solana/programs/bpf/c/src/invoke/invoke.c

608 lines
27 KiB
C

/**
* @brief Example C-based BPF program that tests cross-program invocations
*/
#include "../invoked/instruction.h"
#include <sol/entrypoint.h>
#include <sol/cpi.h>
#include <sol/pubkey.h>
#include <sol/log.h>
#include <sol/assert.h>
#include <sol/deserialize.h>
#include <sol/return_data.h>
static const uint8_t TEST_SUCCESS = 1;
static const uint8_t TEST_PRIVILEGE_ESCALATION_SIGNER = 2;
static const uint8_t TEST_PRIVILEGE_ESCALATION_WRITABLE = 3;
static const uint8_t TEST_PPROGRAM_NOT_EXECUTABLE = 4;
static const uint8_t TEST_EMPTY_ACCOUNTS_SLICE = 5;
static const uint8_t TEST_CAP_SEEDS = 6;
static const uint8_t TEST_CAP_SIGNERS = 7;
static const uint8_t TEST_ALLOC_ACCESS_VIOLATION = 8;
static const uint8_t TEST_INSTRUCTION_DATA_TOO_LARGE = 9;
static const uint8_t TEST_INSTRUCTION_META_TOO_LARGE = 10;
static const uint8_t TEST_RETURN_ERROR = 11;
static const uint8_t TEST_PRIVILEGE_DEESCALATION_ESCALATION_SIGNER = 12;
static const uint8_t TEST_PRIVILEGE_DEESCALATION_ESCALATION_WRITABLE = 13;
static const uint8_t TEST_WRITABLE_DEESCALATION_WRITABLE = 14;
static const uint8_t TEST_NESTED_INVOKE_TOO_DEEP = 15;
static const uint8_t TEST_EXECUTABLE_LAMPORTS = 16;
static const uint8_t ADD_LAMPORTS = 17;
static const uint8_t TEST_RETURN_DATA_TOO_LARGE = 18;
static const int MINT_INDEX = 0;
static const int ARGUMENT_INDEX = 1;
static const int INVOKED_PROGRAM_INDEX = 2;
static const int INVOKED_ARGUMENT_INDEX = 3;
static const int INVOKED_PROGRAM_DUP_INDEX = 4;
static const int ARGUMENT_DUP_INDEX = 5;
static const int DERIVED_KEY1_INDEX = 6;
static const int DERIVED_KEY2_INDEX = 7;
static const int DERIVED_KEY3_INDEX = 8;
static const int SYSTEM_PROGRAM_INDEX = 9;
static const int FROM_INDEX = 10;
uint64_t do_nested_invokes(uint64_t num_nested_invokes,
SolAccountInfo *accounts, uint64_t num_accounts) {
sol_assert(accounts[ARGUMENT_INDEX].is_signer);
*accounts[ARGUMENT_INDEX].lamports -= 5;
*accounts[INVOKED_ARGUMENT_INDEX].lamports += 5;
SolAccountMeta arguments[] = {
{accounts[INVOKED_ARGUMENT_INDEX].key, true, true},
{accounts[ARGUMENT_INDEX].key, true, true},
{accounts[INVOKED_PROGRAM_INDEX].key, false, false}};
uint8_t data[] = {NESTED_INVOKE, num_nested_invokes};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_log("First invoke");
sol_assert(SUCCESS == sol_invoke(&instruction, accounts, num_accounts));
sol_log("2nd invoke from first program");
sol_assert(SUCCESS == sol_invoke(&instruction, accounts, num_accounts));
sol_assert(*accounts[ARGUMENT_INDEX].lamports ==
42 - 5 + (2 * num_nested_invokes));
sol_assert(*accounts[INVOKED_ARGUMENT_INDEX].lamports ==
10 + 5 - (2 * num_nested_invokes));
return SUCCESS;
}
extern uint64_t entrypoint(const uint8_t *input) {
sol_log("Invoke C program");
SolAccountInfo accounts[12];
SolParameters params = (SolParameters){.ka = accounts};
if (!sol_deserialize(input, &params, SOL_ARRAY_SIZE(accounts))) {
return ERROR_INVALID_ARGUMENT;
}
uint8_t bump_seed1 = params.data[1];
uint8_t bump_seed2 = params.data[2];
uint8_t bump_seed3 = params.data[3];
switch (params.data[0]) {
case TEST_SUCCESS: {
sol_log("Call system program create account");
{
uint64_t from_lamports = *accounts[FROM_INDEX].lamports;
uint64_t to_lamports = *accounts[DERIVED_KEY1_INDEX].lamports;
SolAccountMeta arguments[] = {
{accounts[FROM_INDEX].key, true, true},
{accounts[DERIVED_KEY1_INDEX].key, true, true}};
uint8_t data[4 + 8 + 8 + 32];
*(uint64_t *)(data + 4) = 42;
*(uint64_t *)(data + 4 + 8) = MAX_PERMITTED_DATA_INCREASE;
sol_memcpy(data + 4 + 8 + 8, params.program_id, SIZE_PUBKEY);
const SolInstruction instruction = {accounts[SYSTEM_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
uint8_t seed1[] = {'Y', 'o', 'u', ' ', 'p', 'a', 's', 's',
' ', 'b', 'u', 't', 't', 'e', 'r'};
const SolSignerSeed seeds1[] = {{seed1, SOL_ARRAY_SIZE(seed1)},
{&bump_seed1, 1}};
const SolSignerSeeds signers_seeds[] = {{seeds1, SOL_ARRAY_SIZE(seeds1)}};
sol_assert(SUCCESS == sol_invoke_signed(&instruction, accounts,
SOL_ARRAY_SIZE(accounts),
signers_seeds,
SOL_ARRAY_SIZE(signers_seeds)));
sol_assert(*accounts[FROM_INDEX].lamports == from_lamports - 42);
sol_assert(*accounts[DERIVED_KEY1_INDEX].lamports == to_lamports + 42);
sol_assert(SolPubkey_same(accounts[DERIVED_KEY1_INDEX].owner,
params.program_id));
sol_assert(accounts[DERIVED_KEY1_INDEX].data_len ==
MAX_PERMITTED_DATA_INCREASE);
sol_assert(
accounts[DERIVED_KEY1_INDEX].data[MAX_PERMITTED_DATA_INCREASE - 1] ==
0);
accounts[DERIVED_KEY1_INDEX].data[MAX_PERMITTED_DATA_INCREASE - 1] = 0x0f;
sol_assert(
accounts[DERIVED_KEY1_INDEX].data[MAX_PERMITTED_DATA_INCREASE - 1] ==
0x0f);
for (uint8_t i = 0; i < 20; i++) {
accounts[DERIVED_KEY1_INDEX].data[i] = i;
}
}
sol_log("Call system program transfer");
{
uint64_t from_lamports = *accounts[FROM_INDEX].lamports;
uint64_t to_lamports = *accounts[DERIVED_KEY1_INDEX].lamports;
SolAccountMeta arguments[] = {
{accounts[FROM_INDEX].key, true, true},
{accounts[DERIVED_KEY1_INDEX].key, true, false}};
uint8_t data[] = {2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0};
const SolInstruction instruction = {accounts[SYSTEM_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
sol_assert(*accounts[FROM_INDEX].lamports == from_lamports - 1);
sol_assert(*accounts[DERIVED_KEY1_INDEX].lamports == to_lamports + 1);
}
sol_log("Test data translation");
{
for (int i = 0; i < accounts[ARGUMENT_INDEX].data_len; i++) {
accounts[ARGUMENT_INDEX].data[i] = i;
}
SolAccountMeta arguments[] = {
{accounts[ARGUMENT_INDEX].key, true, true},
{accounts[INVOKED_ARGUMENT_INDEX].key, true, true},
{accounts[INVOKED_PROGRAM_INDEX].key, false, false},
{accounts[INVOKED_PROGRAM_DUP_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_TRANSLATIONS, 1, 2, 3, 4, 5};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
}
sol_log("Test no instruction data");
{
SolAccountMeta arguments[] = {{accounts[ARGUMENT_INDEX].key, true, true}};
uint8_t data[] = {};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
}
sol_log("Test return data");
{
SolAccountMeta arguments[] = {{accounts[ARGUMENT_INDEX].key, true, true}};
uint8_t data[] = { SET_RETURN_DATA };
uint8_t buf[100];
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
// set some return data, so that the callee can check it is cleared
sol_set_return_data((uint8_t[]){1, 2, 3, 4}, 4);
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
SolPubkey setter;
uint64_t ret = sol_get_return_data(data, sizeof(data), &setter);
sol_assert(ret == sizeof(RETURN_DATA_VAL));
sol_assert(sol_memcmp(data, RETURN_DATA_VAL, sizeof(RETURN_DATA_VAL)));
sol_assert(SolPubkey_same(&setter, accounts[INVOKED_PROGRAM_INDEX].key));
}
sol_log("Test create_program_address");
{
uint8_t seed1[] = {'Y', 'o', 'u', ' ', 'p', 'a', 's', 's',
' ', 'b', 'u', 't', 't', 'e', 'r'};
const SolSignerSeed seeds1[] = {{seed1, SOL_ARRAY_SIZE(seed1)},
{&bump_seed1, 1}};
SolPubkey address;
sol_assert(SUCCESS ==
sol_create_program_address(seeds1, SOL_ARRAY_SIZE(seeds1),
params.program_id, &address));
sol_assert(SolPubkey_same(&address, accounts[DERIVED_KEY1_INDEX].key));
}
sol_log("Test try_find_program_address");
{
uint8_t seed[] = {'Y', 'o', 'u', ' ', 'p', 'a', 's', 's',
' ', 'b', 'u', 't', 't', 'e', 'r'};
const SolSignerSeed seeds[] = {{seed, SOL_ARRAY_SIZE(seed)}};
SolPubkey address;
uint8_t bump_seed;
sol_assert(SUCCESS == sol_try_find_program_address(
seeds, SOL_ARRAY_SIZE(seeds), params.program_id,
&address, &bump_seed));
sol_assert(SolPubkey_same(&address, accounts[DERIVED_KEY1_INDEX].key));
sol_assert(bump_seed == bump_seed1);
}
sol_log("Test derived signers");
{
sol_assert(!accounts[DERIVED_KEY1_INDEX].is_signer);
sol_assert(!accounts[DERIVED_KEY2_INDEX].is_signer);
sol_assert(!accounts[DERIVED_KEY3_INDEX].is_signer);
SolAccountMeta arguments[] = {
{accounts[INVOKED_PROGRAM_INDEX].key, false, false},
{accounts[DERIVED_KEY1_INDEX].key, true, true},
{accounts[DERIVED_KEY2_INDEX].key, true, false},
{accounts[DERIVED_KEY3_INDEX].key, false, false}};
uint8_t data[] = {DERIVED_SIGNERS, bump_seed2, bump_seed3};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
uint8_t seed1[] = {'Y', 'o', 'u', ' ', 'p', 'a', 's', 's',
' ', 'b', 'u', 't', 't', 'e', 'r'};
const SolSignerSeed seeds1[] = {{seed1, SOL_ARRAY_SIZE(seed1)},
{&bump_seed1, 1}};
const SolSignerSeeds signers_seeds[] = {{seeds1, SOL_ARRAY_SIZE(seeds1)}};
sol_assert(SUCCESS == sol_invoke_signed(&instruction, accounts,
SOL_ARRAY_SIZE(accounts),
signers_seeds,
SOL_ARRAY_SIZE(signers_seeds)));
}
sol_log("Test readonly with writable account");
{
SolAccountMeta arguments[] = {
{accounts[INVOKED_ARGUMENT_INDEX].key, true, false}};
uint8_t data[] = {VERIFY_WRITER};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
}
sol_log("Test nested invoke");
{
sol_assert(SUCCESS == do_nested_invokes(4, accounts, params.ka_num));
}
sol_log("Test privilege deescalation");
{
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_signer);
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_writable);
SolAccountMeta arguments[] = {
{accounts[INVOKED_ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_DEESCALATION};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
}
sol_log("Verify data values are retained and updated");
for (int i = 0; i < accounts[ARGUMENT_INDEX].data_len; i++) {
sol_assert(accounts[ARGUMENT_INDEX].data[i] == i);
}
for (int i = 0; i < accounts[INVOKED_ARGUMENT_INDEX].data_len; i++) {
sol_assert(accounts[INVOKED_ARGUMENT_INDEX].data[i] == i);
}
sol_log("Verify data write before ro cpi call");
{
for (int i = 0; i < accounts[ARGUMENT_INDEX].data_len; i++) {
accounts[ARGUMENT_INDEX].data[i] = 0;
}
SolAccountMeta arguments[] = {
{accounts[ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_DEESCALATION};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
for (int i = 0; i < accounts[ARGUMENT_INDEX].data_len; i++) {
sol_assert(accounts[ARGUMENT_INDEX].data[i] == 0);
}
}
break;
}
case TEST_PRIVILEGE_ESCALATION_SIGNER: {
sol_log("Test privilege escalation signer");
SolAccountMeta arguments[] = {
{accounts[DERIVED_KEY3_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_ESCALATION};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
// Signer privilege escalation will always fail the whole transaction
instruction.accounts[0].is_signer = true;
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
break;
}
case TEST_PRIVILEGE_ESCALATION_WRITABLE: {
sol_log("Test privilege escalation writable");
SolAccountMeta arguments[] = {
{accounts[DERIVED_KEY3_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_ESCALATION};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
// Writable privilege escalation will always fail the whole transaction
instruction.accounts[0].is_writable = true;
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
break;
}
case TEST_PPROGRAM_NOT_EXECUTABLE: {
sol_log("Test program not executable");
SolAccountMeta arguments[] = {
{accounts[DERIVED_KEY3_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_ESCALATION};
const SolInstruction instruction = {accounts[ARGUMENT_INDEX].key, arguments,
SOL_ARRAY_SIZE(arguments), data,
SOL_ARRAY_SIZE(data)};
return sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
}
case TEST_EMPTY_ACCOUNTS_SLICE: {
sol_log("Empty accounts slice");
SolAccountMeta arguments[] = {
{accounts[INVOKED_ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS == sol_invoke(&instruction, 0, 0));
break;
}
case TEST_CAP_SEEDS: {
sol_log("Test cap seeds");
SolAccountMeta arguments[] = {};
uint8_t data[] = {};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
uint8_t seed[] = {"seed"};
const SolSignerSeed seeds[] = {
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)}, {seed, SOL_ARRAY_SIZE(seed)},
{seed, SOL_ARRAY_SIZE(seed)},
};
const SolSignerSeeds signers_seeds[] = {{seeds, SOL_ARRAY_SIZE(seeds)}};
sol_assert(SUCCESS == sol_invoke_signed(
&instruction, accounts, SOL_ARRAY_SIZE(accounts),
signers_seeds, SOL_ARRAY_SIZE(signers_seeds)));
break;
}
case TEST_CAP_SIGNERS: {
sol_log("Test cap signers");
SolAccountMeta arguments[] = {};
uint8_t data[] = {};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
uint8_t seed[] = {"seed"};
const SolSignerSeed seed1[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed2[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed3[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed4[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed5[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed6[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed7[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed8[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed9[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed10[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed11[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed12[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed13[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed14[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed15[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed16[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeed seed17[] = {{seed, SOL_ARRAY_SIZE(seed)}};
const SolSignerSeeds signers_seeds[] = {
{seed1, SOL_ARRAY_SIZE(seed1)}, {seed2, SOL_ARRAY_SIZE(seed2)},
{seed3, SOL_ARRAY_SIZE(seed3)}, {seed4, SOL_ARRAY_SIZE(seed4)},
{seed5, SOL_ARRAY_SIZE(seed5)}, {seed6, SOL_ARRAY_SIZE(seed6)},
{seed7, SOL_ARRAY_SIZE(seed7)}, {seed8, SOL_ARRAY_SIZE(seed8)},
{seed9, SOL_ARRAY_SIZE(seed9)}, {seed10, SOL_ARRAY_SIZE(seed10)},
{seed11, SOL_ARRAY_SIZE(seed11)}, {seed12, SOL_ARRAY_SIZE(seed12)},
{seed13, SOL_ARRAY_SIZE(seed13)}, {seed14, SOL_ARRAY_SIZE(seed14)},
{seed15, SOL_ARRAY_SIZE(seed15)}, {seed16, SOL_ARRAY_SIZE(seed16)},
{seed17, SOL_ARRAY_SIZE(seed17)}};
sol_assert(SUCCESS == sol_invoke_signed(
&instruction, accounts, SOL_ARRAY_SIZE(accounts),
signers_seeds, SOL_ARRAY_SIZE(signers_seeds)));
break;
}
case TEST_ALLOC_ACCESS_VIOLATION: {
sol_log("Test resize violation");
SolAccountMeta arguments[] = {
{accounts[FROM_INDEX].key, true, true},
{accounts[DERIVED_KEY1_INDEX].key, true, true}};
uint8_t data[4 + 8 + 8 + 32];
*(uint64_t *)(data + 4) = 42;
*(uint64_t *)(data + 4 + 8) = MAX_PERMITTED_DATA_INCREASE;
sol_memcpy(data + 4 + 8 + 8, params.program_id, SIZE_PUBKEY);
const SolInstruction instruction = {accounts[SYSTEM_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
uint8_t seed1[] = {'Y', 'o', 'u', ' ', 'p', 'a', 's', 's',
' ', 'b', 'u', 't', 't', 'e', 'r'};
const SolSignerSeed seeds1[] = {{seed1, SOL_ARRAY_SIZE(seed1)},
{&bump_seed1, 1}};
const SolSignerSeeds signers_seeds[] = {{seeds1, SOL_ARRAY_SIZE(seeds1)}};
SolAccountInfo derived_account = {
.key = accounts[DERIVED_KEY1_INDEX].key,
.lamports = accounts[DERIVED_KEY1_INDEX].lamports,
.data_len = accounts[DERIVED_KEY1_INDEX].data_len,
// Point to top edge of heap, attempt to allocate into unprivileged
// memory
.data = (uint8_t *)0x300007ff8,
.owner = accounts[DERIVED_KEY1_INDEX].owner,
.rent_epoch = accounts[DERIVED_KEY1_INDEX].rent_epoch,
.is_signer = accounts[DERIVED_KEY1_INDEX].is_signer,
.is_writable = accounts[DERIVED_KEY1_INDEX].is_writable,
.executable = accounts[DERIVED_KEY1_INDEX].executable,
};
const SolAccountInfo invoke_accounts[] = {
accounts[FROM_INDEX], accounts[SYSTEM_PROGRAM_INDEX], derived_account};
sol_assert(SUCCESS ==
sol_invoke_signed(&instruction,
(const SolAccountInfo *)invoke_accounts, 3,
signers_seeds, SOL_ARRAY_SIZE(signers_seeds)));
break;
}
case TEST_INSTRUCTION_DATA_TOO_LARGE: {
sol_log("Test instruction data too large");
SolAccountMeta arguments[] = {};
uint8_t *data = sol_calloc(1500, 1);
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, 1500};
const SolSignerSeeds signers_seeds[] = {};
sol_assert(SUCCESS == sol_invoke_signed(
&instruction, accounts, SOL_ARRAY_SIZE(accounts),
signers_seeds, SOL_ARRAY_SIZE(signers_seeds)));
break;
}
case TEST_INSTRUCTION_META_TOO_LARGE: {
sol_log("Test instruction meta too large");
SolAccountMeta *arguments = sol_calloc(40, sizeof(SolAccountMeta));
sol_log_64(0, 0, 0, 0, (uint64_t)arguments);
sol_assert(0 != arguments);
uint8_t data[] = {};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, 40, data,
SOL_ARRAY_SIZE(data)};
const SolSignerSeeds signers_seeds[] = {};
sol_assert(SUCCESS == sol_invoke_signed(
&instruction, accounts, SOL_ARRAY_SIZE(accounts),
signers_seeds, SOL_ARRAY_SIZE(signers_seeds)));
break;
}
case TEST_RETURN_ERROR: {
sol_log("Test return error");
SolAccountMeta arguments[] = {{accounts[ARGUMENT_INDEX].key, false, true}};
uint8_t data[] = {RETURN_ERROR};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
break;
}
case TEST_PRIVILEGE_DEESCALATION_ESCALATION_SIGNER: {
sol_log("Test privilege deescalation escalation signer");
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_signer);
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_writable);
SolAccountMeta arguments[] = {
{accounts[INVOKED_PROGRAM_INDEX].key, false, false},
{accounts[INVOKED_ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_DEESCALATION_ESCALATION_SIGNER};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
break;
}
case TEST_PRIVILEGE_DEESCALATION_ESCALATION_WRITABLE: {
sol_log("Test privilege deescalation escalation writable");
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_signer);
sol_assert(true == accounts[INVOKED_ARGUMENT_INDEX].is_writable);
SolAccountMeta arguments[] = {
{accounts[INVOKED_PROGRAM_INDEX].key, false, false},
{accounts[INVOKED_ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {VERIFY_PRIVILEGE_DEESCALATION_ESCALATION_WRITABLE};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_assert(SUCCESS ==
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts)));
break;
}
case TEST_WRITABLE_DEESCALATION_WRITABLE: {
sol_log("Test writable deescalation");
uint8_t buffer[10];
for (int i = 0; i < 10; i++) {
buffer[i] = accounts[INVOKED_ARGUMENT_INDEX].data[i];
}
SolAccountMeta arguments[] = {
{accounts[INVOKED_ARGUMENT_INDEX].key, false, false}};
uint8_t data[] = {WRITE_ACCOUNT, 10};
const SolInstruction instruction = {accounts[INVOKED_PROGRAM_INDEX].key,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
for (int i = 0; i < 10; i++) {
sol_assert(buffer[i] == accounts[INVOKED_ARGUMENT_INDEX].data[i]);
}
break;
}
case TEST_NESTED_INVOKE_TOO_DEEP: {
do_nested_invokes(5, accounts, params.ka_num);
break;
}
case TEST_EXECUTABLE_LAMPORTS: {
sol_log("Test executable lamports");
accounts[ARGUMENT_INDEX].executable = true;
*accounts[ARGUMENT_INDEX].lamports -= 1;
*accounts[DERIVED_KEY1_INDEX].lamports +=1;
SolAccountMeta arguments[] = {
{accounts[ARGUMENT_INDEX].key, true, false},
{accounts[DERIVED_KEY1_INDEX].key, true, false},
};
uint8_t data[] = {ADD_LAMPORTS, 0, 0, 0};
SolPubkey program_id;
sol_memcpy(&program_id, params.program_id, sizeof(SolPubkey));
const SolInstruction instruction = {&program_id,
arguments, SOL_ARRAY_SIZE(arguments),
data, SOL_ARRAY_SIZE(data)};
sol_invoke(&instruction, accounts, SOL_ARRAY_SIZE(accounts));
*accounts[ARGUMENT_INDEX].lamports += 1;
break;
}
case ADD_LAMPORTS: {
*accounts[0].lamports += 1;
break;
}
case TEST_RETURN_DATA_TOO_LARGE: {
sol_log("Test setting return data too long");
// The actual buffer doesn't matter, just pass null
sol_set_return_data(NULL, 1027);
break;
}
default:
sol_panic();
}
return SUCCESS;
}