solana/runtime/src/message_processor.rs

527 lines
19 KiB
Rust

use crate::native_loader;
use crate::system_instruction_processor;
use serde::{Deserialize, Serialize};
use solana_sdk::account::{
create_keyed_credit_only_accounts, Account, KeyedAccount, LamportCredit,
};
use solana_sdk::instruction::{CompiledInstruction, InstructionError};
use solana_sdk::instruction_processor_utils;
use solana_sdk::message::Message;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::system_program;
use solana_sdk::transaction::TransactionError;
use std::collections::HashMap;
use std::sync::RwLock;
#[cfg(unix)]
use libloading::os::unix::*;
#[cfg(windows)]
use libloading::os::windows::*;
/// Return true if the slice has any duplicate elements
pub fn has_duplicates<T: PartialEq>(xs: &[T]) -> bool {
// Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
// `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
// ~50 times faster than using HashSet for very short slices.
for i in 1..xs.len() {
if xs[i..].contains(&xs[i - 1]) {
return true;
}
}
false
}
/// Get mut references to a subset of elements.
fn get_subset_unchecked_mut<'a, T>(
xs: &'a mut [T],
indexes: &[u8],
) -> Result<Vec<&'a mut T>, InstructionError> {
// Since the compiler doesn't know the indexes are unique, dereferencing
// multiple mut elements is assumed to be unsafe. If, however, all
// indexes are unique, it's perfectly safe. The returned elements will share
// the liftime of the input slice.
// Make certain there are no duplicate indexes. If there are, return an error
// because we can't return multiple mut references to the same element.
if has_duplicates(indexes) {
return Err(InstructionError::DuplicateAccountIndex);
}
Ok(indexes
.iter()
.map(|i| {
let ptr = &mut xs[*i as usize] as *mut T;
unsafe { &mut *ptr }
})
.collect())
}
fn verify_instruction(
is_debitable: bool,
program_id: &Pubkey,
pre_program_id: &Pubkey,
pre_lamports: u64,
pre_data: &[u8],
account: &Account,
) -> Result<(), InstructionError> {
// Verify the transaction
// Make sure that program_id is still the same or this was just assigned by the system program
if *pre_program_id != account.owner && !system_program::check_id(&program_id) {
return Err(InstructionError::ModifiedProgramId);
}
// For accounts unassigned to the program, the individual balance of each accounts cannot decrease.
if *program_id != account.owner && pre_lamports > account.lamports {
return Err(InstructionError::ExternalAccountLamportSpend);
}
// The balance of credit-only accounts may only increase
if !is_debitable && pre_lamports > account.lamports {
return Err(InstructionError::CreditOnlyLamportSpend);
}
// For accounts unassigned to the program, the data may not change.
if *program_id != account.owner
&& !system_program::check_id(&program_id)
&& pre_data != &account.data[..]
{
return Err(InstructionError::ExternalAccountDataModified);
}
// Credit-only account data may not change.
if !is_debitable && pre_data != &account.data[..] {
return Err(InstructionError::CreditOnlyDataModified);
}
Ok(())
}
pub type ProcessInstruction =
fn(&Pubkey, &mut [KeyedAccount], &[u8]) -> Result<(), InstructionError>;
pub type SymbolCache = RwLock<HashMap<Vec<u8>, Symbol<instruction_processor_utils::Entrypoint>>>;
#[derive(Serialize, Deserialize)]
pub struct MessageProcessor {
#[serde(skip)]
instruction_processors: Vec<(Pubkey, ProcessInstruction)>,
#[serde(skip)]
symbol_cache: SymbolCache,
}
impl Default for MessageProcessor {
fn default() -> Self {
let instruction_processors: Vec<(Pubkey, ProcessInstruction)> = vec![(
system_program::id(),
system_instruction_processor::process_instruction,
)];
Self {
instruction_processors,
symbol_cache: RwLock::new(HashMap::new()),
}
}
}
impl MessageProcessor {
/// Add a static entrypoint to intercept intructions before the dynamic loader.
pub fn add_instruction_processor(
&mut self,
program_id: Pubkey,
process_instruction: ProcessInstruction,
) {
self.instruction_processors
.push((program_id, process_instruction));
}
/// Process an instruction
/// This method calls the instruction's program entrypoint method
fn process_instruction(
&self,
message: &Message,
instruction: &CompiledInstruction,
executable_accounts: &mut [(Pubkey, Account)],
program_accounts: &mut [&mut Account],
) -> Result<(), InstructionError> {
let program_id = instruction.program_id(&message.account_keys);
let mut keyed_accounts = create_keyed_credit_only_accounts(executable_accounts);
let mut keyed_accounts2: Vec<_> = instruction
.accounts
.iter()
.map(|&index| {
let index = index as usize;
let key = &message.account_keys[index];
let is_debitable = message.is_debitable(index);
(
key,
index < message.header.num_required_signatures as usize,
is_debitable,
)
})
.zip(program_accounts.iter_mut())
.map(|((key, is_signer, is_debitable), account)| {
if is_debitable {
KeyedAccount::new(key, is_signer, account)
} else {
KeyedAccount::new_credit_only(key, is_signer, account)
}
})
.collect();
keyed_accounts.append(&mut keyed_accounts2);
for (id, process_instruction) in &self.instruction_processors {
if id == program_id {
return process_instruction(
&program_id,
&mut keyed_accounts[1..],
&instruction.data,
);
}
}
native_loader::entrypoint(
&program_id,
&mut keyed_accounts,
&instruction.data,
&self.symbol_cache,
)
}
/// Execute an instruction
/// This method calls the instruction's program entrypoint method and verifies that the result of
/// the call does not violate the bank's accounting rules.
/// The accounts are committed back to the bank only if this function returns Ok(_).
fn execute_instruction(
&self,
message: &Message,
instruction: &CompiledInstruction,
executable_accounts: &mut [(Pubkey, Account)],
program_accounts: &mut [&mut Account],
credits: &mut [&mut LamportCredit],
) -> Result<(), InstructionError> {
let program_id = instruction.program_id(&message.account_keys);
assert_eq!(instruction.accounts.len(), program_accounts.len());
// TODO: the runtime should be checking read/write access to memory
// we are trusting the hard-coded programs not to clobber or allocate
let pre_total: u128 = program_accounts
.iter()
.map(|a| u128::from(a.lamports))
.sum();
let pre_data: Vec<_> = program_accounts
.iter_mut()
.map(|a| (a.owner, a.lamports, a.data.clone()))
.collect();
self.process_instruction(message, instruction, executable_accounts, program_accounts)?;
// Verify the instruction
for ((pre_program_id, pre_lamports, pre_data), (i, post_account, is_debitable)) in
pre_data.iter().zip(
program_accounts
.iter()
.enumerate()
.map(|(i, program_account)| {
(
i,
program_account,
message.is_debitable(instruction.accounts[i] as usize),
)
}),
)
{
verify_instruction(
is_debitable,
&program_id,
pre_program_id,
*pre_lamports,
pre_data,
post_account,
)?;
if !is_debitable {
*credits[i] += post_account.lamports - *pre_lamports;
}
}
// The total sum of all the lamports in all the accounts cannot change.
let post_total: u128 = program_accounts
.iter()
.map(|a| u128::from(a.lamports))
.sum();
if pre_total != post_total {
return Err(InstructionError::UnbalancedInstruction);
}
Ok(())
}
/// Process a message.
/// This method calls each instruction in the message over the set of loaded Accounts
/// The accounts are committed back to the bank only if every instruction succeeds
pub fn process_message(
&self,
message: &Message,
loaders: &mut [Vec<(Pubkey, Account)>],
accounts: &mut [Account],
credits: &mut [LamportCredit],
) -> Result<(), TransactionError> {
for (instruction_index, instruction) in message.instructions.iter().enumerate() {
let executable_index = message
.program_position(instruction.program_id_index as usize)
.ok_or(TransactionError::InvalidAccountIndex)?;
let executable_accounts = &mut loaders[executable_index];
let mut program_accounts = get_subset_unchecked_mut(accounts, &instruction.accounts)
.map_err(|err| TransactionError::InstructionError(instruction_index as u8, err))?;
// TODO: `get_subset_unchecked_mut` panics on an index out of bounds if an executable
// account is also included as a regular account for an instruction, because the
// executable account is not passed in as part of the accounts slice
let mut instruction_credits = get_subset_unchecked_mut(credits, &instruction.accounts)
.map_err(|err| TransactionError::InstructionError(instruction_index as u8, err))?;
self.execute_instruction(
message,
instruction,
executable_accounts,
&mut program_accounts,
&mut instruction_credits,
)
.map_err(|err| TransactionError::InstructionError(instruction_index as u8, err))?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use solana_sdk::instruction::{AccountMeta, Instruction, InstructionError};
use solana_sdk::message::Message;
use solana_sdk::native_loader::{create_loadable_account, id};
#[test]
fn test_has_duplicates() {
assert!(!has_duplicates(&[1, 2]));
assert!(has_duplicates(&[1, 2, 1]));
}
#[test]
fn test_get_subset_unchecked_mut() {
assert_eq!(
get_subset_unchecked_mut(&mut [7, 8], &[0]).unwrap(),
vec![&mut 7]
);
assert_eq!(
get_subset_unchecked_mut(&mut [7, 8], &[0, 1]).unwrap(),
vec![&mut 7, &mut 8]
);
}
#[test]
fn test_get_subset_unchecked_mut_duplicate_index() {
// This panics, because it assumes duplicate detection is done elsewhere.
assert_eq!(
get_subset_unchecked_mut(&mut [7, 8], &[0, 0]).unwrap_err(),
InstructionError::DuplicateAccountIndex
);
}
#[test]
#[should_panic]
fn test_get_subset_unchecked_mut_out_of_bounds() {
// This panics, because it assumes bounds validation is done elsewhere.
get_subset_unchecked_mut(&mut [7, 8], &[2]).unwrap();
}
#[test]
fn test_verify_instruction_change_program_id() {
fn change_program_id(
ix: &Pubkey,
pre: &Pubkey,
post: &Pubkey,
) -> Result<(), InstructionError> {
verify_instruction(true, &ix, &pre, 0, &[], &Account::new(0, 0, post))
}
let system_program_id = system_program::id();
let alice_program_id = Pubkey::new_rand();
let mallory_program_id = Pubkey::new_rand();
assert_eq!(
change_program_id(&system_program_id, &system_program_id, &alice_program_id),
Ok(()),
"system program should be able to change the account owner"
);
assert_eq!(
change_program_id(&mallory_program_id, &system_program_id, &alice_program_id),
Err(InstructionError::ModifiedProgramId),
"malicious Mallory should not be able to change the account owner"
);
}
#[test]
fn test_verify_instruction_change_data() {
fn change_data(program_id: &Pubkey, is_debitable: bool) -> Result<(), InstructionError> {
let alice_program_id = Pubkey::new_rand();
let account = Account::new(0, 0, &alice_program_id);
verify_instruction(
is_debitable,
&program_id,
&alice_program_id,
0,
&[42],
&account,
)
}
let system_program_id = system_program::id();
let mallory_program_id = Pubkey::new_rand();
assert_eq!(
change_data(&system_program_id, true),
Ok(()),
"system program should be able to change the data"
);
assert_eq!(
change_data(&mallory_program_id, true),
Err(InstructionError::ExternalAccountDataModified),
"malicious Mallory should not be able to change the account data"
);
assert_eq!(
change_data(&system_program_id, false),
Err(InstructionError::CreditOnlyDataModified),
"system program should not be able to change the data if credit-only"
);
}
#[test]
fn test_verify_instruction_credit_only() {
let alice_program_id = Pubkey::new_rand();
let account = Account::new(0, 0, &alice_program_id);
assert_eq!(
verify_instruction(
false,
&system_program::id(),
&alice_program_id,
42,
&[],
&account
),
Err(InstructionError::ExternalAccountLamportSpend),
"debit should fail, even if system program"
);
assert_eq!(
verify_instruction(
false,
&alice_program_id,
&alice_program_id,
42,
&[],
&account
),
Err(InstructionError::CreditOnlyLamportSpend),
"debit should fail, even if owning program"
);
}
#[test]
fn test_process_message_credit_only_handling() {
#[derive(Serialize, Deserialize)]
enum MockSystemInstruction {
Correct { lamports: u64 },
AttemptDebit { lamports: u64 },
Misbehave { lamports: u64 },
}
fn mock_system_process_instruction(
_program_id: &Pubkey,
keyed_accounts: &mut [KeyedAccount],
data: &[u8],
) -> Result<(), InstructionError> {
if let Ok(instruction) = bincode::deserialize(data) {
match instruction {
MockSystemInstruction::Correct { lamports } => {
keyed_accounts[0].account.lamports -= lamports;
keyed_accounts[1].account.lamports += lamports;
Ok(())
}
MockSystemInstruction::AttemptDebit { lamports } => {
keyed_accounts[0].account.lamports += lamports;
keyed_accounts[1].account.lamports -= lamports;
Ok(())
}
// Credit a credit-only account for more lamports than debited
MockSystemInstruction::Misbehave { lamports } => {
keyed_accounts[0].account.lamports -= lamports;
keyed_accounts[1].account.lamports = 2 * lamports;
Ok(())
}
}
} else {
Err(InstructionError::InvalidInstructionData)
}
}
let mock_system_program_id = Pubkey::new(&[2u8; 32]);
let mut message_processor = MessageProcessor::default();
message_processor
.add_instruction_processor(mock_system_program_id, mock_system_process_instruction);
let mut accounts: Vec<Account> = Vec::new();
let account = Account::new(100, 1, &mock_system_program_id);
accounts.push(account);
let account = Account::new(0, 1, &mock_system_program_id);
accounts.push(account);
let mut loaders: Vec<Vec<(Pubkey, Account)>> = Vec::new();
let account = create_loadable_account("mock_system_program");
loaders.push(vec![(id(), account)]);
let from_pubkey = Pubkey::new_rand();
let to_pubkey = Pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, true),
AccountMeta::new_credit_only(to_pubkey, false),
];
let message = Message::new(vec![Instruction::new(
mock_system_program_id,
&MockSystemInstruction::Correct { lamports: 50 },
account_metas.clone(),
)]);
let mut deltas = vec![0, 0];
let result =
message_processor.process_message(&message, &mut loaders, &mut accounts, &mut deltas);
assert_eq!(result, Ok(()));
assert_eq!(accounts[0].lamports, 50);
assert_eq!(accounts[1].lamports, 50);
assert_eq!(deltas, vec![0, 50]);
let message = Message::new(vec![Instruction::new(
mock_system_program_id,
&MockSystemInstruction::AttemptDebit { lamports: 50 },
account_metas.clone(),
)]);
let mut deltas = vec![0, 0];
let result =
message_processor.process_message(&message, &mut loaders, &mut accounts, &mut deltas);
assert_eq!(
result,
Err(TransactionError::InstructionError(
0,
InstructionError::CreditOnlyLamportSpend
))
);
let message = Message::new(vec![Instruction::new(
mock_system_program_id,
&MockSystemInstruction::Misbehave { lamports: 50 },
account_metas,
)]);
let mut deltas = vec![0, 0];
let result =
message_processor.process_message(&message, &mut loaders, &mut accounts, &mut deltas);
assert_eq!(
result,
Err(TransactionError::InstructionError(
0,
InstructionError::UnbalancedInstruction
))
);
}
}