solana/runtime/src/vote_account.rs

592 lines
20 KiB
Rust

use {
itertools::Itertools,
once_cell::sync::OnceCell,
serde::ser::{Serialize, Serializer},
solana_sdk::{
account::{AccountSharedData, ReadableAccount},
instruction::InstructionError,
pubkey::Pubkey,
},
solana_vote_program::vote_state::VoteState,
std::{
cmp::Ordering,
collections::{hash_map::Entry, HashMap},
iter::FromIterator,
sync::Arc,
},
thiserror::Error,
};
#[derive(Clone, Debug, PartialEq, AbiExample, Deserialize)]
#[serde(try_from = "AccountSharedData")]
pub struct VoteAccount(Arc<VoteAccountInner>);
#[derive(Debug, Error)]
pub enum Error {
#[error(transparent)]
InstructionError(#[from] InstructionError),
#[error("Invalid vote account owner: {0}")]
InvalidOwner(/*owner:*/ Pubkey),
}
#[derive(Debug, AbiExample)]
struct VoteAccountInner {
account: AccountSharedData,
vote_state: OnceCell<Result<VoteState, Error>>,
}
pub type VoteAccountsHashMap = HashMap<Pubkey, (/*stake:*/ u64, VoteAccount)>;
#[derive(Clone, Debug, AbiExample, Deserialize)]
#[serde(from = "Arc<VoteAccountsHashMap>")]
pub struct VoteAccounts {
vote_accounts: Arc<VoteAccountsHashMap>,
// Inner Arc is meant to implement copy-on-write semantics.
staked_nodes: OnceCell<
Arc<
HashMap<
Pubkey, // VoteAccount.vote_state.node_pubkey.
u64, // Total stake across all vote-accounts.
>,
>,
>,
}
impl VoteAccount {
pub(crate) fn account(&self) -> &AccountSharedData {
&self.0.account
}
pub(crate) fn lamports(&self) -> u64 {
self.0.account.lamports()
}
pub(crate) fn owner(&self) -> &Pubkey {
self.0.account.owner()
}
pub fn vote_state(&self) -> Result<&VoteState, &Error> {
// VoteState::deserialize deserializes a VoteStateVersions and then
// calls VoteStateVersions::convert_to_current.
self.0
.vote_state
.get_or_init(|| VoteState::deserialize(self.0.account.data()).map_err(Error::from))
.as_ref()
}
pub(crate) fn is_deserialized(&self) -> bool {
self.0.vote_state.get().is_some()
}
/// VoteState.node_pubkey of this vote-account.
pub fn node_pubkey(&self) -> Option<Pubkey> {
Some(self.vote_state().ok()?.node_pubkey)
}
}
impl VoteAccounts {
pub(crate) fn len(&self) -> usize {
self.vote_accounts.len()
}
pub fn staked_nodes(&self) -> Arc<HashMap</*node_pubkey:*/ Pubkey, /*stake:*/ u64>> {
self.staked_nodes
.get_or_init(|| {
Arc::new(
self.vote_accounts
.values()
.filter(|(stake, _)| *stake != 0u64)
.filter_map(|(stake, vote_account)| {
Some((vote_account.node_pubkey()?, stake))
})
.into_grouping_map()
.aggregate(|acc, _node_pubkey, stake| {
Some(acc.unwrap_or_default() + stake)
}),
)
})
.clone()
}
pub(crate) fn get(&self, pubkey: &Pubkey) -> Option<&VoteAccount> {
let (_stake, vote_account) = self.vote_accounts.get(pubkey)?;
Some(vote_account)
}
pub fn get_delegated_stake(&self, pubkey: &Pubkey) -> u64 {
self.vote_accounts
.get(pubkey)
.map(|(stake, _vote_account)| *stake)
.unwrap_or_default()
}
pub(crate) fn iter(&self) -> impl Iterator<Item = (&Pubkey, &VoteAccount)> {
self.vote_accounts
.iter()
.map(|(vote_pubkey, (_stake, vote_account))| (vote_pubkey, vote_account))
}
pub(crate) fn delegated_stakes(&self) -> impl Iterator<Item = (&Pubkey, u64)> {
self.vote_accounts
.iter()
.map(|(vote_pubkey, (stake, _vote_account))| (vote_pubkey, *stake))
}
pub(crate) fn find_max_by_delegated_stake(&self) -> Option<&VoteAccount> {
let key = |(_pubkey, (stake, _vote_account)): &(_, &(u64, _))| *stake;
let (_pubkey, (_stake, vote_account)) = self.vote_accounts.iter().max_by_key(key)?;
Some(vote_account)
}
pub(crate) fn insert(&mut self, pubkey: Pubkey, (stake, vote_account): (u64, VoteAccount)) {
self.add_node_stake(stake, &vote_account);
let vote_accounts = Arc::make_mut(&mut self.vote_accounts);
if let Some((stake, vote_account)) = vote_accounts.insert(pubkey, (stake, vote_account)) {
self.sub_node_stake(stake, &vote_account);
}
}
pub(crate) fn remove(&mut self, pubkey: &Pubkey) -> Option<(u64, VoteAccount)> {
let vote_accounts = Arc::make_mut(&mut self.vote_accounts);
let entry = vote_accounts.remove(pubkey);
if let Some((stake, ref vote_account)) = entry {
self.sub_node_stake(stake, vote_account);
}
entry
}
pub(crate) fn add_stake(&mut self, pubkey: &Pubkey, delta: u64) {
let vote_accounts = Arc::make_mut(&mut self.vote_accounts);
if let Some((stake, vote_account)) = vote_accounts.get_mut(pubkey) {
*stake += delta;
let vote_account = vote_account.clone();
self.add_node_stake(delta, &vote_account);
}
}
pub(crate) fn sub_stake(&mut self, pubkey: &Pubkey, delta: u64) {
let vote_accounts = Arc::make_mut(&mut self.vote_accounts);
if let Some((stake, vote_account)) = vote_accounts.get_mut(pubkey) {
*stake = stake
.checked_sub(delta)
.expect("subtraction value exceeds account's stake");
let vote_account = vote_account.clone();
self.sub_node_stake(delta, &vote_account);
}
}
fn add_node_stake(&mut self, stake: u64, vote_account: &VoteAccount) {
if stake == 0u64 {
return;
}
let Some(staked_nodes) = self.staked_nodes.get_mut() else {
return;
};
if let Some(node_pubkey) = vote_account.node_pubkey() {
Arc::make_mut(staked_nodes)
.entry(node_pubkey)
.and_modify(|s| *s += stake)
.or_insert(stake);
}
}
fn sub_node_stake(&mut self, stake: u64, vote_account: &VoteAccount) {
if stake == 0u64 {
return;
}
let Some(staked_nodes) = self.staked_nodes.get_mut() else {
return;
};
if let Some(node_pubkey) = vote_account.node_pubkey() {
match Arc::make_mut(staked_nodes).entry(node_pubkey) {
Entry::Vacant(_) => panic!("this should not happen!"),
Entry::Occupied(mut entry) => match entry.get().cmp(&stake) {
Ordering::Less => panic!("subtraction value exceeds node's stake"),
Ordering::Equal => {
entry.remove_entry();
}
Ordering::Greater => *entry.get_mut() -= stake,
},
}
}
}
}
impl Serialize for VoteAccount {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.0.account.serialize(serializer)
}
}
impl From<VoteAccount> for AccountSharedData {
fn from(account: VoteAccount) -> Self {
account.0.account.clone()
}
}
impl TryFrom<AccountSharedData> for VoteAccount {
type Error = Error;
fn try_from(account: AccountSharedData) -> Result<Self, Self::Error> {
let vote_account = VoteAccountInner::try_from(account)?;
Ok(Self(Arc::new(vote_account)))
}
}
impl TryFrom<AccountSharedData> for VoteAccountInner {
type Error = Error;
fn try_from(account: AccountSharedData) -> Result<Self, Self::Error> {
if !solana_vote_program::check_id(account.owner()) {
return Err(Error::InvalidOwner(*account.owner()));
}
Ok(Self {
account,
vote_state: OnceCell::new(),
})
}
}
impl PartialEq<VoteAccountInner> for VoteAccountInner {
fn eq(&self, other: &Self) -> bool {
let Self {
account,
vote_state: _,
} = self;
account == &other.account
}
}
impl Default for VoteAccounts {
fn default() -> Self {
Self {
vote_accounts: Arc::default(),
staked_nodes: OnceCell::new(),
}
}
}
impl PartialEq<VoteAccounts> for VoteAccounts {
fn eq(&self, other: &Self) -> bool {
let Self {
vote_accounts,
staked_nodes: _,
} = self;
vote_accounts == &other.vote_accounts
}
}
impl From<Arc<VoteAccountsHashMap>> for VoteAccounts {
fn from(vote_accounts: Arc<VoteAccountsHashMap>) -> Self {
Self {
vote_accounts,
staked_nodes: OnceCell::new(),
}
}
}
impl AsRef<VoteAccountsHashMap> for VoteAccounts {
fn as_ref(&self) -> &VoteAccountsHashMap {
&self.vote_accounts
}
}
impl From<&VoteAccounts> for Arc<VoteAccountsHashMap> {
fn from(vote_accounts: &VoteAccounts) -> Self {
Arc::clone(&vote_accounts.vote_accounts)
}
}
impl FromIterator<(Pubkey, (/*stake:*/ u64, VoteAccount))> for VoteAccounts {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (Pubkey, (u64, VoteAccount))>,
{
Self::from(Arc::new(HashMap::from_iter(iter)))
}
}
impl Serialize for VoteAccounts {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.vote_accounts.serialize(serializer)
}
}
#[cfg(test)]
mod tests {
use {
super::*,
bincode::Options,
rand::Rng,
solana_sdk::{pubkey::Pubkey, sysvar::clock::Clock},
solana_vote_program::vote_state::{VoteInit, VoteStateVersions},
std::iter::repeat_with,
};
fn new_rand_vote_account<R: Rng>(
rng: &mut R,
node_pubkey: Option<Pubkey>,
) -> (AccountSharedData, VoteState) {
let vote_init = VoteInit {
node_pubkey: node_pubkey.unwrap_or_else(Pubkey::new_unique),
authorized_voter: Pubkey::new_unique(),
authorized_withdrawer: Pubkey::new_unique(),
commission: rng.gen(),
};
let clock = Clock {
slot: rng.gen(),
epoch_start_timestamp: rng.gen(),
epoch: rng.gen(),
leader_schedule_epoch: rng.gen(),
unix_timestamp: rng.gen(),
};
let vote_state = VoteState::new(&vote_init, &clock);
let account = AccountSharedData::new_data(
rng.gen(), // lamports
&VoteStateVersions::new_current(vote_state.clone()),
&solana_vote_program::id(), // owner
)
.unwrap();
(account, vote_state)
}
fn new_rand_vote_accounts<R: Rng>(
rng: &mut R,
num_nodes: usize,
) -> impl Iterator<Item = (Pubkey, (/*stake:*/ u64, VoteAccount))> + '_ {
let nodes: Vec<_> = repeat_with(Pubkey::new_unique).take(num_nodes).collect();
repeat_with(move || {
let node = nodes[rng.gen_range(0..nodes.len())];
let (account, _) = new_rand_vote_account(rng, Some(node));
let stake = rng.gen_range(0..997);
let vote_account = VoteAccount::try_from(account).unwrap();
(Pubkey::new_unique(), (stake, vote_account))
})
}
fn staked_nodes<'a, I>(vote_accounts: I) -> HashMap<Pubkey, u64>
where
I: IntoIterator<Item = &'a (Pubkey, (u64, VoteAccount))>,
{
let mut staked_nodes = HashMap::new();
for (_, (stake, vote_account)) in vote_accounts
.into_iter()
.filter(|(_, (stake, _))| *stake != 0)
{
if let Some(node_pubkey) = vote_account.node_pubkey() {
staked_nodes
.entry(node_pubkey)
.and_modify(|s| *s += *stake)
.or_insert(*stake);
}
}
staked_nodes
}
#[test]
fn test_vote_account() {
let mut rng = rand::thread_rng();
let (account, vote_state) = new_rand_vote_account(&mut rng, None);
let lamports = account.lamports();
let vote_account = VoteAccount::try_from(account).unwrap();
assert_eq!(lamports, vote_account.lamports());
assert_eq!(vote_state, *vote_account.vote_state().unwrap());
// 2nd call to .vote_state() should return the cached value.
assert_eq!(vote_state, *vote_account.vote_state().unwrap());
}
#[test]
fn test_vote_account_serialize() {
let mut rng = rand::thread_rng();
let (account, vote_state) = new_rand_vote_account(&mut rng, None);
let vote_account = VoteAccount::try_from(account.clone()).unwrap();
assert_eq!(vote_state, *vote_account.vote_state().unwrap());
// Assert than VoteAccount has the same wire format as Account.
assert_eq!(
bincode::serialize(&account).unwrap(),
bincode::serialize(&vote_account).unwrap()
);
}
#[test]
fn test_vote_account_deserialize() {
let mut rng = rand::thread_rng();
let (account, vote_state) = new_rand_vote_account(&mut rng, None);
let data = bincode::serialize(&account).unwrap();
let vote_account = VoteAccount::try_from(account).unwrap();
assert_eq!(vote_state, *vote_account.vote_state().unwrap());
let other_vote_account: VoteAccount = bincode::deserialize(&data).unwrap();
assert_eq!(vote_account, other_vote_account);
assert_eq!(vote_state, *other_vote_account.vote_state().unwrap());
}
#[test]
fn test_vote_account_round_trip() {
let mut rng = rand::thread_rng();
let (account, vote_state) = new_rand_vote_account(&mut rng, None);
let vote_account = VoteAccount::try_from(account).unwrap();
assert_eq!(vote_state, *vote_account.vote_state().unwrap());
let data = bincode::serialize(&vote_account).unwrap();
let other_vote_account: VoteAccount = bincode::deserialize(&data).unwrap();
// Assert that serialize->deserialized returns the same VoteAccount.
assert_eq!(vote_account, other_vote_account);
assert_eq!(vote_state, *other_vote_account.vote_state().unwrap());
}
#[test]
fn test_vote_accounts_serialize() {
let mut rng = rand::thread_rng();
let vote_accounts_hash_map: VoteAccountsHashMap =
new_rand_vote_accounts(&mut rng, 64).take(1024).collect();
let vote_accounts = VoteAccounts::from(Arc::new(vote_accounts_hash_map.clone()));
assert!(vote_accounts.staked_nodes().len() > 32);
assert_eq!(
bincode::serialize(&vote_accounts).unwrap(),
bincode::serialize(&vote_accounts_hash_map).unwrap(),
);
assert_eq!(
bincode::options().serialize(&vote_accounts).unwrap(),
bincode::options()
.serialize(&vote_accounts_hash_map)
.unwrap(),
)
}
#[test]
fn test_vote_accounts_deserialize() {
let mut rng = rand::thread_rng();
let vote_accounts_hash_map: VoteAccountsHashMap =
new_rand_vote_accounts(&mut rng, 64).take(1024).collect();
let data = bincode::serialize(&vote_accounts_hash_map).unwrap();
let vote_accounts: VoteAccounts = bincode::deserialize(&data).unwrap();
assert!(vote_accounts.staked_nodes().len() > 32);
assert_eq!(*vote_accounts.vote_accounts, vote_accounts_hash_map);
let data = bincode::options()
.serialize(&vote_accounts_hash_map)
.unwrap();
let vote_accounts: VoteAccounts = bincode::options().deserialize(&data).unwrap();
assert_eq!(*vote_accounts.vote_accounts, vote_accounts_hash_map);
}
#[test]
fn test_staked_nodes() {
let mut rng = rand::thread_rng();
let mut accounts: Vec<_> = new_rand_vote_accounts(&mut rng, 64).take(1024).collect();
let mut vote_accounts = VoteAccounts::default();
// Add vote accounts.
for (k, (pubkey, (stake, vote_account))) in accounts.iter().enumerate() {
vote_accounts.insert(*pubkey, (*stake, vote_account.clone()));
if (k + 1) % 128 == 0 {
assert_eq!(
staked_nodes(&accounts[..k + 1]),
*vote_accounts.staked_nodes()
);
}
}
// Remove some of the vote accounts.
for k in 0..256 {
let index = rng.gen_range(0..accounts.len());
let (pubkey, (_, _)) = accounts.swap_remove(index);
vote_accounts.remove(&pubkey);
if (k + 1) % 32 == 0 {
assert_eq!(staked_nodes(&accounts), *vote_accounts.staked_nodes());
}
}
// Modify the stakes for some of the accounts.
for k in 0..2048 {
let index = rng.gen_range(0..accounts.len());
let (pubkey, (stake, _)) = &mut accounts[index];
let new_stake = rng.gen_range(0..997);
if new_stake < *stake {
vote_accounts.sub_stake(pubkey, *stake - new_stake);
} else {
vote_accounts.add_stake(pubkey, new_stake - *stake);
}
*stake = new_stake;
if (k + 1) % 128 == 0 {
assert_eq!(staked_nodes(&accounts), *vote_accounts.staked_nodes());
}
}
// Remove everything.
while !accounts.is_empty() {
let index = rng.gen_range(0..accounts.len());
let (pubkey, (_, _)) = accounts.swap_remove(index);
vote_accounts.remove(&pubkey);
if accounts.len() % 32 == 0 {
assert_eq!(staked_nodes(&accounts), *vote_accounts.staked_nodes());
}
}
assert!(vote_accounts.staked_nodes.get().unwrap().is_empty());
}
// Asserts that returned staked-nodes are copy-on-write references.
#[test]
fn test_staked_nodes_cow() {
let mut rng = rand::thread_rng();
let mut accounts = new_rand_vote_accounts(&mut rng, 64);
// Add vote accounts.
let mut vote_accounts = VoteAccounts::default();
for (pubkey, (stake, vote_account)) in (&mut accounts).take(1024) {
vote_accounts.insert(pubkey, (stake, vote_account));
}
let staked_nodes = vote_accounts.staked_nodes();
let (pubkey, (more_stake, vote_account)) =
accounts.find(|(_, (stake, _))| *stake != 0).unwrap();
let node_pubkey = vote_account.node_pubkey().unwrap();
vote_accounts.insert(pubkey, (more_stake, vote_account));
assert_ne!(staked_nodes, vote_accounts.staked_nodes());
assert_eq!(
vote_accounts.staked_nodes()[&node_pubkey],
more_stake + staked_nodes.get(&node_pubkey).copied().unwrap_or_default()
);
for (pubkey, stake) in vote_accounts.staked_nodes().iter() {
if *pubkey != node_pubkey {
assert_eq!(*stake, staked_nodes[pubkey]);
} else {
assert_eq!(
*stake,
more_stake + staked_nodes.get(pubkey).copied().unwrap_or_default()
);
}
}
}
// Asserts that returned vote-accounts are copy-on-write references.
#[test]
fn test_vote_accounts_cow() {
let mut rng = rand::thread_rng();
let mut accounts = new_rand_vote_accounts(&mut rng, 64);
// Add vote accounts.
let mut vote_accounts = VoteAccounts::default();
for (pubkey, (stake, vote_account)) in (&mut accounts).take(1024) {
vote_accounts.insert(pubkey, (stake, vote_account));
}
let vote_accounts_hashmap = Arc::<VoteAccountsHashMap>::from(&vote_accounts);
assert_eq!(vote_accounts_hashmap, vote_accounts.vote_accounts);
assert!(Arc::ptr_eq(
&vote_accounts_hashmap,
&vote_accounts.vote_accounts
));
let (pubkey, (more_stake, vote_account)) =
accounts.find(|(_, (stake, _))| *stake != 0).unwrap();
vote_accounts.insert(pubkey, (more_stake, vote_account.clone()));
assert!(!Arc::ptr_eq(
&vote_accounts_hashmap,
&vote_accounts.vote_accounts
));
assert_ne!(vote_accounts_hashmap, vote_accounts.vote_accounts);
let other = (more_stake, vote_account);
for (pk, value) in vote_accounts.vote_accounts.iter() {
if *pk != pubkey {
assert_eq!(value, &vote_accounts_hashmap[pk]);
} else {
assert_eq!(value, &other);
}
}
}
}