solana/program-test/tests/warp.rs

475 lines
16 KiB
Rust

#![allow(clippy::arithmetic_side_effects)]
mod setup;
use {
bincode::deserialize,
log::debug,
setup::{setup_stake, setup_vote},
solana_banks_client::BanksClient,
solana_program_test::{processor, ProgramTest, ProgramTestBanksClientExt, ProgramTestError},
solana_sdk::{
account::Account,
account_info::{next_account_info, AccountInfo},
clock::Clock,
entrypoint::ProgramResult,
instruction::{AccountMeta, Instruction, InstructionError},
program_error::ProgramError,
pubkey::Pubkey,
rent::Rent,
signature::{Keypair, Signer},
stake::{
instruction as stake_instruction,
state::{StakeActivationStatus, StakeStateV2},
},
sysvar::{
clock,
stake_history::{self, StakeHistory},
Sysvar,
},
transaction::{Transaction, TransactionError},
},
solana_stake_program::stake_state,
solana_vote_program::vote_state,
std::convert::TryInto,
};
// Use a big number to be sure that we get the right error
const WRONG_SLOT_ERROR: u32 = 123456;
fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
input: &[u8],
) -> ProgramResult {
let account_info_iter = &mut accounts.iter();
let clock_info = next_account_info(account_info_iter)?;
let clock = &Clock::from_account_info(clock_info)?;
let expected_slot = u64::from_le_bytes(input.try_into().unwrap());
if clock.slot == expected_slot {
Ok(())
} else {
Err(ProgramError::Custom(WRONG_SLOT_ERROR))
}
}
#[tokio::test]
async fn clock_sysvar_updated_from_warp() {
let program_id = Pubkey::new_unique();
// Initialize and start the test network
let program_test = ProgramTest::new(
"program-test-warp",
program_id,
processor!(process_instruction),
);
let mut context = program_test.start_with_context().await;
let mut expected_slot = 100_000;
let instruction = Instruction::new_with_bincode(
program_id,
&expected_slot,
vec![AccountMeta::new_readonly(clock::id(), false)],
);
// Fail transaction
let transaction = Transaction::new_signed_with_payer(
&[instruction.clone()],
Some(&context.payer.pubkey()),
&[&context.payer],
context.last_blockhash,
);
assert_eq!(
context
.banks_client
.process_transaction(transaction)
.await
.unwrap_err()
.unwrap(),
TransactionError::InstructionError(0, InstructionError::Custom(WRONG_SLOT_ERROR))
);
// Warp to success!
context.warp_to_slot(expected_slot).unwrap();
let instruction = Instruction::new_with_bincode(
program_id,
&expected_slot,
vec![AccountMeta::new_readonly(clock::id(), false)],
);
let transaction = Transaction::new_signed_with_payer(
&[instruction],
Some(&context.payer.pubkey()),
&[&context.payer],
context.last_blockhash,
);
context
.banks_client
.process_transaction(transaction)
.await
.unwrap();
// Try warping ahead one slot (corner case in warp logic)
expected_slot += 1;
assert!(context.warp_to_slot(expected_slot).is_ok());
let instruction = Instruction::new_with_bincode(
program_id,
&expected_slot,
vec![AccountMeta::new_readonly(clock::id(), false)],
);
let transaction = Transaction::new_signed_with_payer(
&[instruction],
Some(&context.payer.pubkey()),
&[&context.payer],
context.last_blockhash,
);
context
.banks_client
.process_transaction(transaction)
.await
.unwrap();
// Try warping again to the same slot
assert_eq!(
context.warp_to_slot(expected_slot).unwrap_err(),
ProgramTestError::InvalidWarpSlot,
);
}
#[tokio::test]
async fn stake_rewards_from_warp() {
// Initialize and start the test network
let program_test = ProgramTest::default();
let mut context = program_test.start_with_context().await;
context.warp_to_slot(100).unwrap();
let vote_address = setup_vote(&mut context).await;
let user_keypair = Keypair::new();
let stake_lamports = 1_000_000_000_000;
let stake_address =
setup_stake(&mut context, &user_keypair, &vote_address, stake_lamports).await;
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert_eq!(account.lamports, stake_lamports);
// warp one epoch forward for normal inflation, no rewards collected
let first_normal_slot = context.genesis_config().epoch_schedule.first_normal_slot;
context.warp_to_slot(first_normal_slot).unwrap();
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert_eq!(account.lamports, stake_lamports);
context.increment_vote_account_credits(&vote_address, 100);
// go forward and see that rewards have been distributed
let slots_per_epoch = context.genesis_config().epoch_schedule.slots_per_epoch;
context
.warp_to_slot(first_normal_slot + slots_per_epoch + 1) // when partitioned rewards are enabled, the rewards are paid at 1 slot after the first slot of the epoch
.unwrap();
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert!(account.lamports > stake_lamports);
// check that stake is fully active
let stake_history_account = context
.banks_client
.get_account(stake_history::id())
.await
.expect("account exists")
.unwrap();
let clock_account = context
.banks_client
.get_account(clock::id())
.await
.expect("account exists")
.unwrap();
let stake_state: StakeStateV2 = deserialize(&account.data).unwrap();
let stake_history: StakeHistory = deserialize(&stake_history_account.data).unwrap();
let clock: Clock = deserialize(&clock_account.data).unwrap();
let stake = stake_state.stake().unwrap();
assert_eq!(
stake
.delegation
.stake_activating_and_deactivating(clock.epoch, &stake_history, None),
StakeActivationStatus::with_effective(stake.delegation.stake),
);
}
#[tokio::test]
async fn stake_rewards_filter_bench_100() {
stake_rewards_filter_bench_core(100).await;
}
async fn stake_rewards_filter_bench_core(num_stake_accounts: u64) {
// Initialize and start the test network
let mut program_test = ProgramTest::default();
// create vote account
let vote_address = Pubkey::new_unique();
let node_address = Pubkey::new_unique();
let vote_account = vote_state::create_account(&vote_address, &node_address, 0, 1_000_000_000);
program_test.add_account(vote_address, vote_account.clone().into());
// create stake accounts with 0.9 sol to test min-stake filtering
const TEST_FILTER_STAKE: u64 = 900_000_000; // 0.9 sol
let mut to_filter = vec![];
for i in 0..num_stake_accounts {
let stake_pubkey = Pubkey::new_unique();
let stake_account = Account::from(stake_state::create_account(
&stake_pubkey,
&vote_address,
&vote_account,
&Rent::default(),
TEST_FILTER_STAKE,
));
program_test.add_account(stake_pubkey, stake_account);
to_filter.push(stake_pubkey);
if i % 100 == 0 {
debug!("create stake account {} {}", i, stake_pubkey);
}
}
let mut context = program_test.start_with_context().await;
let stake_lamports = 2_000_000_000_000;
let user_keypair = Keypair::new();
let stake_address =
setup_stake(&mut context, &user_keypair, &vote_address, stake_lamports).await;
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert_eq!(account.lamports, stake_lamports);
// warp one epoch forward for normal inflation, no rewards collected
let first_normal_slot = context.genesis_config().epoch_schedule.first_normal_slot;
context.warp_to_slot(first_normal_slot).unwrap();
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert_eq!(account.lamports, stake_lamports);
context.increment_vote_account_credits(&vote_address, 100);
// go forward and see that rewards have been distributed
let slots_per_epoch = context.genesis_config().epoch_schedule.slots_per_epoch;
context
.warp_to_slot(first_normal_slot + slots_per_epoch + 1) // when partitioned rewards are enabled, the rewards are paid at 1 slot after the first slot of the epoch
.unwrap();
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert!(account.lamports > stake_lamports);
// check that filtered stake accounts are excluded from receiving epoch rewards
for stake_address in to_filter {
let account = context
.banks_client
.get_account(stake_address)
.await
.expect("account exists")
.unwrap();
assert_eq!(account.lamports, TEST_FILTER_STAKE);
}
// check that stake is fully active
let stake_history_account = context
.banks_client
.get_account(stake_history::id())
.await
.expect("account exists")
.unwrap();
let clock_account = context
.banks_client
.get_account(clock::id())
.await
.expect("account exists")
.unwrap();
let stake_state: StakeStateV2 = deserialize(&account.data).unwrap();
let stake_history: StakeHistory = deserialize(&stake_history_account.data).unwrap();
let clock: Clock = deserialize(&clock_account.data).unwrap();
let stake = stake_state.stake().unwrap();
assert_eq!(
stake
.delegation
.stake_activating_and_deactivating(clock.epoch, &stake_history, None),
StakeActivationStatus::with_effective(stake.delegation.stake),
);
}
async fn check_credits_observed(
banks_client: &mut BanksClient,
stake_address: Pubkey,
expected_credits: u64,
) {
let stake_account = banks_client
.get_account(stake_address)
.await
.unwrap()
.unwrap();
let stake_state: StakeStateV2 = deserialize(&stake_account.data).unwrap();
assert_eq!(
stake_state.stake().unwrap().credits_observed,
expected_credits
);
}
#[tokio::test]
async fn stake_merge_immediately_after_activation() {
let program_test = ProgramTest::default();
let mut context = program_test.start_with_context().await;
context.warp_to_slot(100).unwrap();
let vote_address = setup_vote(&mut context).await;
context.increment_vote_account_credits(&vote_address, 100);
let first_normal_slot = context.genesis_config().epoch_schedule.first_normal_slot;
let slots_per_epoch = context.genesis_config().epoch_schedule.slots_per_epoch;
let mut current_slot = first_normal_slot + slots_per_epoch;
context.warp_to_slot(current_slot).unwrap();
context.warp_forward_force_reward_interval_end().unwrap();
// this is annoying, but if no stake has earned rewards, the bank won't
// iterate through the stakes at all, which means we can only test the
// behavior of advancing credits observed if another stake is earning rewards
// make a base stake which receives rewards
let user_keypair = Keypair::new();
let stake_lamports = 1_000_000_000_000;
let base_stake_address =
setup_stake(&mut context, &user_keypair, &vote_address, stake_lamports).await;
check_credits_observed(&mut context.banks_client, base_stake_address, 100).await;
context.increment_vote_account_credits(&vote_address, 100);
let clock_account = context
.banks_client
.get_account(clock::id())
.await
.expect("account exists")
.unwrap();
let clock: Clock = deserialize(&clock_account.data).unwrap();
context.warp_to_epoch(clock.epoch + 1).unwrap();
current_slot += slots_per_epoch;
context.warp_forward_force_reward_interval_end().unwrap();
// make another stake which will just have its credits observed advanced
let absorbed_stake_address =
setup_stake(&mut context, &user_keypair, &vote_address, stake_lamports).await;
// the new stake is at the right value
check_credits_observed(&mut context.banks_client, absorbed_stake_address, 200).await;
// the base stake hasn't been moved forward because no rewards were earned
check_credits_observed(&mut context.banks_client, base_stake_address, 100).await;
context.increment_vote_account_credits(&vote_address, 100);
current_slot += slots_per_epoch;
context.warp_to_slot(current_slot).unwrap();
context.warp_forward_force_reward_interval_end().unwrap();
// check that base stake has earned rewards and credits moved forward
let stake_account = context
.banks_client
.get_account(base_stake_address)
.await
.unwrap()
.unwrap();
let stake_state: StakeStateV2 = deserialize(&stake_account.data).unwrap();
assert_eq!(stake_state.stake().unwrap().credits_observed, 300);
assert!(stake_account.lamports > stake_lamports);
// check that new stake hasn't earned rewards, but that credits_observed have been advanced
let stake_account = context
.banks_client
.get_account(absorbed_stake_address)
.await
.unwrap()
.unwrap();
let stake_state: StakeStateV2 = deserialize(&stake_account.data).unwrap();
assert_eq!(stake_state.stake().unwrap().credits_observed, 300);
assert_eq!(stake_account.lamports, stake_lamports);
// sanity-check that the activation epoch was actually last epoch
let clock_account = context
.banks_client
.get_account(clock::id())
.await
.unwrap()
.unwrap();
let clock: Clock = deserialize(&clock_account.data).unwrap();
assert_eq!(
clock.epoch,
stake_state.delegation().unwrap().activation_epoch + 1
);
// sanity-check that it's possible to merge the just-activated stake with the older stake!
let transaction = Transaction::new_signed_with_payer(
&stake_instruction::merge(
&base_stake_address,
&absorbed_stake_address,
&user_keypair.pubkey(),
),
Some(&context.payer.pubkey()),
&vec![&context.payer, &user_keypair],
context.last_blockhash,
);
context
.banks_client
.process_transaction(transaction)
.await
.unwrap();
}
#[tokio::test]
async fn get_blockhash_post_warp() {
let program_test = ProgramTest::default();
let mut context = program_test.start_with_context().await;
let new_blockhash = context
.banks_client
.get_new_latest_blockhash(&context.last_blockhash)
.await
.unwrap();
let mut tx = Transaction::new_with_payer(&[], Some(&context.payer.pubkey()));
tx.sign(&[&context.payer], new_blockhash);
context.banks_client.process_transaction(tx).await.unwrap();
context.warp_to_slot(10).unwrap();
let new_blockhash = context
.banks_client
.get_new_latest_blockhash(&context.last_blockhash)
.await
.unwrap();
let mut tx = Transaction::new_with_payer(&[], Some(&context.payer.pubkey()));
tx.sign(&[&context.payer], new_blockhash);
context.banks_client.process_transaction(tx).await.unwrap();
}