocktree.get_slots_since(&vec![0, 1, 3]).unwrap(), expected); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_orphans() { let blocktree_path = get_tmp_ledger_path("test_orphans"); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Create shreds and entries let entries_per_slot = 1; let (mut shreds, _) = make_many_slot_entries(0, 3, entries_per_slot); let shreds_per_slot = shreds.len() / 3; // Write slot 2, which chains to slot 1. We're missing slot 0, // so slot 1 is the orphan let shreds_for_slot = shreds.drain((shreds_per_slot * 2)..).collect_vec(); blocktree.insert_shreds(shreds_for_slot, None).unwrap(); let meta = blocktree .meta(1) .expect("Expect database get to succeed") .unwrap(); assert!(is_orphan(&meta)); assert_eq!(blocktree.get_orphans(None), vec![1]); // Write slot 1 which chains to slot 0, so now slot 0 is the // orphan, and slot 1 is no longer the orphan. let shreds_for_slot = shreds.drain(shreds_per_slot..).collect_vec(); blocktree.insert_shreds(shreds_for_slot, None).unwrap(); let meta = blocktree .meta(1) .expect("Expect database get to succeed") .unwrap(); assert!(!is_orphan(&meta)); let meta = blocktree .meta(0) .expect("Expect database get to succeed") .unwrap(); assert!(is_orphan(&meta)); assert_eq!(blocktree.get_orphans(None), vec![0]); // Write some slot that also chains to existing slots and orphan, // nothing should change let (shred4, _) = make_slot_entries(4, 0, 1); let (shred5, _) = make_slot_entries(5, 1, 1); blocktree.insert_shreds(shred4, None).unwrap(); blocktree.insert_shreds(shred5, None).unwrap(); assert_eq!(blocktree.get_orphans(None), vec![0]); // Write zeroth slot, no more orphans blocktree.insert_shreds(shreds, None).unwrap(); for i in 0..3 { let meta = blocktree .meta(i) .expect("Expect database get to succeed") .unwrap(); assert!(!is_orphan(&meta)); } // Orphans cf is empty assert!(blocktree.orphans_cf.is_empty().unwrap()) } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } fn test_insert_data_shreds_slots(name: &str, should_bulk_write: bool) { let blocktree_path = get_tmp_ledger_path(name); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Create shreds and entries let num_entries = 20 as u64; let mut entries = vec![]; let mut shreds = vec![]; let mut num_shreds_per_slot = 0; for slot in 0..num_entries { let parent_slot = { if slot == 0 { 0 } else { slot - 1 } }; let (mut shred, entry) = make_slot_entries(slot, parent_slot, 1); num_shreds_per_slot = shred.len() as u64; shred .iter_mut() .enumerate() .for_each(|(i, shred)| shred.set_index(slot as u32 + i as u32)); shreds.extend(shred); entries.extend(entry); } let num_shreds = shreds.len(); // Write shreds to the database if should_bulk_write { blocktree.insert_shreds(shreds, None).unwrap(); } else { for _ in 0..num_shreds { let shred = shreds.remove(0); blocktree.insert_shreds(vec![shred], None).unwrap(); } } for i in 0..num_entries - 1 { assert_eq!( blocktree.get_slot_entries(i, i, None).unwrap()[0], entries[i as usize] ); let meta = blocktree.meta(i).unwrap().unwrap(); assert_eq!(meta.received, i + num_shreds_per_slot); assert_eq!(meta.last_index, i + num_shreds_per_slot - 1); if i != 0 { assert_eq!(meta.parent_slot, i - 1); assert_eq!(meta.consumed, 0); } else { assert_eq!(meta.parent_slot, 0); assert_eq!(meta.consumed, num_shreds_per_slot); } } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_find_missing_data_indexes() { let slot = 0; let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Write entries let gap: u64 = 10; assert!(gap > 3); let num_entries = 10; let entries = create_ticks(num_entries, Hash::default()); let mut shreds = entries_to_test_shreds(entries, slot, 0, true); let num_shreds = shreds.len(); for (i, b) in shreds.iter_mut().enumerate() { b.set_index(i as u32 * gap as u32); b.set_slot(slot); } blocktree.insert_shreds(shreds, None).unwrap(); // Index of the first shred is 0 // Index of the second shred is "gap" // Thus, the missing indexes should then be [1, gap - 1] for the input index // range of [0, gap) let expected: Vec = (1..gap).collect(); assert_eq!( blocktree.find_missing_data_indexes(slot, 0, gap, gap as usize), expected ); assert_eq!( blocktree.find_missing_data_indexes(slot, 1, gap, (gap - 1) as usize), expected, ); assert_eq!( blocktree.find_missing_data_indexes(slot, 0, gap - 1, (gap - 1) as usize), &expected[..expected.len() - 1], ); assert_eq!( blocktree.find_missing_data_indexes(slot, gap - 2, gap, gap as usize), vec![gap - 2, gap - 1], ); assert_eq!( blocktree.find_missing_data_indexes(slot, gap - 2, gap, 1), vec![gap - 2], ); assert_eq!( blocktree.find_missing_data_indexes(slot, 0, gap, 1), vec![1], ); // Test with end indexes that are greater than the last item in the ledger let mut expected: Vec = (1..gap).collect(); expected.push(gap + 1); assert_eq!( blocktree.find_missing_data_indexes(slot, 0, gap + 2, (gap + 2) as usize), expected, ); assert_eq!( blocktree.find_missing_data_indexes(slot, 0, gap + 2, (gap - 1) as usize), &expected[..expected.len() - 1], ); for i in 0..num_shreds as u64 { for j in 0..i { let expected: Vec = (j..i) .flat_map(|k| { let begin = k * gap + 1; let end = (k + 1) * gap; (begin..end) }) .collect(); assert_eq!( blocktree.find_missing_data_indexes( slot, j * gap, i * gap, ((i - j) * gap) as usize ), expected, ); } } drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_find_missing_data_indexes_sanity() { let slot = 0; let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Early exit conditions let empty: Vec = vec![]; assert_eq!(blocktree.find_missing_data_indexes(slot, 0, 0, 1), empty); assert_eq!(blocktree.find_missing_data_indexes(slot, 5, 5, 1), empty); assert_eq!(blocktree.find_missing_data_indexes(slot, 4, 3, 1), empty); assert_eq!(blocktree.find_missing_data_indexes(slot, 1, 2, 0), empty); let entries = create_ticks(20, Hash::default()); let mut shreds = entries_to_test_shreds(entries, slot, 0, true); shreds.drain(2..); const ONE: u64 = 1; const OTHER: u64 = 4; shreds[0].set_index(ONE as u32); shreds[1].set_index(OTHER as u32); // Insert one shred at index = first_index blocktree.insert_shreds(shreds, None).unwrap(); const STARTS: u64 = OTHER * 2; const END: u64 = OTHER * 3; const MAX: usize = 10; // The first shred has index = first_index. Thus, for i < first_index, // given the input range of [i, first_index], the missing indexes should be // [i, first_index - 1] for start in 0..STARTS { let result = blocktree.find_missing_data_indexes( slot, start, // start END, //end MAX, //max ); let expected: Vec = (start..END).filter(|i| *i != ONE && *i != OTHER).collect(); assert_eq!(result, expected); } drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_no_missing_shred_indexes() { let slot = 0; let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); // Write entries let num_entries = 10; let entries = create_ticks(num_entries, Hash::default()); let shreds = entries_to_test_shreds(entries, slot, 0, true); let num_shreds = shreds.len(); blocktree.insert_shreds(shreds, None).unwrap(); let empty: Vec = vec![]; for i in 0..num_shreds as u64 { for j in 0..i { assert_eq!( blocktree.find_missing_data_indexes(slot, j, i, (i - j) as usize), empty ); } } drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_should_insert_data_shred() { let (mut shreds, _) = make_slot_entries(0, 0, 200); let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let index_cf = blocktree.db.column::(); let last_root = RwLock::new(0); // Insert the first 5 shreds, we don't have a "is_last" shred yet blocktree .insert_shreds(shreds[0..5].to_vec(), None) .unwrap(); // Trying to insert a shred less than `slot_meta.consumed` should fail let slot_meta = blocktree.meta(0).unwrap().unwrap(); let index = index_cf.get(0).unwrap().unwrap(); assert_eq!(slot_meta.consumed, 5); assert_eq!( Blocktree::should_insert_data_shred( &shreds[1], &slot_meta, index.data(), &last_root ), false ); // Trying to insert the same shred again should fail // skip over shred 5 so the `slot_meta.consumed` doesn't increment blocktree .insert_shreds(shreds[6..7].to_vec(), None) .unwrap(); let slot_meta = blocktree.meta(0).unwrap().unwrap(); let index = index_cf.get(0).unwrap().unwrap(); assert_eq!( Blocktree::should_insert_data_shred( &shreds[6], &slot_meta, index.data(), &last_root ), false ); // Trying to insert another "is_last" shred with index < the received index should fail // skip over shred 7 blocktree .insert_shreds(shreds[8..9].to_vec(), None) .unwrap(); let slot_meta = blocktree.meta(0).unwrap().unwrap(); let index = index_cf.get(0).unwrap().unwrap(); assert_eq!(slot_meta.received, 9); let shred7 = { if shreds[7].is_data() { shreds[7].set_last_in_slot(); shreds[7].clone() } else { panic!("Shred in unexpected format") } }; assert_eq!( Blocktree::should_insert_data_shred(&shred7, &slot_meta, index.data(), &last_root), false ); // Insert all pending shreds let mut shred8 = shreds[8].clone(); blocktree.insert_shreds(shreds, None).unwrap(); let slot_meta = blocktree.meta(0).unwrap().unwrap(); let index = index_cf.get(0).unwrap().unwrap(); // Trying to insert a shred with index > the "is_last" shred should fail if shred8.is_data() { shred8.set_slot(slot_meta.last_index + 1); } else { panic!("Shred in unexpected format") } assert_eq!( Blocktree::should_insert_data_shred(&shred7, &slot_meta, index.data(), &last_root), false ); } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_should_insert_coding_shred() { let blocktree_path = get_tmp_ledger_path!(); { let blocktree = Blocktree::open(&blocktree_path).unwrap(); let index_cf = blocktree.db.column::(); let last_root = RwLock::new(0); let slot = 1; let mut shred = Shredder::new_coding_shred_header(slot, 11, 11, 11, 10); let coding_shred = Shred::new_empty_from_header(shred.clone()); // Insert a good coding shred assert!(Blocktree::should_insert_coding_shred( &coding_shred, Index::new(slot).coding(), &last_root )); // Insertion should succeed blocktree .insert_shreds(vec![coding_shred.clone()], None) .unwrap(); // Trying to insert the same shred again should fail { let index = index_cf .get(shred.common_header.coding_header.slot) .unwrap() .unwrap(); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } shred.common_header.coding_header.index += 1; // Establish a baseline that works { let coding_shred = Shred::new_empty_from_header(shred.clone()); let index = index_cf .get(shred.common_header.coding_header.slot) .unwrap() .unwrap(); assert!(Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } // Trying to insert a shred with index < position should fail { let mut coding_shred = Shred::new_empty_from_header(shred.clone()); let index = coding_shred.headers.common_header.position - 1; coding_shred.set_index(index as u32); let index = index_cf.get(coding_shred.slot()).unwrap().unwrap(); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } // Trying to insert shred with num_coding == 0 should fail { let mut coding_shred = Shred::new_empty_from_header(shred.clone()); coding_shred.headers.common_header.num_coding_shreds = 0; let index = index_cf.get(coding_shred.slot()).unwrap().unwrap(); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } // Trying to insert shred with pos >= num_coding should fail { let mut coding_shred = Shred::new_empty_from_header(shred.clone()); coding_shred.headers.common_header.num_coding_shreds = coding_shred.headers.common_header.position; let index = index_cf.get(coding_shred.slot()).unwrap().unwrap(); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } // Trying to insert with set_index with num_coding that would imply the last blob // has index > u32::MAX should fail { let mut coding_shred = Shred::new_empty_from_header(shred.clone()); coding_shred.headers.common_header.num_coding_shreds = 3; coding_shred.headers.common_header.coding_header.index = std::u32::MAX - 1; coding_shred.headers.common_header.position = 0; let index = index_cf.get(coding_shred.slot()).unwrap().unwrap(); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); // Decreasing the number of num_coding_shreds will put it within the allowed limit coding_shred.headers.common_header.num_coding_shreds = 2; assert!(Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); // Insertion should succeed blocktree.insert_shreds(vec![coding_shred], None).unwrap(); } // Trying to insert value into slot <= than last root should fail { let mut coding_shred = Shred::new_empty_from_header(shred.clone()); let index = index_cf.get(coding_shred.slot()).unwrap().unwrap(); coding_shred.set_slot(*last_root.read().unwrap()); assert!(!Blocktree::should_insert_coding_shred( &coding_shred, index.coding(), &last_root )); } } Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] pub fn test_insert_multiple_is_last() { let (shreds, _) = make_slot_entries(0, 0, 20); let num_shreds = shreds.len() as u64; let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); blocktree.insert_shreds(shreds, None).unwrap(); let slot_meta = blocktree.meta(0).unwrap().unwrap(); assert_eq!(slot_meta.consumed, num_shreds); assert_eq!(slot_meta.received, num_shreds); assert_eq!(slot_meta.last_index, num_shreds - 1); assert!(slot_meta.is_full()); let (shreds, _) = make_slot_entries(0, 0, 22); blocktree.insert_shreds(shreds, None).unwrap(); let slot_meta = blocktree.meta(0).unwrap().unwrap(); assert_eq!(slot_meta.consumed, num_shreds); assert_eq!(slot_meta.received, num_shreds); assert_eq!(slot_meta.last_index, num_shreds - 1); assert!(slot_meta.is_full()); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_slot_data_iterator() { // Construct the shreds let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); let shreds_per_slot = 10; let slots = vec![2, 4, 8, 12]; let all_shreds = make_chaining_slot_entries(&slots, shreds_per_slot); let slot_8_shreds = all_shreds[2].0.clone(); for (slot_shreds, _) in all_shreds { blocktree.insert_shreds(slot_shreds, None).unwrap(); } // Slot doesnt exist, iterator should be empty let shred_iter = blocktree.slot_data_iterator(5).unwrap(); let result: Vec<_> = shred_iter.collect(); assert_eq!(result, vec![]); // Test that the iterator for slot 8 contains what was inserted earlier let shred_iter = blocktree.slot_data_iterator(8).unwrap(); let result: Vec = shred_iter .filter_map(|(_, bytes)| Shred::new_from_serialized_shred(bytes.to_vec()).ok()) .collect(); assert_eq!(result.len(), slot_8_shreds.len()); assert_eq!(result, slot_8_shreds); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_set_roots() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); let chained_slots = vec![0, 2, 4, 7, 12, 15]; assert_eq!(blocktree.last_root(), 0); blocktree.set_roots(&chained_slots).unwrap(); assert_eq!(blocktree.last_root(), 15); for i in chained_slots { assert!(blocktree.is_root(i)); } drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_prune() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); let (shreds, _) = make_many_slot_entries(0, 50, 6); let shreds_per_slot = shreds.len() as u64 / 50; blocktree.insert_shreds(shreds, None).unwrap(); blocktree .slot_meta_iterator(0) .unwrap() .for_each(|(_, meta)| assert_eq!(meta.last_index, shreds_per_slot - 1)); blocktree.prune(5); blocktree .slot_meta_iterator(0) .unwrap() .for_each(|(slot, meta)| { assert!(slot <= 5); assert_eq!(meta.last_index, shreds_per_slot - 1) }); let data_iter = blocktree .data_shred_cf .iter(IteratorMode::From((0, 0), IteratorDirection::Forward)) .unwrap(); for ((slot, _), _) in data_iter { if slot > 5 { assert!(false); } } drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_purge_slots() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); let (shreds, _) = make_many_slot_entries(0, 50, 5); blocktree.insert_shreds(shreds, None).unwrap(); blocktree.purge_slots(0, Some(5)); blocktree .slot_meta_iterator(0) .unwrap() .for_each(|(slot, _)| { assert!(slot > 5); }); blocktree.purge_slots(0, None); blocktree.slot_meta_iterator(0).unwrap().for_each(|(_, _)| { assert!(false); }); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_purge_huge() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); let (shreds, _) = make_many_slot_entries(0, 5000, 10); blocktree.insert_shreds(shreds, None).unwrap(); blocktree.purge_slots(0, Some(4999)); blocktree .slot_meta_iterator(0) .unwrap() .for_each(|(slot, _)| { assert_eq!(slot, 5000); }); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[should_panic] #[test] fn test_prune_out_of_bounds() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); // slot 5 does not exist, prune should panic blocktree.prune(5); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } #[test] fn test_iter_bounds() { let blocktree_path = get_tmp_ledger_path!(); let blocktree = Blocktree::open(&blocktree_path).unwrap(); // slot 5 does not exist, iter should be ok and should be a noop blocktree .slot_meta_iterator(5) .unwrap() .for_each(|_| assert!(false)); drop(blocktree); Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction"); } pub fn make_slot_entries( slot: u64, parent_slot: u64, num_entries: u64, ) -> (Vec, Vec) { let entries = create_ticks(num_entries, Hash::default()); let shreds = entries_to_test_shreds(entries.clone(), slot, parent_slot, true); (shreds, entries) } pub fn make_many_slot_entries( start_slot: u64, num_slots: u64, entries_per_slot: u64, ) -> (Vec, Vec) { let mut shreds = vec![]; let mut entries = vec![]; for slot in start_slot..start_slot + num_slots { let parent_slot = if slot == 0 { 0 } else { slot - 1 }; let (slot_shreds, slot_entries) = make_slot_entries(slot, parent_slot, entries_per_slot); shreds.extend(slot_shreds); entries.extend(slot_entries); } (shreds, entries) } // Create shreds for slots that have a parent-child relationship defined by the input `chain` pub fn make_chaining_slot_entries( chain: &[u64], entries_per_slot: u64, ) -> Vec<(Vec, Vec)> { let mut slots_shreds_and_entries = vec![]; for (i, slot) in chain.iter().enumerate() { let parent_slot = { if *slot == 0 || i == 0 { 0 } else { chain[i - 1] } }; let result = make_slot_entries(*slot, parent_slot, entries_per_slot); slots_shreds_and_entries.push(result); } slots_shreds_and_entries } }