solana/src/entry.rs

308 lines
10 KiB
Rust

//! The `entry` module is a fundamental building block of Proof of History. It contains a
//! unique ID that is the hash of the Entry before it, plus the hash of the
//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
//! represents an approximate amount of time since the last Entry was created.
use bincode::{serialize_into, serialized_size};
use hash::{extend_and_hash, hash, Hash};
use packet::{BlobRecycler, SharedBlob, BLOB_DATA_SIZE};
use rayon::prelude::*;
use signature::Pubkey;
use std::io::Cursor;
use std::net::SocketAddr;
use transaction::Transaction;
/// Each Entry contains three pieces of data. The `num_hashes` field is the number
/// of hashes performed since the previous entry. The `id` field is the result
/// of hashing `id` from the previous entry `num_hashes` times. The `transactions`
/// field points to Transactions that took place shortly before `id` was generated.
///
/// If you divide `num_hashes` by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last Entry. Since processing power increases
/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
/// An upper bound on Duration can be estimated by assuming each hash was generated by the
/// world's fastest processor at the time the entry was recorded. Or said another way, it
/// is physically not possible for a shorter duration to have occurred if one assumes the
/// hash was computed by the world's fastest processor at that time. The hash chain is both
/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
/// Work consensus!)
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct Entry {
/// The number of hashes since the previous Entry ID.
pub num_hashes: u64,
/// The SHA-256 hash `num_hashes` after the previous Entry ID.
pub id: Hash,
/// An unordered list of transactions that were observed before the Entry ID was
/// generated. They may have been observed before a previous Entry ID but were
/// pushed back into this list to ensure deterministic interpretation of the ledger.
pub transactions: Vec<Transaction>,
/// Indication that:
/// 1. the next Entry in the ledger has transactions that can potentially
/// be verified in parallel with these transactions
/// 2. this Entry can be left out of the bank's entry_id cache for
/// purposes of duplicate rejection
pub has_more: bool,
}
impl Entry {
/// Creates the next Entry `num_hashes` after `start_hash`.
pub fn new(
start_hash: &Hash,
num_hashes: u64,
transactions: Vec<Transaction>,
has_more: bool,
) -> Self {
let num_hashes = num_hashes + if transactions.is_empty() { 0 } else { 1 };
let id = next_hash(start_hash, 0, &transactions);
let entry = Entry {
num_hashes,
id,
transactions,
has_more,
};
let size = serialized_size(&entry).unwrap();
if size > BLOB_DATA_SIZE as u64 {
panic!(
"Serialized entry size too large: {} ({} transactions):",
size,
entry.transactions.len()
);
}
entry
}
pub fn to_blob(
&self,
blob_recycler: &BlobRecycler,
idx: Option<u64>,
id: Option<Pubkey>,
addr: Option<&SocketAddr>,
) -> SharedBlob {
let blob = blob_recycler.allocate();
{
let mut blob_w = blob.write().unwrap();
let pos = {
let mut out = Cursor::new(blob_w.data_mut());
serialize_into(&mut out, &self).expect("failed to serialize output");
out.position() as usize
};
blob_w.set_size(pos);
if let Some(idx) = idx {
blob_w.set_index(idx).expect("set_index()");
}
if let Some(id) = id {
blob_w.set_id(id).expect("set_id()");
}
if let Some(addr) = addr {
blob_w.meta.set_addr(addr);
}
blob_w.set_flags(0).unwrap();
}
blob
}
pub fn will_fit(transactions: Vec<Transaction>) -> bool {
serialized_size(&Entry {
num_hashes: 0,
id: Hash::default(),
transactions,
has_more: false,
}).unwrap()
<= BLOB_DATA_SIZE as u64
}
/// Creates the next Tick Entry `num_hashes` after `start_hash`.
pub fn new_mut(
start_hash: &mut Hash,
num_hashes: &mut u64,
transactions: Vec<Transaction>,
has_more: bool,
) -> Self {
let entry = Self::new(start_hash, *num_hashes, transactions, has_more);
*start_hash = entry.id;
*num_hashes = 0;
assert!(serialized_size(&entry).unwrap() <= BLOB_DATA_SIZE as u64);
entry
}
/// Creates a Entry from the number of hashes `num_hashes` since the previous transaction
/// and that resulting `id`.
pub fn new_tick(num_hashes: u64, id: &Hash) -> Self {
Entry {
num_hashes,
id: *id,
transactions: vec![],
has_more: false,
}
}
/// Verifies self.id is the result of hashing a `start_hash` `self.num_hashes` times.
/// If the transaction is not a Tick, then hash that as well.
pub fn verify(&self, start_hash: &Hash) -> bool {
let tx_plans_verified = self.transactions.par_iter().all(|tx| {
let r = tx.verify_plan();
if !r {
warn!("tx plan invalid: {:?}", tx);
}
r
});
if !tx_plans_verified {
return false;
}
let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
if self.id != ref_hash {
warn!(
"next_hash is invalid expected: {:?} actual: {:?}",
self.id, ref_hash
);
return false;
}
true
}
}
fn add_transaction_data(hash_data: &mut Vec<u8>, tx: &Transaction) {
hash_data.push(0u8);
hash_data.extend_from_slice(&tx.signature.as_ref());
}
/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
/// a signature, the final hash will be a hash of both the previous ID and
/// the signature. If num_hashes is zero and there's no transaction data,
/// start_hash is returned.
fn next_hash(start_hash: &Hash, num_hashes: u64, transactions: &[Transaction]) -> Hash {
let mut id = *start_hash;
for _ in 1..num_hashes {
id = hash(&id.as_ref());
}
// Hash all the transaction data
let mut hash_data = vec![];
for tx in transactions {
add_transaction_data(&mut hash_data, tx);
}
if !hash_data.is_empty() {
extend_and_hash(&id, &hash_data)
} else if num_hashes != 0 {
hash(&id.as_ref())
} else {
id
}
}
/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
pub fn next_entry(start_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
assert!(num_hashes > 0 || transactions.is_empty());
Entry {
num_hashes,
id: next_hash(start_hash, num_hashes, &transactions),
transactions,
has_more: false,
}
}
#[cfg(test)]
mod tests {
use super::*;
use chrono::prelude::*;
use entry::Entry;
use hash::hash;
use signature::{Keypair, KeypairUtil};
use transaction::Transaction;
#[test]
fn test_entry_verify() {
let zero = Hash::default();
let one = hash(&zero.as_ref());
assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case
assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad
assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
}
#[test]
fn test_transaction_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = Transaction::new(&keypair, keypair.pubkey(), 0, zero);
let tx1 = Transaction::new(&keypair, keypair.pubkey(), 1, zero);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()], false);
assert!(e0.verify(&zero));
// Next, swap two transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_witness_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = Transaction::budget_new_timestamp(
&keypair,
keypair.pubkey(),
keypair.pubkey(),
Utc::now(),
zero,
);
let tx1 = Transaction::budget_new_signature(
&keypair,
keypair.pubkey(),
keypair.pubkey(),
Default::default(),
zero,
);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()], false);
assert!(e0.verify(&zero));
// Next, swap two witness transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_next_entry() {
let zero = Hash::default();
let tick = next_entry(&zero, 1, vec![]);
assert_eq!(tick.num_hashes, 1);
assert_ne!(tick.id, zero);
let tick = next_entry(&zero, 0, vec![]);
assert_eq!(tick.num_hashes, 0);
assert_eq!(tick.id, zero);
let keypair = Keypair::new();
let tx0 = Transaction::budget_new_timestamp(
&keypair,
keypair.pubkey(),
keypair.pubkey(),
Utc::now(),
zero,
);
let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
assert_eq!(entry0.num_hashes, 1);
assert_eq!(entry0.id, next_hash(&zero, 1, &vec![tx0]));
}
#[test]
#[should_panic]
fn test_next_entry_panic() {
let zero = Hash::default();
let keypair = Keypair::new();
let tx = Transaction::new(&keypair, keypair.pubkey(), 0, zero);
next_entry(&zero, 0, vec![tx]);
}
}