solana/core/src/consensus.rs

1820 lines
64 KiB
Rust

use crate::{
progress_map::{LockoutIntervals, ProgressMap},
pubkey_references::PubkeyReferences,
};
use chrono::prelude::*;
use solana_ledger::bank_forks::BankForks;
use solana_runtime::bank::Bank;
use solana_sdk::{
account::Account,
clock::{Slot, UnixTimestamp},
hash::Hash,
instruction::Instruction,
pubkey::Pubkey,
};
use solana_vote_program::{
vote_instruction,
vote_state::{
BlockTimestamp, Lockout, Vote, VoteState, MAX_LOCKOUT_HISTORY, TIMESTAMP_SLOT_INTERVAL,
},
};
use std::{
collections::{BTreeMap, HashMap, HashSet},
ops::Bound::{Included, Unbounded},
sync::Arc,
};
#[derive(PartialEq, Clone, Debug)]
pub enum SwitchForkDecision {
SwitchProof(Hash),
NoSwitch,
FailedSwitchThreshold,
}
impl SwitchForkDecision {
pub fn to_vote_instruction(
&self,
vote: Vote,
vote_account_pubkey: &Pubkey,
authorized_voter_pubkey: &Pubkey,
) -> Option<Instruction> {
match self {
SwitchForkDecision::FailedSwitchThreshold => None,
SwitchForkDecision::NoSwitch => Some(vote_instruction::vote(
vote_account_pubkey,
authorized_voter_pubkey,
vote,
)),
SwitchForkDecision::SwitchProof(switch_proof_hash) => {
Some(vote_instruction::vote_switch(
vote_account_pubkey,
authorized_voter_pubkey,
vote,
*switch_proof_hash,
))
}
}
}
}
pub const VOTE_THRESHOLD_DEPTH: usize = 8;
pub const VOTE_THRESHOLD_SIZE: f64 = 2f64 / 3f64;
pub const SWITCH_FORK_THRESHOLD: f64 = 0.38;
#[derive(Default, Debug, Clone)]
pub struct StakeLockout {
lockout: u64,
stake: u64,
}
impl StakeLockout {
pub fn new(lockout: u64, stake: u64) -> Self {
Self { lockout, stake }
}
pub fn lockout(&self) -> u64 {
self.lockout
}
pub fn stake(&self) -> u64 {
self.stake
}
}
pub struct Tower {
node_pubkey: Pubkey,
threshold_depth: usize,
threshold_size: f64,
lockouts: VoteState,
last_vote: Vote,
last_timestamp: BlockTimestamp,
}
impl Default for Tower {
fn default() -> Self {
Self {
node_pubkey: Pubkey::default(),
threshold_depth: VOTE_THRESHOLD_DEPTH,
threshold_size: VOTE_THRESHOLD_SIZE,
lockouts: VoteState::default(),
last_vote: Vote::default(),
last_timestamp: BlockTimestamp::default(),
}
}
}
impl Tower {
pub fn new(node_pubkey: &Pubkey, vote_account_pubkey: &Pubkey, bank_forks: &BankForks) -> Self {
let mut tower = Self::new_with_key(node_pubkey);
tower.initialize_lockouts_from_bank_forks(&bank_forks, vote_account_pubkey);
tower
}
pub fn new_with_key(node_pubkey: &Pubkey) -> Self {
Self {
node_pubkey: *node_pubkey,
..Tower::default()
}
}
#[cfg(test)]
pub fn new_for_tests(threshold_depth: usize, threshold_size: f64) -> Self {
Self {
threshold_depth,
threshold_size,
..Tower::default()
}
}
pub fn collect_vote_lockouts<F>(
&self,
bank_slot: u64,
vote_accounts: F,
ancestors: &HashMap<Slot, HashSet<u64>>,
all_pubkeys: &mut PubkeyReferences,
) -> (HashMap<Slot, StakeLockout>, u64, u128, LockoutIntervals)
where
F: Iterator<Item = (Pubkey, (u64, Account))>,
{
let mut stake_lockouts = HashMap::new();
let mut total_stake = 0;
let mut total_weight = 0;
// Tree of intervals of lockouts of the form [slot, slot + slot.lockout],
// keyed by end of the range
let mut lockout_intervals = BTreeMap::new();
for (key, (lamports, account)) in vote_accounts {
if lamports == 0 {
continue;
}
trace!("{} {} with stake {}", self.node_pubkey, key, lamports);
let vote_state = VoteState::from(&account);
if vote_state.is_none() {
datapoint_warn!(
"tower_warn",
(
"warn",
format!("Unable to get vote_state from account {}", key),
String
),
);
continue;
}
let mut vote_state = vote_state.unwrap();
for vote in &vote_state.votes {
let key = all_pubkeys.get_or_insert(&key);
lockout_intervals
.entry(vote.expiration_slot())
.or_insert_with(Vec::new)
.push((vote.slot, key));
}
if key == self.node_pubkey || vote_state.node_pubkey == self.node_pubkey {
debug!("vote state {:?}", vote_state);
debug!(
"observed slot {}",
vote_state.nth_recent_vote(0).map(|v| v.slot).unwrap_or(0) as i64
);
debug!("observed root {}", vote_state.root_slot.unwrap_or(0) as i64);
datapoint_info!(
"tower-observed",
(
"slot",
vote_state.nth_recent_vote(0).map(|v| v.slot).unwrap_or(0),
i64
),
("root", vote_state.root_slot.unwrap_or(0), i64)
);
}
let start_root = vote_state.root_slot;
vote_state.process_slot_vote_unchecked(bank_slot);
for vote in &vote_state.votes {
total_weight += vote.lockout() as u128 * lamports as u128;
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
if start_root != vote_state.root_slot {
if let Some(root) = start_root {
let vote = Lockout {
confirmation_count: MAX_LOCKOUT_HISTORY as u32,
slot: root,
};
trace!("ROOT: {}", vote.slot);
total_weight += vote.lockout() as u128 * lamports as u128;
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
}
if let Some(root) = vote_state.root_slot {
let vote = Lockout {
confirmation_count: MAX_LOCKOUT_HISTORY as u32,
slot: root,
};
total_weight += vote.lockout() as u128 * lamports as u128;
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
// The last vote in the vote stack is a simulated vote on bank_slot, which
// we added to the vote stack earlier in this function by calling process_vote().
// We don't want to update the ancestors stakes of this vote b/c it does not
// represent an actual vote by the validator.
// Note: It should not be possible for any vote state in this bank to have
// a vote for a slot >= bank_slot, so we are guaranteed that the last vote in
// this vote stack is the simulated vote, so this fetch should be sufficient
// to find the last unsimulated vote.
assert_eq!(
vote_state.nth_recent_vote(0).map(|l| l.slot),
Some(bank_slot)
);
if let Some(vote) = vote_state.nth_recent_vote(1) {
// Update all the parents of this last vote with the stake of this vote account
Self::update_ancestor_stakes(&mut stake_lockouts, vote.slot, lamports, ancestors);
}
total_stake += lamports;
}
(stake_lockouts, total_stake, total_weight, lockout_intervals)
}
pub fn is_slot_confirmed(
&self,
slot: u64,
lockouts: &HashMap<u64, StakeLockout>,
total_staked: u64,
) -> bool {
lockouts
.get(&slot)
.map(|lockout| (lockout.stake as f64 / total_staked as f64) > self.threshold_size)
.unwrap_or(false)
}
fn new_vote(
local_vote_state: &VoteState,
slot: u64,
hash: Hash,
last_bank_slot: Option<Slot>,
) -> (Vote, usize) {
let mut local_vote_state = local_vote_state.clone();
let vote = Vote::new(vec![slot], hash);
local_vote_state.process_vote_unchecked(&vote);
let slots = if let Some(last_bank_slot) = last_bank_slot {
local_vote_state
.votes
.iter()
.map(|v| v.slot)
.skip_while(|s| *s <= last_bank_slot)
.collect()
} else {
local_vote_state.votes.iter().map(|v| v.slot).collect()
};
trace!(
"new vote with {:?} {:?} {:?}",
last_bank_slot,
slots,
local_vote_state.votes
);
(Vote::new(slots, hash), local_vote_state.votes.len() - 1)
}
fn last_bank_vote(bank: &Bank, vote_account_pubkey: &Pubkey) -> Option<Slot> {
let vote_account = bank.vote_accounts().get(vote_account_pubkey)?.1.clone();
let bank_vote_state = VoteState::deserialize(&vote_account.data).ok()?;
bank_vote_state.votes.iter().map(|v| v.slot).last()
}
pub fn new_vote_from_bank(&self, bank: &Bank, vote_account_pubkey: &Pubkey) -> (Vote, usize) {
let last_vote = Self::last_bank_vote(bank, vote_account_pubkey);
Self::new_vote(&self.lockouts, bank.slot(), bank.hash(), last_vote)
}
pub fn record_bank_vote(&mut self, vote: Vote) -> Option<Slot> {
let slot = *vote.slots.last().unwrap_or(&0);
trace!("{} record_vote for {}", self.node_pubkey, slot);
let root_slot = self.lockouts.root_slot;
self.lockouts.process_vote_unchecked(&vote);
self.last_vote = vote;
datapoint_info!(
"tower-vote",
("latest", slot, i64),
("root", self.lockouts.root_slot.unwrap_or(0), i64)
);
if root_slot != self.lockouts.root_slot {
Some(self.lockouts.root_slot.unwrap())
} else {
None
}
}
pub fn record_vote(&mut self, slot: Slot, hash: Hash) -> Option<Slot> {
let vote = Vote::new(vec![slot], hash);
self.record_bank_vote(vote)
}
pub fn last_vote(&self) -> Vote {
self.last_vote.clone()
}
pub fn last_vote_and_timestamp(&mut self) -> Vote {
let mut last_vote = self.last_vote();
let current_slot = last_vote.slots.iter().max().unwrap_or(&0);
last_vote.timestamp = self.maybe_timestamp(*current_slot);
last_vote
}
pub fn root(&self) -> Option<Slot> {
self.lockouts.root_slot
}
// a slot is not recent if it's older than the newest vote we have
pub fn is_recent(&self, slot: u64) -> bool {
if let Some(last_vote) = self.lockouts.votes.back() {
if slot <= last_vote.slot {
return false;
}
}
true
}
pub fn has_voted(&self, slot: u64) -> bool {
for vote in &self.lockouts.votes {
if vote.slot == slot {
return true;
}
}
false
}
pub fn is_locked_out(&self, slot: Slot, ancestors: &HashMap<Slot, HashSet<Slot>>) -> bool {
assert!(ancestors.contains_key(&slot));
if !self.is_recent(slot) {
return true;
}
let mut lockouts = self.lockouts.clone();
lockouts.process_slot_vote_unchecked(slot);
for vote in &lockouts.votes {
if vote.slot == slot {
continue;
}
if !ancestors[&slot].contains(&vote.slot) {
return true;
}
}
if let Some(root_slot) = lockouts.root_slot {
// This case should never happen because bank forks purges all
// non-descendants of the root every time root is set
if slot != root_slot {
assert!(ancestors[&slot].contains(&root_slot));
}
}
false
}
pub(crate) fn check_switch_threshold(
&self,
switch_slot: u64,
ancestors: &HashMap<Slot, HashSet<u64>>,
descendants: &HashMap<Slot, HashSet<u64>>,
progress: &ProgressMap,
total_stake: u64,
epoch_vote_accounts: &HashMap<Pubkey, (u64, Account)>,
) -> SwitchForkDecision {
self.last_vote()
.slots
.last()
.map(|last_vote| {
let last_vote_ancestors = ancestors.get(&last_vote).unwrap();
let switch_slot_ancestors = ancestors.get(&switch_slot).unwrap();
if switch_slot == *last_vote || switch_slot_ancestors.contains(last_vote) {
// If the `switch_slot is a descendant of the last vote,
// no switching proof is necessary
return SwitchForkDecision::NoSwitch;
}
// Should never consider switching to an ancestor
// of your last vote
assert!(!last_vote_ancestors.contains(&switch_slot));
// By this point, we know the `switch_slot` is on a different fork
// (is neither an ancestor nor descendant of `last_vote`), so a
// switching proof is necessary
let switch_proof = Hash::default();
let mut locked_out_stake = 0;
let mut locked_out_vote_accounts = HashSet::new();
for (candidate_slot, descendants) in descendants.iter() {
// 1) Only consider lockouts a tips of forks as that
// includes all ancestors of that fork.
// 2) Don't consider lockouts on the `last_vote` itself
// 3) Don't consider lockouts on any descendants of
// `last_vote`
if !descendants.is_empty()
|| candidate_slot == last_vote
|| ancestors
.get(&candidate_slot)
.expect(
"empty descendants implies this is a child, not parent of root, so must
exist in the ancestors map",
)
.contains(last_vote)
{
continue;
}
// By the time we reach here, any ancestors of the `last_vote`,
// should have been filtered out, as they all have a descendant,
// namely the `last_vote` itself.
assert!(!last_vote_ancestors.contains(candidate_slot));
// Evaluate which vote accounts in the bank are locked out
// in the interval candidate_slot..last_vote, which means
// finding any lockout intervals in the `lockout_intervals` tree
// for this bank that contain `last_vote`.
let lockout_intervals = &progress
.get(&candidate_slot)
.unwrap()
.fork_stats
.lockout_intervals;
// Find any locked out intervals in this bank with endpoint >= last_vote,
// implies they are locked out at last_vote
for (_, value) in lockout_intervals.range((Included(last_vote), Unbounded)) {
for (lockout_interval_start, vote_account_pubkey) in value {
// Only count lockouts on slots that are:
// 1) Not ancestors of `last_vote`
// 2) Not from before the current root as we can't determine if
// anything before the root was an ancestor of `last_vote` or not
if !last_vote_ancestors.contains(lockout_interval_start)
// The check if the key exists in the ancestors map
// is equivalent to checking if the key is above the
// current root.
&& ancestors.contains_key(lockout_interval_start)
&& !locked_out_vote_accounts.contains(vote_account_pubkey)
{
let stake = epoch_vote_accounts
.get(vote_account_pubkey)
.map(|(stake, _)| *stake)
.unwrap_or(0);
locked_out_stake += stake;
locked_out_vote_accounts.insert(vote_account_pubkey);
}
}
}
}
if (locked_out_stake as f64 / total_stake as f64) > SWITCH_FORK_THRESHOLD {
SwitchForkDecision::SwitchProof(switch_proof)
} else {
SwitchForkDecision::FailedSwitchThreshold
}
})
.unwrap_or(SwitchForkDecision::NoSwitch)
}
pub fn check_vote_stake_threshold(
&self,
slot: Slot,
stake_lockouts: &HashMap<u64, StakeLockout>,
total_staked: u64,
) -> bool {
let mut lockouts = self.lockouts.clone();
lockouts.process_slot_vote_unchecked(slot);
let vote = lockouts.nth_recent_vote(self.threshold_depth);
if let Some(vote) = vote {
if let Some(fork_stake) = stake_lockouts.get(&vote.slot) {
let lockout = fork_stake.stake as f64 / total_staked as f64;
trace!(
"fork_stake slot: {}, vote slot: {}, lockout: {} fork_stake: {} total_stake: {}",
slot, vote.slot, lockout, fork_stake.stake, total_staked
);
if vote.confirmation_count as usize > self.threshold_depth {
for old_vote in &self.lockouts.votes {
if old_vote.slot == vote.slot
&& old_vote.confirmation_count == vote.confirmation_count
{
return true;
}
}
}
lockout > self.threshold_size
} else {
false
}
} else {
true
}
}
/// Update lockouts for all the ancestors
fn update_ancestor_lockouts(
stake_lockouts: &mut HashMap<Slot, StakeLockout>,
vote: &Lockout,
ancestors: &HashMap<Slot, HashSet<Slot>>,
) {
// If there's no ancestors, that means this slot must be from before the current root,
// in which case the lockouts won't be calculated in bank_weight anyways, so ignore
// this slot
let vote_slot_ancestors = ancestors.get(&vote.slot);
if vote_slot_ancestors.is_none() {
return;
}
let mut slot_with_ancestors = vec![vote.slot];
slot_with_ancestors.extend(vote_slot_ancestors.unwrap());
for slot in slot_with_ancestors {
let entry = &mut stake_lockouts.entry(slot).or_default();
entry.lockout += vote.lockout();
}
}
/// Update stake for all the ancestors.
/// Note, stake is the same for all the ancestor.
fn update_ancestor_stakes(
stake_lockouts: &mut HashMap<Slot, StakeLockout>,
slot: Slot,
lamports: u64,
ancestors: &HashMap<Slot, HashSet<Slot>>,
) {
// If there's no ancestors, that means this slot must be from before the current root,
// in which case the lockouts won't be calculated in bank_weight anyways, so ignore
// this slot
let vote_slot_ancestors = ancestors.get(&slot);
if vote_slot_ancestors.is_none() {
return;
}
let mut slot_with_ancestors = vec![slot];
slot_with_ancestors.extend(vote_slot_ancestors.unwrap());
for slot in slot_with_ancestors {
let entry = &mut stake_lockouts.entry(slot).or_default();
entry.stake += lamports;
}
}
fn bank_weight(&self, bank: &Bank, ancestors: &HashMap<Slot, HashSet<Slot>>) -> u128 {
let (_, _, bank_weight, _) = self.collect_vote_lockouts(
bank.slot(),
bank.vote_accounts().into_iter(),
ancestors,
&mut PubkeyReferences::default(),
);
bank_weight
}
fn find_heaviest_bank(&self, bank_forks: &BankForks) -> Option<Arc<Bank>> {
let ancestors = bank_forks.ancestors();
let mut bank_weights: Vec<_> = bank_forks
.frozen_banks()
.values()
.map(|b| {
(
self.bank_weight(b, &ancestors),
b.parents().len(),
b.clone(),
)
})
.collect();
bank_weights.sort_by_key(|b| (b.0, b.1));
bank_weights.pop().map(|b| b.2)
}
fn initialize_lockouts_from_bank_forks(
&mut self,
bank_forks: &BankForks,
vote_account_pubkey: &Pubkey,
) {
if let Some(bank) = self.find_heaviest_bank(bank_forks) {
let root = bank_forks.root();
if let Some((_stake, vote_account)) = bank.vote_accounts().get(vote_account_pubkey) {
let mut vote_state = VoteState::deserialize(&vote_account.data)
.expect("vote_account isn't a VoteState?");
vote_state.root_slot = Some(root);
vote_state.votes.retain(|v| v.slot > root);
trace!(
"{} lockouts initialized to {:?}",
self.node_pubkey,
vote_state
);
assert_eq!(
vote_state.node_pubkey, self.node_pubkey,
"vote account's node_pubkey doesn't match",
);
self.lockouts = vote_state;
}
}
}
fn maybe_timestamp(&mut self, current_slot: Slot) -> Option<UnixTimestamp> {
if self.last_timestamp.slot == 0
|| self.last_timestamp.slot < (current_slot - (current_slot % TIMESTAMP_SLOT_INTERVAL))
{
let timestamp = Utc::now().timestamp();
self.last_timestamp = BlockTimestamp {
slot: current_slot,
timestamp,
};
Some(timestamp)
} else {
None
}
}
}
#[cfg(test)]
pub mod test {
use super::*;
use crate::{
cluster_info_vote_listener::VoteTracker,
cluster_slots::ClusterSlots,
progress_map::ForkProgress,
replay_stage::{HeaviestForkFailures, ReplayStage, SelectVoteAndResetForkResult},
};
use solana_ledger::bank_forks::BankForks;
use solana_runtime::{
bank::Bank,
genesis_utils::{
create_genesis_config_with_vote_accounts, GenesisConfigInfo, ValidatorVoteKeypairs,
},
};
use solana_sdk::{
clock::Slot,
hash::Hash,
pubkey::Pubkey,
signature::{Keypair, Signer},
};
use solana_vote_program::{
vote_state::{Vote, VoteStateVersions},
vote_transaction,
};
use std::{
collections::HashMap,
rc::Rc,
sync::RwLock,
{thread::sleep, time::Duration},
};
use trees::{tr, Tree, TreeWalk};
pub(crate) struct VoteSimulator {
pub validator_keypairs: HashMap<Pubkey, ValidatorVoteKeypairs>,
pub node_pubkeys: Vec<Pubkey>,
pub vote_pubkeys: Vec<Pubkey>,
pub bank_forks: RwLock<BankForks>,
pub progress: ProgressMap,
}
impl VoteSimulator {
pub(crate) fn new(num_keypairs: usize) -> Self {
let (validator_keypairs, node_pubkeys, vote_pubkeys, bank_forks, progress) =
Self::init_state(num_keypairs);
Self {
validator_keypairs,
node_pubkeys,
vote_pubkeys,
bank_forks: RwLock::new(bank_forks),
progress,
}
}
pub(crate) fn fill_bank_forks(
&mut self,
forks: Tree<u64>,
cluster_votes: &HashMap<Pubkey, Vec<u64>>,
) {
let root = forks.root().data;
assert!(self.bank_forks.read().unwrap().get(root).is_some());
let mut walk = TreeWalk::from(forks);
while let Some(visit) = walk.get() {
let slot = visit.node().data;
self.progress
.entry(slot)
.or_insert_with(|| ForkProgress::new(Hash::default(), None, None, 0, 0));
if self.bank_forks.read().unwrap().get(slot).is_some() {
walk.forward();
continue;
}
let parent = walk.get_parent().unwrap().data;
let parent_bank = self.bank_forks.read().unwrap().get(parent).unwrap().clone();
let new_bank = Bank::new_from_parent(&parent_bank, &Pubkey::default(), slot);
for (pubkey, vote) in cluster_votes.iter() {
if vote.contains(&parent) {
let keypairs = self.validator_keypairs.get(pubkey).unwrap();
let last_blockhash = parent_bank.last_blockhash();
let vote_tx = vote_transaction::new_vote_transaction(
// Must vote > root to be processed
vec![parent],
parent_bank.hash(),
last_blockhash,
&keypairs.node_keypair,
&keypairs.vote_keypair,
&keypairs.vote_keypair,
);
info!("voting {} {}", parent_bank.slot(), parent_bank.hash());
new_bank.process_transaction(&vote_tx).unwrap();
}
}
new_bank.freeze();
self.bank_forks.write().unwrap().insert(new_bank);
walk.forward();
}
}
pub(crate) fn simulate_vote(
&mut self,
vote_slot: Slot,
my_pubkey: &Pubkey,
tower: &mut Tower,
) -> Vec<HeaviestForkFailures> {
// Try to simulate the vote
let my_keypairs = self.validator_keypairs.get(&my_pubkey).unwrap();
let my_vote_pubkey = my_keypairs.vote_keypair.pubkey();
let ancestors = self.bank_forks.read().unwrap().ancestors();
let mut frozen_banks: Vec<_> = self
.bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let _ = ReplayStage::compute_bank_stats(
&my_pubkey,
&ancestors,
&mut frozen_banks,
tower,
&mut self.progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&self.bank_forks,
&mut PubkeyReferences::default(),
);
let vote_bank = self
.bank_forks
.read()
.unwrap()
.get(vote_slot)
.expect("Bank must have been created before vote simulation")
.clone();
// Try to vote on the given slot
let descendants = self.bank_forks.read().unwrap().descendants();
let SelectVoteAndResetForkResult {
heaviest_fork_failures,
..
} = ReplayStage::select_vote_and_reset_forks(
&Some(vote_bank.clone()),
&None,
&ancestors,
&descendants,
&self.progress,
&tower,
);
// Make sure this slot isn't locked out or failing threshold
info!("Checking vote: {}", vote_bank.slot());
if !heaviest_fork_failures.is_empty() {
return heaviest_fork_failures;
}
let vote = tower.new_vote_from_bank(&vote_bank, &my_vote_pubkey).0;
if let Some(new_root) = tower.record_bank_vote(vote) {
self.set_root(new_root);
}
vec![]
}
pub fn set_root(&mut self, new_root: Slot) {
ReplayStage::handle_new_root(
new_root,
&self.bank_forks,
&mut self.progress,
&None,
&mut PubkeyReferences::default(),
None,
)
}
fn create_and_vote_new_branch(
&mut self,
start_slot: Slot,
end_slot: Slot,
cluster_votes: &HashMap<Pubkey, Vec<u64>>,
votes_to_simulate: &HashSet<Slot>,
my_pubkey: &Pubkey,
tower: &mut Tower,
) -> HashMap<Slot, Vec<HeaviestForkFailures>> {
(start_slot + 1..=end_slot)
.filter_map(|slot| {
let mut fork_tip_parent = tr(slot - 1);
fork_tip_parent.push_front(tr(slot));
self.fill_bank_forks(fork_tip_parent, &cluster_votes);
if votes_to_simulate.contains(&slot) {
Some((slot, self.simulate_vote(slot, &my_pubkey, tower)))
} else {
None
}
})
.collect()
}
fn simulate_lockout_interval(
&mut self,
slot: Slot,
lockout_interval: (u64, u64),
vote_account_pubkey: &Pubkey,
) {
self.progress
.entry(slot)
.or_insert_with(|| ForkProgress::new(Hash::default(), None, None, 0, 0))
.fork_stats
.lockout_intervals
.entry(lockout_interval.1)
.or_default()
.push((lockout_interval.0, Rc::new(*vote_account_pubkey)));
}
fn can_progress_on_fork(
&mut self,
my_pubkey: &Pubkey,
tower: &mut Tower,
start_slot: u64,
num_slots: u64,
cluster_votes: &mut HashMap<Pubkey, Vec<u64>>,
) -> bool {
// Check that within some reasonable time, validator can make a new
// root on this fork
let old_root = tower.root();
for i in 1..num_slots {
// The parent of the tip of the fork
let mut fork_tip_parent = tr(start_slot + i - 1);
// The tip of the fork
fork_tip_parent.push_front(tr(start_slot + i));
self.fill_bank_forks(fork_tip_parent, cluster_votes);
if self
.simulate_vote(i + start_slot, &my_pubkey, tower)
.is_empty()
{
cluster_votes
.entry(*my_pubkey)
.or_default()
.push(start_slot + i);
}
if old_root != tower.root() {
return true;
}
}
false
}
fn init_state(
num_keypairs: usize,
) -> (
HashMap<Pubkey, ValidatorVoteKeypairs>,
Vec<Pubkey>,
Vec<Pubkey>,
BankForks,
ProgressMap,
) {
let keypairs: HashMap<_, _> = std::iter::repeat_with(|| {
let node_keypair = Keypair::new();
let vote_keypair = Keypair::new();
let stake_keypair = Keypair::new();
let node_pubkey = node_keypair.pubkey();
(
node_pubkey,
ValidatorVoteKeypairs::new(node_keypair, vote_keypair, stake_keypair),
)
})
.take(num_keypairs)
.collect();
let node_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.node_keypair.pubkey())
.collect();
let vote_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.vote_keypair.pubkey())
.collect();
let (bank_forks, progress) = initialize_state(&keypairs, 10_000);
(keypairs, node_pubkeys, vote_pubkeys, bank_forks, progress)
}
}
// Setup BankForks with bank 0 and all the validator accounts
pub(crate) fn initialize_state(
validator_keypairs_map: &HashMap<Pubkey, ValidatorVoteKeypairs>,
stake: u64,
) -> (BankForks, ProgressMap) {
let validator_keypairs: Vec<_> = validator_keypairs_map.values().collect();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
voting_keypair: _,
} = create_genesis_config_with_vote_accounts(1_000_000_000, &validator_keypairs, stake);
let bank0 = Bank::new(&genesis_config);
for pubkey in validator_keypairs_map.keys() {
bank0.transfer(10_000, &mint_keypair, pubkey).unwrap();
}
bank0.freeze();
let mut progress = ProgressMap::default();
progress.insert(
0,
ForkProgress::new(bank0.last_blockhash(), None, None, 0, 0),
);
(BankForks::new(0, bank0), progress)
}
fn gen_stakes(stake_votes: &[(u64, &[u64])]) -> Vec<(Pubkey, (u64, Account))> {
let mut stakes = vec![];
for (lamports, votes) in stake_votes {
let mut account = Account::default();
account.data = vec![0; VoteState::size_of()];
account.lamports = *lamports;
let mut vote_state = VoteState::default();
for slot in *votes {
vote_state.process_slot_vote_unchecked(*slot);
}
VoteState::serialize(
&VoteStateVersions::Current(Box::new(vote_state)),
&mut account.data,
)
.expect("serialize state");
stakes.push((Pubkey::new_rand(), (*lamports, account)));
}
stakes
}
#[test]
fn test_to_vote_instruction() {
let vote = Vote::default();
let mut decision = SwitchForkDecision::FailedSwitchThreshold;
assert!(decision
.to_vote_instruction(vote.clone(), &Pubkey::default(), &Pubkey::default())
.is_none());
decision = SwitchForkDecision::NoSwitch;
assert_eq!(
decision.to_vote_instruction(vote.clone(), &Pubkey::default(), &Pubkey::default()),
Some(vote_instruction::vote(
&Pubkey::default(),
&Pubkey::default(),
vote.clone(),
))
);
decision = SwitchForkDecision::SwitchProof(Hash::default());
assert_eq!(
decision.to_vote_instruction(vote.clone(), &Pubkey::default(), &Pubkey::default()),
Some(vote_instruction::vote_switch(
&Pubkey::default(),
&Pubkey::default(),
vote,
Hash::default()
))
);
}
#[test]
fn test_simple_votes() {
// Init state
let mut vote_simulator = VoteSimulator::new(1);
let node_pubkey = vote_simulator.node_pubkeys[0];
let mut tower = Tower::new_with_key(&node_pubkey);
// Create the tree of banks
let forks = tr(0) / (tr(1) / (tr(2) / (tr(3) / (tr(4) / tr(5)))));
// Set the voting behavior
let mut cluster_votes = HashMap::new();
let votes = vec![0, 1, 2, 3, 4, 5];
cluster_votes.insert(node_pubkey, votes.clone());
vote_simulator.fill_bank_forks(forks, &cluster_votes);
// Simulate the votes
for vote in votes {
assert!(vote_simulator
.simulate_vote(vote, &node_pubkey, &mut tower,)
.is_empty());
}
for i in 0..5 {
assert_eq!(tower.lockouts.votes[i].slot as usize, i);
assert_eq!(tower.lockouts.votes[i].confirmation_count as usize, 6 - i);
}
}
#[test]
fn test_switch_threshold() {
// Init state
let mut vote_simulator = VoteSimulator::new(2);
let my_pubkey = vote_simulator.node_pubkeys[0];
let other_vote_account = vote_simulator.vote_pubkeys[1];
let bank0 = vote_simulator
.bank_forks
.read()
.unwrap()
.get(0)
.unwrap()
.clone();
let total_stake = bank0.total_epoch_stake();
assert_eq!(
total_stake,
vote_simulator.validator_keypairs.len() as u64 * 10_000
);
// Create the tree of banks
let forks = tr(0)
/ (tr(1)
/ (tr(2)
// Minor fork 1
/ (tr(10) / (tr(11) / (tr(12) / (tr(13) / (tr(14))))))
/ (tr(43)
/ (tr(44)
// Minor fork 2
/ (tr(45) / (tr(46) / (tr(47) / (tr(48) / (tr(49) / (tr(50)))))))
/ (tr(110))))));
// Fill the BankForks according to the above fork structure
vote_simulator.fill_bank_forks(forks, &HashMap::new());
let ancestors = vote_simulator.bank_forks.read().unwrap().ancestors();
let descendants = vote_simulator.bank_forks.read().unwrap().descendants();
let mut tower = Tower::new_with_key(&my_pubkey);
// Last vote is 47
tower.record_vote(47, Hash::default());
// Trying to switch to a descendant of last vote should always work
assert_eq!(
tower.check_switch_threshold(
48,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::NoSwitch
);
// Trying to switch to another fork at 110 should fail
assert_eq!(
tower.check_switch_threshold(
110,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::FailedSwitchThreshold
);
// Adding another validator lockout on a descendant of last vote should
// not count toward the switch threshold
vote_simulator.simulate_lockout_interval(50, (49, 100), &other_vote_account);
assert_eq!(
tower.check_switch_threshold(
110,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::FailedSwitchThreshold
);
// Adding another validator lockout on an ancestor of last vote should
// not count toward the switch threshold
vote_simulator.simulate_lockout_interval(50, (45, 100), &other_vote_account);
assert_eq!(
tower.check_switch_threshold(
110,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::FailedSwitchThreshold
);
// Adding another validator lockout on a different fork, but the lockout
// doesn't cover the last vote, should not satisfy the switch threshold
vote_simulator.simulate_lockout_interval(14, (12, 46), &other_vote_account);
assert_eq!(
tower.check_switch_threshold(
110,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::FailedSwitchThreshold
);
// Adding another validator lockout on a different fork, and the lockout
// covers the last vote, should satisfy the switch threshold
vote_simulator.simulate_lockout_interval(14, (12, 47), &other_vote_account);
assert_eq!(
tower.check_switch_threshold(
110,
&ancestors,
&descendants,
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::SwitchProof(Hash::default())
);
// If we set a root, then any lockout intervals below the root shouldn't
// count toward the switch threshold. This means the other validator's
// vote lockout no longer counts
vote_simulator.set_root(43);
assert_eq!(
tower.check_switch_threshold(
110,
&vote_simulator.bank_forks.read().unwrap().ancestors(),
&vote_simulator.bank_forks.read().unwrap().descendants(),
&vote_simulator.progress,
total_stake,
bank0.epoch_vote_accounts(0).unwrap(),
),
SwitchForkDecision::FailedSwitchThreshold
);
}
#[test]
fn test_switch_threshold_votes() {
// Init state
let mut vote_simulator = VoteSimulator::new(4);
let my_pubkey = vote_simulator.node_pubkeys[0];
let mut tower = Tower::new_with_key(&my_pubkey);
let forks = tr(0)
/ (tr(1)
/ (tr(2)
// Minor fork 1
/ (tr(10) / (tr(11) / (tr(12) / (tr(13) / (tr(14))))))
/ (tr(43)
/ (tr(44)
// Minor fork 2
/ (tr(45) / (tr(46))))
/ (tr(110)))));
// Have two validators, each representing 20% of the stake vote on
// minor fork 2 at slots 46 + 47
let mut cluster_votes: HashMap<Pubkey, Vec<Slot>> = HashMap::new();
cluster_votes.insert(vote_simulator.node_pubkeys[1], vec![46]);
cluster_votes.insert(vote_simulator.node_pubkeys[2], vec![47]);
vote_simulator.fill_bank_forks(forks, &cluster_votes);
// Vote on the first minor fork at slot 14, should succeed
assert!(vote_simulator
.simulate_vote(14, &my_pubkey, &mut tower,)
.is_empty());
// The other two validators voted at slots 46, 47, which
// will only both show up in slot 48, at which point
// 2/5 > SWITCH_FORK_THRESHOLD of the stake has voted
// on another fork, so switching should suceed
let votes_to_simulate = (46..=48).collect();
let results = vote_simulator.create_and_vote_new_branch(
45,
48,
&cluster_votes,
&votes_to_simulate,
&my_pubkey,
&mut tower,
);
for slot in 46..=48 {
if slot == 48 {
assert!(results.get(&slot).unwrap().is_empty());
} else {
assert_eq!(
*results.get(&slot).unwrap(),
vec![HeaviestForkFailures::FailedSwitchThreshold(slot)]
);
}
}
}
#[test]
fn test_double_partition() {
// Init state
let mut vote_simulator = VoteSimulator::new(2);
let node_pubkey = vote_simulator.node_pubkeys[0];
let vote_pubkey = vote_simulator.vote_pubkeys[0];
let mut tower = Tower::new_with_key(&node_pubkey);
let num_slots_to_try = 200;
// Create the tree of banks
let forks = tr(0)
/ (tr(1)
/ (tr(2)
/ (tr(3)
/ (tr(4)
/ (tr(5)
/ (tr(6)
/ (tr(7)
/ (tr(8)
/ (tr(9)
// Minor fork 1
/ (tr(10) / (tr(11) / (tr(12) / (tr(13) / (tr(14))))))
/ (tr(43)
/ (tr(44)
// Minor fork 2
/ (tr(45) / (tr(46) / (tr(47) / (tr(48) / (tr(49) / (tr(50)))))))
/ (tr(110) / (tr(110 + 2 * num_slots_to_try))))))))))))));
// Set the successful voting behavior
let mut cluster_votes = HashMap::new();
let mut my_votes: Vec<Slot> = vec![];
let next_unlocked_slot = 110;
// Vote on the first minor fork
my_votes.extend(0..=14);
// Come back to the main fork
my_votes.extend(43..=44);
// Vote on the second minor fork
my_votes.extend(45..=50);
// Vote to come back to main fork
my_votes.push(next_unlocked_slot);
cluster_votes.insert(node_pubkey, my_votes.clone());
// Make the other validator vote fork to pass the threshold checks
let other_votes = my_votes.clone();
cluster_votes.insert(vote_simulator.node_pubkeys[1], other_votes);
vote_simulator.fill_bank_forks(forks, &cluster_votes);
// Simulate the votes.
for vote in &my_votes {
// All these votes should be ok
assert!(vote_simulator
.simulate_vote(*vote, &node_pubkey, &mut tower,)
.is_empty());
}
info!("local tower: {:#?}", tower.lockouts.votes);
let vote_accounts = vote_simulator
.bank_forks
.read()
.unwrap()
.get(next_unlocked_slot)
.unwrap()
.vote_accounts();
let observed = vote_accounts.get(&vote_pubkey).unwrap();
let state = VoteState::from(&observed.1).unwrap();
info!("observed tower: {:#?}", state.votes);
let num_slots_to_try = 200;
cluster_votes
.get_mut(&vote_simulator.node_pubkeys[1])
.unwrap()
.extend(next_unlocked_slot + 1..next_unlocked_slot + num_slots_to_try);
assert!(vote_simulator.can_progress_on_fork(
&node_pubkey,
&mut tower,
next_unlocked_slot,
num_slots_to_try,
&mut cluster_votes,
));
}
#[test]
fn test_collect_vote_lockouts_sums() {
//two accounts voting for slot 0 with 1 token staked
let accounts = gen_stakes(&[(1, &[0]), (1, &[0])]);
let tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect()), (0, HashSet::new())]
.into_iter()
.collect();
let (staked_lockouts, total_staked, bank_weight, _) = tower.collect_vote_lockouts(
1,
accounts.into_iter(),
&ancestors,
&mut PubkeyReferences::default(),
);
assert_eq!(staked_lockouts[&0].stake, 2);
assert_eq!(staked_lockouts[&0].lockout, 2 + 2 + 4 + 4);
assert_eq!(total_staked, 2);
// Each acccount has 1 vote in it. After simulating a vote in collect_vote_lockouts,
// the account will have 2 votes, with lockout 2 + 4 = 6. So expected weight for
// two acccounts is 2 * 6 = 12
assert_eq!(bank_weight, 12)
}
#[test]
fn test_collect_vote_lockouts_root() {
let votes: Vec<u64> = (0..MAX_LOCKOUT_HISTORY as u64).collect();
//two accounts voting for slots 0..MAX_LOCKOUT_HISTORY with 1 token staked
let accounts = gen_stakes(&[(1, &votes), (1, &votes)]);
let mut tower = Tower::new_for_tests(0, 0.67);
let mut ancestors = HashMap::new();
for i in 0..(MAX_LOCKOUT_HISTORY + 1) {
tower.record_vote(i as u64, Hash::default());
ancestors.insert(i as u64, (0..i as u64).collect());
}
let root = Lockout {
confirmation_count: MAX_LOCKOUT_HISTORY as u32,
slot: 0,
};
let root_weight = root.lockout() as u128;
let vote_account_expected_weight = tower
.lockouts
.votes
.iter()
.map(|v| v.lockout() as u128)
.sum::<u128>()
+ root_weight;
let expected_bank_weight = 2 * vote_account_expected_weight;
assert_eq!(tower.lockouts.root_slot, Some(0));
let (staked_lockouts, _total_staked, bank_weight, _) = tower.collect_vote_lockouts(
MAX_LOCKOUT_HISTORY as u64,
accounts.into_iter(),
&ancestors,
&mut PubkeyReferences::default(),
);
for i in 0..MAX_LOCKOUT_HISTORY {
assert_eq!(staked_lockouts[&(i as u64)].stake, 2);
}
// should be the sum of all the weights for root
assert!(staked_lockouts[&0].lockout > (2 * (1 << MAX_LOCKOUT_HISTORY)));
assert_eq!(bank_weight, expected_bank_weight);
}
#[test]
fn test_check_vote_threshold_without_votes() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(tower.check_vote_stake_threshold(0, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_no_skip_lockout_with_new_root() {
solana_logger::setup();
let mut tower = Tower::new_for_tests(4, 0.67);
let mut stakes = HashMap::new();
for i in 0..(MAX_LOCKOUT_HISTORY as u64 + 1) {
stakes.insert(
i,
StakeLockout {
stake: 1,
lockout: 8,
},
);
tower.record_vote(i, Hash::default());
}
assert!(!tower.check_vote_stake_threshold(MAX_LOCKOUT_HISTORY as u64 + 1, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_not_enough_stake_failure() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(!tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_unknown_slot() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = HashMap::new();
assert!(!tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_pass() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_locked_out_empty() {
let tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(0, HashSet::new())].into_iter().collect();
assert!(!tower.is_locked_out(0, &ancestors));
}
#[test]
fn test_is_locked_out_root_slot_child_pass() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.lockouts.root_slot = Some(0);
assert!(!tower.is_locked_out(1, &ancestors));
}
#[test]
fn test_is_locked_out_root_slot_sibling_fail() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(2, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.lockouts.root_slot = Some(0);
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(2, &ancestors));
}
#[test]
fn test_check_already_voted() {
let mut tower = Tower::new_for_tests(0, 0.67);
tower.record_vote(0, Hash::default());
assert!(tower.has_voted(0));
assert!(!tower.has_voted(1));
}
#[test]
fn test_check_recent_slot() {
let mut tower = Tower::new_for_tests(0, 0.67);
assert!(tower.is_recent(0));
assert!(tower.is_recent(32));
for i in 0..64 {
tower.record_vote(i, Hash::default());
}
assert!(!tower.is_recent(0));
assert!(!tower.is_recent(32));
assert!(!tower.is_recent(63));
assert!(tower.is_recent(65));
}
#[test]
fn test_is_locked_out_double_vote() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect()), (0, HashSet::new())]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(0, &ancestors));
}
#[test]
fn test_is_locked_out_child() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(!tower.is_locked_out(1, &ancestors));
}
#[test]
fn test_is_locked_out_sibling() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![
(0, HashSet::new()),
(1, vec![0].into_iter().collect()),
(2, vec![0].into_iter().collect()),
]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(2, &ancestors));
}
#[test]
fn test_is_locked_out_last_vote_expired() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![
(0, HashSet::new()),
(1, vec![0].into_iter().collect()),
(4, vec![0].into_iter().collect()),
]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(!tower.is_locked_out(4, &ancestors));
tower.record_vote(4, Hash::default());
assert_eq!(tower.lockouts.votes[0].slot, 0);
assert_eq!(tower.lockouts.votes[0].confirmation_count, 2);
assert_eq!(tower.lockouts.votes[1].slot, 4);
assert_eq!(tower.lockouts.votes[1].confirmation_count, 1);
}
#[test]
fn test_check_vote_threshold_below_threshold() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(!tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold_after_pop() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
tower.record_vote(2, Hash::default());
assert!(tower.check_vote_stake_threshold(6, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold_no_stake() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = HashMap::new();
tower.record_vote(0, Hash::default());
assert!(!tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_lockouts_not_updated() {
solana_logger::setup();
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![
(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
),
(
1,
StakeLockout {
stake: 2,
lockout: 8,
},
),
]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
tower.record_vote(2, Hash::default());
assert!(tower.check_vote_stake_threshold(6, &stakes, 2));
}
#[test]
fn test_lockout_is_updated_for_entire_branch() {
let mut stake_lockouts = HashMap::new();
let vote = Lockout {
slot: 2,
confirmation_count: 1,
};
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let mut ancestors = HashMap::new();
ancestors.insert(2, set);
let set: HashSet<u64> = vec![0u64].into_iter().collect();
ancestors.insert(1, set);
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
assert_eq!(stake_lockouts[&0].lockout, 2);
assert_eq!(stake_lockouts[&1].lockout, 2);
assert_eq!(stake_lockouts[&2].lockout, 2);
}
#[test]
fn test_lockout_is_updated_for_slot_or_lower() {
let mut stake_lockouts = HashMap::new();
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let mut ancestors = HashMap::new();
ancestors.insert(2, set);
let set: HashSet<u64> = vec![0u64].into_iter().collect();
ancestors.insert(1, set);
let vote = Lockout {
slot: 2,
confirmation_count: 1,
};
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
let vote = Lockout {
slot: 1,
confirmation_count: 2,
};
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
assert_eq!(stake_lockouts[&0].lockout, 2 + 4);
assert_eq!(stake_lockouts[&1].lockout, 2 + 4);
assert_eq!(stake_lockouts[&2].lockout, 2);
}
#[test]
fn test_stake_is_updated_for_entire_branch() {
let mut stake_lockouts = HashMap::new();
let mut account = Account::default();
account.lamports = 1;
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let ancestors: HashMap<u64, HashSet<u64>> = [(2u64, set)].iter().cloned().collect();
Tower::update_ancestor_stakes(&mut stake_lockouts, 2, account.lamports, &ancestors);
assert_eq!(stake_lockouts[&0].stake, 1);
assert_eq!(stake_lockouts[&1].stake, 1);
assert_eq!(stake_lockouts[&2].stake, 1);
}
#[test]
fn test_new_vote() {
let local = VoteState::default();
let vote = Tower::new_vote(&local, 0, Hash::default(), None);
assert_eq!(local.votes.len(), 0);
assert_eq!(vote.0.slots, vec![0]);
assert_eq!(vote.1, 0);
}
#[test]
fn test_new_vote_dup_vote() {
let local = VoteState::default();
let vote = Tower::new_vote(&local, 0, Hash::default(), Some(0));
assert!(vote.0.slots.is_empty());
}
#[test]
fn test_new_vote_next_vote() {
let mut local = VoteState::default();
let vote = Vote {
slots: vec![0],
hash: Hash::default(),
timestamp: None,
};
local.process_vote_unchecked(&vote);
assert_eq!(local.votes.len(), 1);
let vote = Tower::new_vote(&local, 1, Hash::default(), Some(0));
assert_eq!(vote.0.slots, vec![1]);
assert_eq!(vote.1, 1);
}
#[test]
fn test_new_vote_next_after_expired_vote() {
let mut local = VoteState::default();
let vote = Vote {
slots: vec![0],
hash: Hash::default(),
timestamp: None,
};
local.process_vote_unchecked(&vote);
assert_eq!(local.votes.len(), 1);
let vote = Tower::new_vote(&local, 3, Hash::default(), Some(0));
//first vote expired, so index should be 0
assert_eq!(vote.0.slots, vec![3]);
assert_eq!(vote.1, 0);
}
#[test]
fn test_check_vote_threshold_forks() {
// Create the ancestor relationships
let ancestors = (0..=(VOTE_THRESHOLD_DEPTH + 1) as u64)
.map(|slot| {
let slot_parents: HashSet<_> = (0..slot).collect();
(slot, slot_parents)
})
.collect();
// Create votes such that
// 1) 3/4 of the stake has voted on slot: VOTE_THRESHOLD_DEPTH - 2, lockout: 2
// 2) 1/4 of the stake has voted on slot: VOTE_THRESHOLD_DEPTH, lockout: 2^9
let total_stake = 4;
let threshold_size = 0.67;
let threshold_stake = (f64::ceil(total_stake as f64 * threshold_size)) as u64;
let tower_votes: Vec<u64> = (0..VOTE_THRESHOLD_DEPTH as u64).collect();
let accounts = gen_stakes(&[
(threshold_stake, &[(VOTE_THRESHOLD_DEPTH - 2) as u64]),
(total_stake - threshold_stake, &tower_votes[..]),
]);
// Initialize tower
let mut tower = Tower::new_for_tests(VOTE_THRESHOLD_DEPTH, threshold_size);
// CASE 1: Record the first VOTE_THRESHOLD tower votes for fork 2. We want to
// evaluate a vote on slot VOTE_THRESHOLD_DEPTH. The nth most recent vote should be
// for slot 0, which is common to all account vote states, so we should pass the
// threshold check
let vote_to_evaluate = VOTE_THRESHOLD_DEPTH as u64;
for vote in &tower_votes {
tower.record_vote(*vote, Hash::default());
}
let (staked_lockouts, total_staked, _, _) = tower.collect_vote_lockouts(
vote_to_evaluate,
accounts.clone().into_iter(),
&ancestors,
&mut PubkeyReferences::default(),
);
assert!(tower.check_vote_stake_threshold(vote_to_evaluate, &staked_lockouts, total_staked));
// CASE 2: Now we want to evaluate a vote for slot VOTE_THRESHOLD_DEPTH + 1. This slot
// will expire the vote in one of the vote accounts, so we should have insufficient
// stake to pass the threshold
let vote_to_evaluate = VOTE_THRESHOLD_DEPTH as u64 + 1;
let (staked_lockouts, total_staked, _, _) = tower.collect_vote_lockouts(
vote_to_evaluate,
accounts.into_iter(),
&ancestors,
&mut PubkeyReferences::default(),
);
assert!(!tower.check_vote_stake_threshold(
vote_to_evaluate,
&staked_lockouts,
total_staked
));
}
fn vote_and_check_recent(num_votes: usize) {
let mut tower = Tower::new_for_tests(1, 0.67);
let slots = if num_votes > 0 {
vec![num_votes as u64 - 1]
} else {
vec![]
};
let expected = Vote::new(slots, Hash::default());
for i in 0..num_votes {
tower.record_vote(i as u64, Hash::default());
}
assert_eq!(expected, tower.last_vote())
}
#[test]
fn test_recent_votes_full() {
vote_and_check_recent(MAX_LOCKOUT_HISTORY)
}
#[test]
fn test_recent_votes_empty() {
vote_and_check_recent(0)
}
#[test]
fn test_recent_votes_exact() {
vote_and_check_recent(5)
}
#[test]
fn test_maybe_timestamp() {
let mut tower = Tower::default();
assert!(tower.maybe_timestamp(TIMESTAMP_SLOT_INTERVAL).is_some());
let BlockTimestamp { slot, timestamp } = tower.last_timestamp;
assert_eq!(tower.maybe_timestamp(1), None);
assert_eq!(tower.maybe_timestamp(slot), None);
assert_eq!(tower.maybe_timestamp(slot + 1), None);
sleep(Duration::from_secs(1));
assert!(tower
.maybe_timestamp(slot + TIMESTAMP_SLOT_INTERVAL + 1)
.is_some());
assert!(tower.last_timestamp.timestamp > timestamp);
}
}