solana/core/src/entry.rs

908 lines
31 KiB
Rust

//! The `entry` module is a fundamental building block of Proof of History. It contains a
//! unique ID that is the hash of the Entry before it, plus the hash of the
//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
//! represents an approximate amount of time since the last Entry was created.
use crate::packet::{Blob, SharedBlob, BLOB_DATA_SIZE};
use crate::poh::Poh;
use crate::result::Result;
use bincode::{deserialize, serialized_size};
use chrono::prelude::Utc;
use rayon::prelude::*;
use rayon::ThreadPool;
use solana_budget_api::budget_instruction;
use solana_merkle_tree::MerkleTree;
use solana_metrics::inc_new_counter_warn;
use solana_sdk::hash::Hash;
use solana_sdk::signature::{Keypair, KeypairUtil};
use solana_sdk::transaction::Transaction;
use std::borrow::Borrow;
use std::cell::RefCell;
use std::sync::mpsc::{Receiver, Sender};
use std::sync::{Arc, RwLock};
#[cfg(feature = "cuda")]
use crate::sigverify::poh_verify_many;
use solana_sdk::timing;
#[cfg(feature = "cuda")]
use std::sync::Mutex;
#[cfg(feature = "cuda")]
use std::thread;
use std::time::Instant;
pub const NUM_THREADS: u32 = 10;
thread_local!(static PAR_THREAD_POOL: RefCell<ThreadPool> = RefCell::new(rayon::ThreadPoolBuilder::new()
.num_threads(sys_info::cpu_num().unwrap_or(NUM_THREADS) as usize)
.build()
.unwrap()));
pub type EntrySender = Sender<Vec<Entry>>;
pub type EntryReceiver = Receiver<Vec<Entry>>;
/// Each Entry contains three pieces of data. The `num_hashes` field is the number
/// of hashes performed since the previous entry. The `hash` field is the result
/// of hashing `hash` from the previous entry `num_hashes` times. The `transactions`
/// field points to Transactions that took place shortly before `hash` was generated.
///
/// If you divide `num_hashes` by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last Entry. Since processing power increases
/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
/// An upper bound on Duration can be estimated by assuming each hash was generated by the
/// world's fastest processor at the time the entry was recorded. Or said another way, it
/// is physically not possible for a shorter duration to have occurred if one assumes the
/// hash was computed by the world's fastest processor at that time. The hash chain is both
/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
/// Work consensus!)
#[derive(Serialize, Deserialize, Debug, Default, PartialEq, Eq, Clone)]
pub struct Entry {
/// The number of hashes since the previous Entry ID.
pub num_hashes: u64,
/// The SHA-256 hash `num_hashes` after the previous Entry ID.
pub hash: Hash,
/// An unordered list of transactions that were observed before the Entry ID was
/// generated. They may have been observed before a previous Entry ID but were
/// pushed back into this list to ensure deterministic interpretation of the ledger.
pub transactions: Vec<Transaction>,
}
impl Entry {
/// Creates the next Entry `num_hashes` after `start_hash`.
pub fn new(prev_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Self {
assert!(Self::serialized_to_blob_size(&transactions) <= BLOB_DATA_SIZE as u64);
if num_hashes == 0 && transactions.is_empty() {
Entry {
num_hashes: 0,
hash: *prev_hash,
transactions,
}
} else if num_hashes == 0 {
// If you passed in transactions, but passed in num_hashes == 0, then
// next_hash will generate the next hash and set num_hashes == 1
let hash = next_hash(prev_hash, 1, &transactions);
Entry {
num_hashes: 1,
hash,
transactions,
}
} else {
// Otherwise, the next Entry `num_hashes` after `start_hash`.
// If you wanted a tick for instance, then pass in num_hashes = 1
// and transactions = empty
let hash = next_hash(prev_hash, num_hashes, &transactions);
Entry {
num_hashes,
hash,
transactions,
}
}
}
pub fn to_shared_blob(&self) -> SharedBlob {
let blob = self.to_blob();
Arc::new(RwLock::new(blob))
}
pub fn to_blob(&self) -> Blob {
Blob::from_serializable(&vec![&self])
}
/// return serialized_size of a vector with a single Entry for given TXs
/// since Blobs carry Vec<Entry>...
/// calculate the total without actually constructing the full Entry (which
/// would require a clone() of the transactions)
pub fn serialized_to_blob_size(transactions: &[Transaction]) -> u64 {
let txs_size: u64 = transactions
.iter()
.map(|tx| serialized_size(tx).unwrap())
.sum();
serialized_size(&vec![Entry {
num_hashes: 0,
hash: Hash::default(),
transactions: vec![],
}])
.unwrap()
+ txs_size
}
pub fn new_mut(
start_hash: &mut Hash,
num_hashes: &mut u64,
transactions: Vec<Transaction>,
) -> Self {
assert!(Self::serialized_to_blob_size(&transactions) <= BLOB_DATA_SIZE as u64);
let entry = Self::new(start_hash, *num_hashes, transactions);
*start_hash = entry.hash;
*num_hashes = 0;
entry
}
#[cfg(test)]
pub fn new_tick(num_hashes: u64, hash: &Hash) -> Self {
Entry {
num_hashes,
hash: *hash,
transactions: vec![],
}
}
/// Verifies self.hash is the result of hashing a `start_hash` `self.num_hashes` times.
/// If the transaction is not a Tick, then hash that as well.
pub fn verify(&self, start_hash: &Hash) -> bool {
let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
if self.hash != ref_hash {
warn!(
"next_hash is invalid expected: {:?} actual: {:?}",
self.hash, ref_hash
);
return false;
}
true
}
pub fn is_tick(&self) -> bool {
self.transactions.is_empty()
}
}
pub fn hash_transactions(transactions: &[Transaction]) -> Hash {
// a hash of a slice of transactions only needs to hash the signatures
let signatures: Vec<_> = transactions
.iter()
.flat_map(|tx| tx.signatures.iter())
.collect();
let merkle_tree = MerkleTree::new(&signatures);
if let Some(root_hash) = merkle_tree.get_root() {
*root_hash
} else {
Hash::default()
}
}
/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
/// a signature, the final hash will be a hash of both the previous ID and
/// the signature. If num_hashes is zero and there's no transaction data,
/// start_hash is returned.
fn next_hash(start_hash: &Hash, num_hashes: u64, transactions: &[Transaction]) -> Hash {
if num_hashes == 0 && transactions.is_empty() {
return *start_hash;
}
let mut poh = Poh::new(*start_hash, None);
poh.hash(num_hashes.saturating_sub(1));
if transactions.is_empty() {
poh.tick().unwrap().hash
} else {
poh.record(hash_transactions(transactions)).unwrap().hash
}
}
pub fn reconstruct_entries_from_blobs<I>(blobs: I) -> Result<(Vec<Entry>, u64)>
where
I: IntoIterator,
I::Item: Borrow<Blob>,
{
let mut entries: Vec<Entry> = vec![];
let mut num_ticks = 0;
for blob in blobs.into_iter() {
let new_entries: Vec<Entry> = {
let msg_size = blob.borrow().size();
deserialize(&blob.borrow().data()[..msg_size])?
};
let num_new_ticks: u64 = new_entries.iter().map(|entry| entry.is_tick() as u64).sum();
num_ticks += num_new_ticks;
entries.extend(new_entries)
}
Ok((entries, num_ticks))
}
// an EntrySlice is a slice of Entries
pub trait EntrySlice {
/// Verifies the hashes and counts of a slice of transactions are all consistent.
fn verify_cpu(&self, start_hash: &Hash) -> bool;
fn verify(&self, start_hash: &Hash) -> bool;
fn to_shared_blobs(&self) -> Vec<SharedBlob>;
fn to_blobs(&self) -> Vec<Blob>;
fn to_single_entry_blobs(&self) -> Vec<Blob>;
fn to_single_entry_shared_blobs(&self) -> Vec<SharedBlob>;
}
impl EntrySlice for [Entry] {
fn verify_cpu(&self, start_hash: &Hash) -> bool {
let now = Instant::now();
let genesis = [Entry {
num_hashes: 0,
hash: *start_hash,
transactions: vec![],
}];
let entry_pairs = genesis.par_iter().chain(self).zip(self);
let res = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
entry_pairs.all(|(x0, x1)| {
let r = x1.verify(&x0.hash);
if !r {
warn!(
"entry invalid!: x0: {:?}, x1: {:?} num txs: {}",
x0.hash,
x1.hash,
x1.transactions.len()
);
}
r
})
})
});
inc_new_counter_warn!(
"entry_verify-duration",
timing::duration_as_ms(&now.elapsed()) as usize
);
res
}
#[cfg(not(feature = "cuda"))]
fn verify(&self, start_hash: &Hash) -> bool {
self.verify_cpu(start_hash)
}
#[cfg(feature = "cuda")]
fn verify(&self, start_hash: &Hash) -> bool {
inc_new_counter_warn!("entry_verify-num_entries", self.len() as usize);
// Use CPU verify if the batch length is < 1K
if self.len() < 1024 {
return self.verify_cpu(start_hash);
}
let start = Instant::now();
let genesis = [Entry {
num_hashes: 0,
hash: *start_hash,
transactions: vec![],
}];
let hashes: Vec<Hash> = genesis
.iter()
.chain(self)
.map(|entry| entry.hash)
.take(self.len())
.collect();
let num_hashes_vec: Vec<u64> = self
.into_iter()
.map(|entry| entry.num_hashes.saturating_sub(1))
.collect();
let length = self.len();
let hashes = Arc::new(Mutex::new(hashes));
let hashes_clone = hashes.clone();
let gpu_wait = Instant::now();
let gpu_verify_thread = thread::spawn(move || {
let mut hashes = hashes_clone.lock().unwrap();
let res;
unsafe {
res = poh_verify_many(
hashes.as_mut_ptr() as *mut u8,
num_hashes_vec.as_ptr(),
length,
1,
);
}
if res != 0 {
panic!("GPU PoH verify many failed");
}
});
let tx_hashes: Vec<Option<Hash>> = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
self.into_par_iter()
.map(|entry| {
if entry.transactions.is_empty() {
None
} else {
Some(hash_transactions(&entry.transactions))
}
})
.collect()
})
});
gpu_verify_thread.join().unwrap();
inc_new_counter_warn!(
"entry_verify-gpu_thread",
timing::duration_as_ms(&gpu_wait.elapsed()) as usize
);
let hashes = Arc::try_unwrap(hashes).unwrap().into_inner().unwrap();
let res =
PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
hashes.into_par_iter().zip(tx_hashes).zip(self).all(
|((hash, tx_hash), answer)| {
if answer.num_hashes == 0 {
hash == answer.hash
} else {
let mut poh = Poh::new(hash, None);
if let Some(mixin) = tx_hash {
poh.record(mixin).unwrap().hash == answer.hash
} else {
poh.tick().unwrap().hash == answer.hash
}
}
},
)
})
});
inc_new_counter_warn!(
"entry_verify-duration",
timing::duration_as_ms(&start.elapsed()) as usize
);
res
}
fn to_blobs(&self) -> Vec<Blob> {
split_serializable_chunks(
&self,
BLOB_DATA_SIZE as u64,
&|s| bincode::serialized_size(&s).unwrap(),
&mut |entries: &[Entry]| Blob::from_serializable(entries),
)
}
fn to_shared_blobs(&self) -> Vec<SharedBlob> {
self.to_blobs()
.into_iter()
.map(|b| Arc::new(RwLock::new(b)))
.collect()
}
fn to_single_entry_shared_blobs(&self) -> Vec<SharedBlob> {
self.to_single_entry_blobs()
.into_iter()
.map(|b| Arc::new(RwLock::new(b)))
.collect()
}
fn to_single_entry_blobs(&self) -> Vec<Blob> {
self.iter().map(Entry::to_blob).collect()
}
}
pub fn next_entry_mut(start: &mut Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
let entry = Entry::new(&start, num_hashes, transactions);
*start = entry.hash;
entry
}
pub fn num_will_fit<T, F>(serializables: &[T], max_size: u64, serialized_size: &F) -> usize
where
F: Fn(&[T]) -> u64,
{
if serializables.is_empty() {
return 0;
}
let mut num = serializables.len();
let mut upper = serializables.len();
let mut lower = 1; // if one won't fit, we have a lot of TODOs
loop {
let next;
if serialized_size(&serializables[..num]) <= max_size {
next = (upper + num) / 2;
lower = num;
} else {
if num == 1 {
// if not even one will fit, bail
num = 0;
break;
}
next = (lower + num) / 2;
upper = num;
}
// same as last time
if next == num {
break;
}
num = next;
}
num
}
pub fn split_serializable_chunks<T, R, F1, F2>(
serializables: &[T],
max_size: u64,
serialized_size: &F1,
converter: &mut F2,
) -> Vec<R>
where
F1: Fn(&[T]) -> u64,
F2: FnMut(&[T]) -> R,
{
let mut result = vec![];
let mut chunk_start = 0;
while chunk_start < serializables.len() {
let chunk_end =
chunk_start + num_will_fit(&serializables[chunk_start..], max_size, serialized_size);
result.push(converter(&serializables[chunk_start..chunk_end]));
chunk_start = chunk_end;
}
result
}
/// Creates the next entries for given transactions, outputs
/// updates start_hash to hash of last Entry, sets num_hashes to 0
fn next_entries_mut(
start_hash: &mut Hash,
num_hashes: &mut u64,
transactions: Vec<Transaction>,
) -> Vec<Entry> {
split_serializable_chunks(
&transactions[..],
BLOB_DATA_SIZE as u64,
&Entry::serialized_to_blob_size,
&mut |txs: &[Transaction]| Entry::new_mut(start_hash, num_hashes, txs.to_vec()),
)
}
/// Creates the next Entries for given transactions
pub fn next_entries(
start_hash: &Hash,
num_hashes: u64,
transactions: Vec<Transaction>,
) -> Vec<Entry> {
let mut hash = *start_hash;
let mut num_hashes = num_hashes;
next_entries_mut(&mut hash, &mut num_hashes, transactions)
}
pub fn create_ticks(num_ticks: u64, mut hash: Hash) -> Vec<Entry> {
let mut ticks = Vec::with_capacity(num_ticks as usize);
for _ in 0..num_ticks {
let new_tick = next_entry_mut(&mut hash, 1, vec![]);
ticks.push(new_tick);
}
ticks
}
pub fn make_tiny_test_entries_from_hash(start: &Hash, num: usize) -> Vec<Entry> {
let keypair = Keypair::new();
let pubkey = keypair.pubkey();
let mut hash = *start;
let mut num_hashes = 0;
(0..num)
.map(|_| {
let ix = budget_instruction::apply_timestamp(&pubkey, &pubkey, &pubkey, Utc::now());
let tx = Transaction::new_signed_instructions(&[&keypair], vec![ix], *start);
Entry::new_mut(&mut hash, &mut num_hashes, vec![tx])
})
.collect()
}
pub fn make_tiny_test_entries(num: usize) -> Vec<Entry> {
let zero = Hash::default();
let one = solana_sdk::hash::hash(&zero.as_ref());
make_tiny_test_entries_from_hash(&one, num)
}
pub fn make_large_test_entries(num_entries: usize) -> Vec<Entry> {
let zero = Hash::default();
let one = solana_sdk::hash::hash(&zero.as_ref());
let keypair = Keypair::new();
let pubkey = keypair.pubkey();
let ix = budget_instruction::apply_timestamp(&pubkey, &pubkey, &pubkey, Utc::now());
let tx = Transaction::new_signed_instructions(&[&keypair], vec![ix], one);
let serialized_size = serialized_size(&tx).unwrap();
let num_txs = BLOB_DATA_SIZE / serialized_size as usize;
let txs = vec![tx; num_txs];
let entry = next_entries(&one, 1, txs)[0].clone();
vec![entry; num_entries]
}
#[cfg(test)]
pub fn make_consecutive_blobs(
id: &solana_sdk::pubkey::Pubkey,
num_blobs_to_make: u64,
start_height: u64,
start_hash: Hash,
addr: &std::net::SocketAddr,
) -> Vec<SharedBlob> {
let entries = create_ticks(num_blobs_to_make, start_hash);
let blobs = entries.to_single_entry_shared_blobs();
let mut index = start_height;
for blob in &blobs {
let mut blob = blob.write().unwrap();
blob.set_index(index);
blob.set_id(id);
blob.meta.set_addr(addr);
index += 1;
}
blobs
}
#[cfg(test)]
/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
pub fn next_entry(prev_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
assert!(num_hashes > 0 || transactions.is_empty());
Entry {
num_hashes,
hash: next_hash(prev_hash, num_hashes, &transactions),
transactions,
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::entry::Entry;
use crate::packet::{to_blobs, BLOB_DATA_SIZE, PACKET_DATA_SIZE};
use solana_sdk::hash::hash;
use solana_sdk::instruction::Instruction;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::signature::{Keypair, KeypairUtil};
use solana_sdk::system_transaction;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
fn create_sample_payment(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let ixs = budget_instruction::payment(&pubkey, &pubkey, 1);
Transaction::new_signed_instructions(&[keypair], ixs, hash)
}
fn create_sample_timestamp(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let ix = budget_instruction::apply_timestamp(&pubkey, &pubkey, &pubkey, Utc::now());
Transaction::new_signed_instructions(&[keypair], vec![ix], hash)
}
fn create_sample_apply_signature(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let ix = budget_instruction::apply_signature(&pubkey, &pubkey, &pubkey);
Transaction::new_signed_instructions(&[keypair], vec![ix], hash)
}
#[test]
fn test_entry_verify() {
let zero = Hash::default();
let one = hash(&zero.as_ref());
assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case, never used
assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad
assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
}
#[test]
fn test_transaction_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = system_transaction::create_user_account(&keypair, &keypair.pubkey(), 0, zero);
let tx1 = system_transaction::create_user_account(&keypair, &keypair.pubkey(), 1, zero);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
assert!(e0.verify(&zero));
// Next, swap two transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_witness_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = create_sample_timestamp(&keypair, zero);
let tx1 = create_sample_apply_signature(&keypair, zero);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
assert!(e0.verify(&zero));
// Next, swap two witness transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_next_entry() {
let zero = Hash::default();
let tick = next_entry(&zero, 1, vec![]);
assert_eq!(tick.num_hashes, 1);
assert_ne!(tick.hash, zero);
let tick = next_entry(&zero, 0, vec![]);
assert_eq!(tick.num_hashes, 0);
assert_eq!(tick.hash, zero);
let keypair = Keypair::new();
let tx0 = create_sample_timestamp(&keypair, zero);
let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
assert_eq!(entry0.num_hashes, 1);
assert_eq!(entry0.hash, next_hash(&zero, 1, &vec![tx0]));
}
#[test]
#[should_panic]
fn test_next_entry_panic() {
let zero = Hash::default();
let keypair = Keypair::new();
let tx = system_transaction::create_user_account(&keypair, &keypair.pubkey(), 0, zero);
next_entry(&zero, 0, vec![tx]);
}
#[test]
fn test_serialized_to_blob_size() {
let zero = Hash::default();
let keypair = Keypair::new();
let tx = system_transaction::create_user_account(&keypair, &keypair.pubkey(), 0, zero);
let entry = next_entry(&zero, 1, vec![tx.clone()]);
assert_eq!(
Entry::serialized_to_blob_size(&[tx]),
serialized_size(&vec![entry]).unwrap() // blobs are Vec<Entry>
);
}
#[test]
fn test_verify_slice() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
assert!(vec![][..].verify(&zero)); // base case
assert!(vec![Entry::new_tick(0, &zero)][..].verify(&zero)); // singleton case 1
assert!(!vec![Entry::new_tick(0, &zero)][..].verify(&one)); // singleton case 2, bad
assert!(vec![next_entry(&zero, 0, vec![]); 2][..].verify(&zero)); // inductive step
let mut bad_ticks = vec![next_entry(&zero, 0, vec![]); 2];
bad_ticks[1].hash = one;
assert!(!bad_ticks.verify(&zero)); // inductive step, bad
}
#[test]
fn test_verify_slice_with_hashes() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
let two = hash(&one.as_ref());
assert!(vec![][..].verify(&one)); // base case
assert!(vec![Entry::new_tick(1, &two)][..].verify(&one)); // singleton case 1
assert!(!vec![Entry::new_tick(1, &two)][..].verify(&two)); // singleton case 2, bad
let mut ticks = vec![next_entry(&one, 1, vec![])];
ticks.push(next_entry(&ticks.last().unwrap().hash, 1, vec![]));
assert!(ticks.verify(&one)); // inductive step
let mut bad_ticks = vec![next_entry(&one, 1, vec![])];
bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![]));
bad_ticks[1].hash = one;
assert!(!bad_ticks.verify(&one)); // inductive step, bad
}
#[test]
fn test_verify_slice_with_hashes_and_transactions() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
let two = hash(&one.as_ref());
let alice_pubkey = Keypair::default();
let tx0 = create_sample_payment(&alice_pubkey, one);
let tx1 = create_sample_timestamp(&alice_pubkey, one);
assert!(vec![][..].verify(&one)); // base case
assert!(vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&one)); // singleton case 1
assert!(!vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&two)); // singleton case 2, bad
let mut ticks = vec![next_entry(&one, 1, vec![tx0.clone()])];
ticks.push(next_entry(
&ticks.last().unwrap().hash,
1,
vec![tx1.clone()],
));
assert!(ticks.verify(&one)); // inductive step
let mut bad_ticks = vec![next_entry(&one, 1, vec![tx0])];
bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![tx1]));
bad_ticks[1].hash = one;
assert!(!bad_ticks.verify(&one)); // inductive step, bad
}
fn blob_sized_entries(num_entries: usize) -> Vec<Entry> {
// rough guess
let mut magic_len = BLOB_DATA_SIZE
- serialized_size(&vec![Entry {
num_hashes: 0,
hash: Hash::default(),
transactions: vec![],
}])
.unwrap() as usize;
loop {
let entries = vec![Entry {
num_hashes: 0,
hash: Hash::default(),
transactions: vec![Transaction::new_unsigned_instructions(vec![
Instruction::new(Pubkey::default(), &vec![0u8; magic_len as usize], vec![]),
])],
}];
let size = serialized_size(&entries).unwrap() as usize;
if size < BLOB_DATA_SIZE {
magic_len += BLOB_DATA_SIZE - size;
} else if size > BLOB_DATA_SIZE {
magic_len -= size - BLOB_DATA_SIZE;
} else {
break;
}
}
vec![
Entry {
num_hashes: 0,
hash: Hash::default(),
transactions: vec![Transaction::new_unsigned_instructions(vec![
Instruction::new(Pubkey::default(), &vec![0u8; magic_len], vec![]),
])],
};
num_entries
]
}
#[test]
fn test_entries_to_blobs() {
solana_logger::setup();
let entries = blob_sized_entries(10);
let blobs = entries.to_blobs();
for blob in &blobs {
assert_eq!(blob.size(), BLOB_DATA_SIZE);
}
assert_eq!(reconstruct_entries_from_blobs(blobs).unwrap().0, entries);
}
#[test]
fn test_multiple_entries_to_blobs() {
solana_logger::setup();
let num_blobs = 10;
let serialized_size =
bincode::serialized_size(&make_tiny_test_entries_from_hash(&Hash::default(), 1))
.unwrap();
let num_entries = (num_blobs * BLOB_DATA_SIZE as u64) / serialized_size;
let entries = make_tiny_test_entries_from_hash(&Hash::default(), num_entries as usize);
let blob_q = entries.to_blobs();
assert_eq!(blob_q.len() as u64, num_blobs);
assert_eq!(reconstruct_entries_from_blobs(blob_q).unwrap().0, entries);
}
#[test]
fn test_bad_blobs_attack() {
solana_logger::setup();
let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 8000);
let blobs_q = to_blobs(vec![(0, addr)]).unwrap(); // <-- attack!
assert!(reconstruct_entries_from_blobs(blobs_q).is_err());
}
#[test]
fn test_next_entries() {
solana_logger::setup();
let hash = Hash::default();
let next_hash = solana_sdk::hash::hash(&hash.as_ref());
let keypair = Keypair::new();
let tx_small = create_sample_timestamp(&keypair, next_hash);
let tx_large = create_sample_payment(&keypair, next_hash);
let tx_small_size = serialized_size(&tx_small).unwrap() as usize;
let tx_large_size = serialized_size(&tx_large).unwrap() as usize;
let entry_size = serialized_size(&Entry {
num_hashes: 0,
hash: Hash::default(),
transactions: vec![],
})
.unwrap() as usize;
assert!(tx_small_size < tx_large_size);
assert!(tx_large_size < PACKET_DATA_SIZE);
let threshold = (BLOB_DATA_SIZE - entry_size) / tx_small_size;
// verify no split
let transactions = vec![tx_small.clone(); threshold];
let entries0 = next_entries(&hash, 0, transactions.clone());
assert_eq!(entries0.len(), 1);
assert!(entries0.verify(&hash));
// verify the split with uniform transactions
let transactions = vec![tx_small.clone(); threshold * 2];
let entries0 = next_entries(&hash, 0, transactions.clone());
assert_eq!(entries0.len(), 2);
assert!(entries0.verify(&hash));
// verify the split with small transactions followed by large
// transactions
let mut transactions = vec![tx_small.clone(); BLOB_DATA_SIZE / tx_small_size];
let large_transactions = vec![tx_large.clone(); BLOB_DATA_SIZE / tx_large_size];
transactions.extend(large_transactions);
let entries0 = next_entries(&hash, 0, transactions.clone());
assert!(entries0.len() >= 2);
assert!(entries0.verify(&hash));
}
#[test]
fn test_num_will_fit_empty() {
let serializables: Vec<u32> = vec![];
let result = num_will_fit(&serializables[..], 8, &|_| 4);
assert_eq!(result, 0);
}
#[test]
fn test_num_will_fit() {
let serializables_vec: Vec<u8> = (0..10).map(|_| 1).collect();
let serializables = &serializables_vec[..];
let sum = |i: &[u8]| (0..i.len()).into_iter().sum::<usize>() as u64;
// sum[0] is = 0, but sum[0..1] > 0, so result contains 1 item
let result = num_will_fit(serializables, 0, &sum);
assert_eq!(result, 1);
// sum[0..3] is <= 8, but sum[0..4] > 8, so result contains 3 items
let result = num_will_fit(serializables, 8, &sum);
assert_eq!(result, 4);
// sum[0..1] is = 1, but sum[0..2] > 0, so result contains 2 items
let result = num_will_fit(serializables, 1, &sum);
assert_eq!(result, 2);
// sum[0..9] = 45, so contains all items
let result = num_will_fit(serializables, 45, &sum);
assert_eq!(result, 10);
// sum[0..8] <= 44, but sum[0..9] = 45, so contains all but last item
let result = num_will_fit(serializables, 44, &sum);
assert_eq!(result, 9);
// sum[0..9] <= 46, but contains all items
let result = num_will_fit(serializables, 46, &sum);
assert_eq!(result, 10);
// too small to fit a single u64
let result = num_will_fit(&[0u64], (std::mem::size_of::<u64>() - 1) as u64, &|i| {
(std::mem::size_of::<u64>() * i.len()) as u64
});
assert_eq!(result, 0);
}
}