solana/core/src/blocktree_processor.rs

1340 lines
46 KiB
Rust

use crate::bank_forks::BankForks;
use crate::blocktree::Blocktree;
use crate::entry::{Entry, EntrySlice};
use crate::leader_schedule_cache::LeaderScheduleCache;
use rayon::prelude::*;
use rayon::ThreadPool;
use solana_metrics::{datapoint, datapoint_error, inc_new_counter_debug};
use solana_runtime::bank::Bank;
use solana_runtime::locked_accounts_results::LockedAccountsResults;
use solana_sdk::genesis_block::GenesisBlock;
use solana_sdk::timing::duration_as_ms;
use solana_sdk::timing::MAX_RECENT_BLOCKHASHES;
use solana_sdk::transaction::Result;
use std::result;
use std::sync::Arc;
use std::time::{Duration, Instant};
pub const NUM_THREADS: u32 = 10;
use std::cell::RefCell;
thread_local!(static PAR_THREAD_POOL: RefCell<ThreadPool> = RefCell::new(rayon::ThreadPoolBuilder::new()
.num_threads(sys_info::cpu_num().unwrap_or(NUM_THREADS) as usize)
.build()
.unwrap()));
fn first_err(results: &[Result<()>]) -> Result<()> {
for r in results {
if r.is_err() {
return r.clone();
}
}
Ok(())
}
fn par_execute_entries(bank: &Bank, entries: &[(&Entry, LockedAccountsResults)]) -> Result<()> {
inc_new_counter_debug!("bank-par_execute_entries-count", entries.len());
let results: Vec<Result<()>> = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
entries
.into_par_iter()
.map(|(e, locked_accounts)| {
let results = bank.load_execute_and_commit_transactions(
&e.transactions,
locked_accounts,
MAX_RECENT_BLOCKHASHES,
);
let mut first_err = None;
for (r, tx) in results.iter().zip(e.transactions.iter()) {
if let Err(ref e) = r {
if first_err.is_none() {
first_err = Some(r.clone());
}
if !Bank::can_commit(&r) {
warn!("Unexpected validator error: {:?}, tx: {:?}", e, tx);
datapoint_error!(
"validator_process_entry_error",
("error", format!("error: {:?}, tx: {:?}", e, tx), String)
);
}
}
}
first_err.unwrap_or(Ok(()))
})
.collect()
})
});
first_err(&results)
}
/// Process an ordered list of entries in parallel
/// 1. In order lock accounts for each entry while the lock succeeds, up to a Tick entry
/// 2. Process the locked group in parallel
/// 3. Register the `Tick` if it's available
/// 4. Update the leader scheduler, goto 1
pub fn process_entries(bank: &Bank, entries: &[Entry]) -> Result<()> {
// accumulator for entries that can be processed in parallel
let mut mt_group = vec![];
for entry in entries {
if entry.is_tick() {
// if its a tick, execute the group and register the tick
par_execute_entries(bank, &mt_group)?;
mt_group = vec![];
bank.register_tick(&entry.hash);
continue;
}
// else loop on processing the entry
loop {
// try to lock the accounts
let lock_results = bank.lock_accounts(&entry.transactions);
let first_lock_err = first_err(lock_results.locked_accounts_results());
// if locking worked
if first_lock_err.is_ok() {
// push the entry to the mt_group
mt_group.push((entry, lock_results));
// done with this entry
break;
}
// else we failed to lock, 2 possible reasons
if mt_group.is_empty() {
// An entry has account lock conflicts with *itself*, which should not happen
// if generated by a properly functioning leader
datapoint!(
"validator_process_entry_error",
(
"error",
format!(
"Lock accounts error, entry conflicts with itself, txs: {:?}",
entry.transactions
),
String
)
);
// bail
first_lock_err?;
} else {
// else we have an entry that conflicts with a prior entry
// execute the current queue and try to process this entry again
par_execute_entries(bank, &mt_group)?;
mt_group = vec![];
}
}
}
par_execute_entries(bank, &mt_group)?;
Ok(())
}
#[derive(Debug, PartialEq)]
pub struct BankForksInfo {
pub bank_slot: u64,
pub entry_height: u64,
}
#[derive(Debug)]
pub enum BlocktreeProcessorError {
LedgerVerificationFailed,
}
pub fn process_blocktree(
genesis_block: &GenesisBlock,
blocktree: &Blocktree,
account_paths: Option<String>,
verify_ledger: bool,
) -> result::Result<(BankForks, Vec<BankForksInfo>, LeaderScheduleCache), BlocktreeProcessorError> {
let now = Instant::now();
info!("processing ledger...");
// Setup bank for slot 0
let mut pending_slots = {
let slot = 0;
let bank = Arc::new(Bank::new_with_paths(&genesis_block, account_paths));
let entry_height = 0;
let last_entry_hash = bank.last_blockhash();
// Load the metadata for this slot
let meta = blocktree
.meta(slot)
.map_err(|err| {
warn!("Failed to load meta for slot {}: {:?}", slot, err);
BlocktreeProcessorError::LedgerVerificationFailed
})?
.unwrap();
vec![(slot, meta, bank, entry_height, last_entry_hash)]
};
blocktree.set_roots(&[0]).expect("Couldn't set first root");
let leader_schedule_cache =
LeaderScheduleCache::new(*pending_slots[0].2.epoch_schedule(), &pending_slots[0].2);
let mut fork_info = vec![];
let mut last_status_report = Instant::now();
let mut root = 0;
while !pending_slots.is_empty() {
let (slot, meta, bank, mut entry_height, mut last_entry_hash) =
pending_slots.pop().unwrap();
if last_status_report.elapsed() > Duration::from_secs(2) {
info!("processing ledger...block {}", slot);
last_status_report = Instant::now();
}
// Fetch all entries for this slot
let mut entries = blocktree.get_slot_entries(slot, 0, None).map_err(|err| {
warn!("Failed to load entries for slot {}: {:?}", slot, err);
BlocktreeProcessorError::LedgerVerificationFailed
})?;
if slot == 0 {
// The first entry in the ledger is a pseudo-tick used only to ensure the number of ticks
// in slot 0 is the same as the number of ticks in all subsequent slots. It is not
// processed by the bank, skip over it.
if entries.is_empty() {
warn!("entry0 not present");
return Err(BlocktreeProcessorError::LedgerVerificationFailed);
}
let entry0 = entries.remove(0);
if !(entry0.is_tick() && entry0.verify(&last_entry_hash)) {
warn!("Ledger proof of history failed at entry0");
return Err(BlocktreeProcessorError::LedgerVerificationFailed);
}
last_entry_hash = entry0.hash;
entry_height += 1;
}
if !entries.is_empty() {
if verify_ledger && !entries.verify(&last_entry_hash) {
warn!(
"Ledger proof of history failed at slot: {}, entry: {}",
slot, entry_height
);
return Err(BlocktreeProcessorError::LedgerVerificationFailed);
}
process_entries(&bank, &entries).map_err(|err| {
warn!("Failed to process entries for slot {}: {:?}", slot, err);
BlocktreeProcessorError::LedgerVerificationFailed
})?;
last_entry_hash = entries.last().unwrap().hash;
entry_height += entries.len() as u64;
}
bank.freeze(); // all banks handled by this routine are created from complete slots
if blocktree.is_root(slot) {
root = slot;
leader_schedule_cache.set_root(&bank);
bank.squash();
pending_slots.clear();
fork_info.clear();
}
if meta.next_slots.is_empty() {
// Reached the end of this fork. Record the final entry height and last entry.hash
let bfi = BankForksInfo {
bank_slot: slot,
entry_height,
};
fork_info.push((bank, bfi));
continue;
}
// This is a fork point, create a new child bank for each fork
for next_slot in meta.next_slots {
let next_meta = blocktree
.meta(next_slot)
.map_err(|err| {
warn!("Failed to load meta for slot {}: {:?}", slot, err);
BlocktreeProcessorError::LedgerVerificationFailed
})?
.unwrap();
// only process full slots in blocktree_processor, replay_stage
// handles any partials
if next_meta.is_full() {
let next_bank = Arc::new(Bank::new_from_parent(
&bank,
&leader_schedule_cache
.slot_leader_at(next_slot, Some(&bank))
.unwrap(),
next_slot,
));
trace!("Add child bank for slot={}", next_slot);
// bank_forks.insert(*next_slot, child_bank);
pending_slots.push((
next_slot,
next_meta,
next_bank,
entry_height,
last_entry_hash,
));
} else {
let bfi = BankForksInfo {
bank_slot: slot,
entry_height,
};
fork_info.push((bank.clone(), bfi));
}
}
// reverse sort by slot, so the next slot to be processed can be pop()ed
// TODO: remove me once leader_scheduler can hang with out-of-order slots?
pending_slots.sort_by(|a, b| b.0.cmp(&a.0));
}
let (banks, bank_forks_info): (Vec<_>, Vec<_>) = fork_info.into_iter().unzip();
let bank_forks = BankForks::new_from_banks(&banks, root);
info!(
"processing ledger...complete in {}ms, forks={}...",
duration_as_ms(&now.elapsed()),
bank_forks_info.len(),
);
Ok((bank_forks, bank_forks_info, leader_schedule_cache))
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::blocktree::create_new_tmp_ledger;
use crate::blocktree::tests::entries_to_blobs;
use crate::entry::{create_ticks, next_entry, next_entry_mut, Entry};
use crate::genesis_utils::{
create_genesis_block, create_genesis_block_with_leader, GenesisBlockInfo,
};
use solana_runtime::epoch_schedule::EpochSchedule;
use solana_sdk::hash::Hash;
use solana_sdk::instruction::InstructionError;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::signature::{Keypair, KeypairUtil};
use solana_sdk::system_transaction;
use solana_sdk::transaction::TransactionError;
pub fn fill_blocktree_slot_with_ticks(
blocktree: &Blocktree,
ticks_per_slot: u64,
slot: u64,
parent_slot: u64,
last_entry_hash: Hash,
) -> Hash {
let entries = create_ticks(ticks_per_slot, last_entry_hash);
let last_entry_hash = entries.last().unwrap().hash;
let blobs = entries_to_blobs(&entries, slot, parent_slot, true);
blocktree.insert_data_blobs(blobs.iter()).unwrap();
last_entry_hash
}
#[test]
fn test_process_blocktree_with_incomplete_slot() {
solana_logger::setup();
let GenesisBlockInfo { genesis_block, .. } = create_genesis_block(10_000);
let ticks_per_slot = genesis_block.ticks_per_slot;
/*
Build a blocktree in the ledger with the following fork structure:
slot 0 (all ticks)
|
slot 1 (all ticks but one)
|
slot 2 (all ticks)
where slot 1 is incomplete (missing 1 tick at the end)
*/
// Create a new ledger with slot 0 full of ticks
let (ledger_path, mut blockhash) = create_new_tmp_ledger!(&genesis_block);
debug!("ledger_path: {:?}", ledger_path);
let blocktree =
Blocktree::open(&ledger_path).expect("Expected to successfully open database ledger");
// Write slot 1
// slot 1, points at slot 0. Missing one tick
{
let parent_slot = 0;
let slot = 1;
let mut entries = create_ticks(ticks_per_slot, blockhash);
blockhash = entries.last().unwrap().hash;
// throw away last one
entries.pop();
let blobs = entries_to_blobs(&entries, slot, parent_slot, false);
blocktree.insert_data_blobs(blobs.iter()).unwrap();
}
// slot 2, points at slot 1
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 2, 1, blockhash);
let (mut _bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 1);
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: 0, // slot 1 isn't "full", we stop at slot zero
entry_height: ticks_per_slot,
}
);
}
#[test]
fn test_process_blocktree_with_two_forks_and_squash() {
solana_logger::setup();
let GenesisBlockInfo { genesis_block, .. } = create_genesis_block(10_000);
let ticks_per_slot = genesis_block.ticks_per_slot;
// Create a new ledger with slot 0 full of ticks
let (ledger_path, blockhash) = create_new_tmp_ledger!(&genesis_block);
debug!("ledger_path: {:?}", ledger_path);
let mut last_entry_hash = blockhash;
/*
Build a blocktree in the ledger with the following fork structure:
slot 0
|
slot 1
/ \
slot 2 |
/ |
slot 3 |
|
slot 4 <-- set_root(true)
*/
let blocktree =
Blocktree::open(&ledger_path).expect("Expected to successfully open database ledger");
// Fork 1, ending at slot 3
let last_slot1_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 1, 0, last_entry_hash);
last_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 2, 1, last_slot1_entry_hash);
let last_fork1_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 3, 2, last_entry_hash);
// Fork 2, ending at slot 4
let last_fork2_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 4, 1, last_slot1_entry_hash);
info!("last_fork1_entry.hash: {:?}", last_fork1_entry_hash);
info!("last_fork2_entry.hash: {:?}", last_fork2_entry_hash);
blocktree.set_roots(&[4, 1, 0]).unwrap();
let (bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 1); // One fork, other one is ignored b/c not a descendant of the root
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: 4, // Fork 2's head is slot 4
entry_height: ticks_per_slot * 3,
}
);
assert!(&bank_forks[4]
.parents()
.iter()
.map(|bank| bank.slot())
.collect::<Vec<_>>()
.is_empty());
// Ensure bank_forks holds the right banks
for info in bank_forks_info {
assert_eq!(bank_forks[info.bank_slot].slot(), info.bank_slot);
assert!(bank_forks[info.bank_slot].is_frozen());
}
assert_eq!(bank_forks.root(), 4);
}
#[test]
fn test_process_blocktree_with_two_forks() {
solana_logger::setup();
let GenesisBlockInfo { genesis_block, .. } = create_genesis_block(10_000);
let ticks_per_slot = genesis_block.ticks_per_slot;
// Create a new ledger with slot 0 full of ticks
let (ledger_path, blockhash) = create_new_tmp_ledger!(&genesis_block);
debug!("ledger_path: {:?}", ledger_path);
let mut last_entry_hash = blockhash;
/*
Build a blocktree in the ledger with the following fork structure:
slot 0
|
slot 1 <-- set_root(true)
/ \
slot 2 |
/ |
slot 3 |
|
slot 4
*/
let blocktree =
Blocktree::open(&ledger_path).expect("Expected to successfully open database ledger");
// Fork 1, ending at slot 3
let last_slot1_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 1, 0, last_entry_hash);
last_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 2, 1, last_slot1_entry_hash);
let last_fork1_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 3, 2, last_entry_hash);
// Fork 2, ending at slot 4
let last_fork2_entry_hash =
fill_blocktree_slot_with_ticks(&blocktree, ticks_per_slot, 4, 1, last_slot1_entry_hash);
info!("last_fork1_entry.hash: {:?}", last_fork1_entry_hash);
info!("last_fork2_entry.hash: {:?}", last_fork2_entry_hash);
blocktree.set_roots(&[0, 1]).unwrap();
let (bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 2); // There are two forks
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: 3, // Fork 1's head is slot 3
entry_height: ticks_per_slot * 4,
}
);
assert_eq!(
&bank_forks[3]
.parents()
.iter()
.map(|bank| bank.slot())
.collect::<Vec<_>>(),
&[2, 1]
);
assert_eq!(
bank_forks_info[1],
BankForksInfo {
bank_slot: 4, // Fork 2's head is slot 4
entry_height: ticks_per_slot * 3,
}
);
assert_eq!(
&bank_forks[4]
.parents()
.iter()
.map(|bank| bank.slot())
.collect::<Vec<_>>(),
&[1]
);
assert_eq!(bank_forks.root(), 1);
// Ensure bank_forks holds the right banks
for info in bank_forks_info {
assert_eq!(bank_forks[info.bank_slot].slot(), info.bank_slot);
assert!(bank_forks[info.bank_slot].is_frozen());
}
}
#[test]
fn test_process_blocktree_epoch_boundary_root() {
solana_logger::setup();
let GenesisBlockInfo { genesis_block, .. } = create_genesis_block(10_000);
let ticks_per_slot = genesis_block.ticks_per_slot;
// Create a new ledger with slot 0 full of ticks
let (ledger_path, blockhash) = create_new_tmp_ledger!(&genesis_block);
let mut last_entry_hash = blockhash;
let blocktree =
Blocktree::open(&ledger_path).expect("Expected to successfully open database ledger");
// Let last_slot be the number of slots in the first two epochs
let epoch_schedule = get_epoch_schedule(&genesis_block, None);
let last_slot = epoch_schedule.get_last_slot_in_epoch(1);
// Create a single chain of slots with all indexes in the range [0, last_slot + 1]
for i in 1..=last_slot + 1 {
last_entry_hash = fill_blocktree_slot_with_ticks(
&blocktree,
ticks_per_slot,
i,
i - 1,
last_entry_hash,
);
}
// Set a root on the last slot of the last confirmed epoch
let rooted_slots: Vec<_> = (0..=last_slot).collect();
blocktree.set_roots(&rooted_slots).unwrap();
// Set a root on the next slot of the confrimed epoch
blocktree.set_roots(&[last_slot + 1]).unwrap();
// Check that we can properly restart the ledger / leader scheduler doesn't fail
let (bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 1); // There is one fork
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: last_slot + 1, // Head is last_slot + 1
entry_height: ticks_per_slot * (last_slot + 2),
}
);
// The latest root should have purged all its parents
assert!(&bank_forks[last_slot + 1]
.parents()
.iter()
.map(|bank| bank.slot())
.collect::<Vec<_>>()
.is_empty());
}
#[test]
fn test_first_err() {
assert_eq!(first_err(&[Ok(())]), Ok(()));
assert_eq!(
first_err(&[Ok(()), Err(TransactionError::DuplicateSignature)]),
Err(TransactionError::DuplicateSignature)
);
assert_eq!(
first_err(&[
Ok(()),
Err(TransactionError::DuplicateSignature),
Err(TransactionError::AccountInUse)
]),
Err(TransactionError::DuplicateSignature)
);
assert_eq!(
first_err(&[
Ok(()),
Err(TransactionError::AccountInUse),
Err(TransactionError::DuplicateSignature)
]),
Err(TransactionError::AccountInUse)
);
assert_eq!(
first_err(&[
Err(TransactionError::AccountInUse),
Ok(()),
Err(TransactionError::DuplicateSignature)
]),
Err(TransactionError::AccountInUse)
);
}
#[test]
fn test_process_empty_entry_is_registered() {
solana_logger::setup();
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(2);
let bank = Bank::new(&genesis_block);
let keypair = Keypair::new();
let slot_entries = create_ticks(genesis_block.ticks_per_slot - 1, genesis_block.hash());
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair.pubkey(),
1,
slot_entries.last().unwrap().hash,
);
// First, ensure the TX is rejected because of the unregistered last ID
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::BlockhashNotFound)
);
// Now ensure the TX is accepted despite pointing to the ID of an empty entry.
process_entries(&bank, &slot_entries).unwrap();
assert_eq!(bank.process_transaction(&tx), Ok(()));
}
#[test]
fn test_process_ledger_simple() {
solana_logger::setup();
let leader_pubkey = Pubkey::new_rand();
let mint = 100;
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block_with_leader(mint, &leader_pubkey, 50);
let (ledger_path, mut last_entry_hash) = create_new_tmp_ledger!(&genesis_block);
debug!("ledger_path: {:?}", ledger_path);
let deducted_from_mint = 3;
let mut entries = vec![];
let blockhash = genesis_block.hash();
for _ in 0..deducted_from_mint {
// Transfer one token from the mint to a random account
let keypair = Keypair::new();
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair.pubkey(),
1,
blockhash,
);
let entry = Entry::new(&last_entry_hash, 1, vec![tx]);
last_entry_hash = entry.hash;
entries.push(entry);
// Add a second Transaction that will produce a
// InstructionError<0, ResultWithNegativeLamports> error when processed
let keypair2 = Keypair::new();
let tx = system_transaction::create_user_account(
&keypair,
&keypair2.pubkey(),
42,
blockhash,
);
let entry = Entry::new(&last_entry_hash, 1, vec![tx]);
last_entry_hash = entry.hash;
entries.push(entry);
}
// Fill up the rest of slot 1 with ticks
entries.extend(create_ticks(genesis_block.ticks_per_slot, last_entry_hash));
let blocktree =
Blocktree::open(&ledger_path).expect("Expected to successfully open database ledger");
blocktree
.write_entries(1, 0, 0, genesis_block.ticks_per_slot, &entries)
.unwrap();
let entry_height = genesis_block.ticks_per_slot + entries.len() as u64;
let (bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 1);
assert_eq!(bank_forks.root(), 0);
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: 1,
entry_height,
}
);
let bank = bank_forks[1].clone();
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
mint - deducted_from_mint
);
assert_eq!(bank.tick_height(), 2 * genesis_block.ticks_per_slot - 1);
assert_eq!(bank.last_blockhash(), entries.last().unwrap().hash);
}
#[test]
fn test_process_ledger_with_one_tick_per_slot() {
let GenesisBlockInfo {
mut genesis_block, ..
} = create_genesis_block(123);
genesis_block.ticks_per_slot = 1;
let (ledger_path, _blockhash) = create_new_tmp_ledger!(&genesis_block);
let blocktree = Blocktree::open(&ledger_path).unwrap();
let (bank_forks, bank_forks_info, _) =
process_blocktree(&genesis_block, &blocktree, None, true).unwrap();
assert_eq!(bank_forks_info.len(), 1);
assert_eq!(
bank_forks_info[0],
BankForksInfo {
bank_slot: 0,
entry_height: 1,
}
);
let bank = bank_forks[0].clone();
assert_eq!(bank.tick_height(), 0);
}
#[test]
fn test_process_entries_tick() {
let GenesisBlockInfo { genesis_block, .. } = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
// ensure bank can process a tick
assert_eq!(bank.tick_height(), 0);
let tick = next_entry(&genesis_block.hash(), 1, vec![]);
assert_eq!(process_entries(&bank, &[tick.clone()]), Ok(()));
assert_eq!(bank.tick_height(), 1);
}
#[test]
fn test_process_entries_2_entries_collision() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let blockhash = bank.last_blockhash();
// ensure bank can process 2 entries that have a common account and no tick is registered
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair1.pubkey(),
2,
bank.last_blockhash(),
);
let entry_1 = next_entry(&blockhash, 1, vec![tx]);
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair2.pubkey(),
2,
bank.last_blockhash(),
);
let entry_2 = next_entry(&entry_1.hash, 1, vec![tx]);
assert_eq!(process_entries(&bank, &[entry_1, entry_2]), Ok(()));
assert_eq!(bank.get_balance(&keypair1.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 2);
assert_eq!(bank.last_blockhash(), blockhash);
}
#[test]
fn test_process_entries_2_txes_collision() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
// fund: put 4 in each of 1 and 2
assert_matches!(bank.transfer(4, &mint_keypair, &keypair1.pubkey()), Ok(_));
assert_matches!(bank.transfer(4, &mint_keypair, &keypair2.pubkey()), Ok(_));
// construct an Entry whose 2nd transaction would cause a lock conflict with previous entry
let entry_1_to_mint = next_entry(
&bank.last_blockhash(),
1,
vec![system_transaction::create_user_account(
&keypair1,
&mint_keypair.pubkey(),
1,
bank.last_blockhash(),
)],
);
let entry_2_to_3_mint_to_1 = next_entry(
&entry_1_to_mint.hash,
1,
vec![
system_transaction::create_user_account(
&keypair2,
&keypair3.pubkey(),
2,
bank.last_blockhash(),
), // should be fine
system_transaction::create_user_account(
&keypair1,
&mint_keypair.pubkey(),
2,
bank.last_blockhash(),
), // will collide
],
);
assert_eq!(
process_entries(&bank, &[entry_1_to_mint, entry_2_to_3_mint_to_1]),
Ok(())
);
assert_eq!(bank.get_balance(&keypair1.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 2);
}
#[test]
fn test_process_entries_2_txes_collision_and_error() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let keypair4 = Keypair::new();
// fund: put 4 in each of 1 and 2
assert_matches!(bank.transfer(4, &mint_keypair, &keypair1.pubkey()), Ok(_));
assert_matches!(bank.transfer(4, &mint_keypair, &keypair2.pubkey()), Ok(_));
assert_matches!(bank.transfer(4, &mint_keypair, &keypair4.pubkey()), Ok(_));
// construct an Entry whose 2nd transaction would cause a lock conflict with previous entry
let entry_1_to_mint = next_entry(
&bank.last_blockhash(),
1,
vec![
system_transaction::create_user_account(
&keypair1,
&mint_keypair.pubkey(),
1,
bank.last_blockhash(),
),
system_transaction::transfer(
&keypair4,
&keypair4.pubkey(),
1,
Hash::default(), // Should cause a transaction failure with BlockhashNotFound
),
],
);
let entry_2_to_3_mint_to_1 = next_entry(
&entry_1_to_mint.hash,
1,
vec![
system_transaction::create_user_account(
&keypair2,
&keypair3.pubkey(),
2,
bank.last_blockhash(),
), // should be fine
system_transaction::create_user_account(
&keypair1,
&mint_keypair.pubkey(),
2,
bank.last_blockhash(),
), // will collide
],
);
assert!(process_entries(
&bank,
&[entry_1_to_mint.clone(), entry_2_to_3_mint_to_1.clone()]
)
.is_err());
// First transaction in first entry succeeded, so keypair1 lost 1 lamport
assert_eq!(bank.get_balance(&keypair1.pubkey()), 3);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 4);
// Check all accounts are unlocked
let txs1 = &entry_1_to_mint.transactions[..];
let txs2 = &entry_2_to_3_mint_to_1.transactions[..];
let locked_accounts1 = bank.lock_accounts(txs1);
for result in locked_accounts1.locked_accounts_results() {
assert!(result.is_ok());
}
// txs1 and txs2 have accounts that conflict, so we must drop txs1 first
drop(locked_accounts1);
let locked_accounts2 = bank.lock_accounts(txs2);
for result in locked_accounts2.locked_accounts_results() {
assert!(result.is_ok());
}
}
#[test]
fn test_process_entries_2nd_entry_collision_with_self_and_error() {
solana_logger::setup();
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
// fund: put some money in each of 1 and 2
assert_matches!(bank.transfer(5, &mint_keypair, &keypair1.pubkey()), Ok(_));
assert_matches!(bank.transfer(4, &mint_keypair, &keypair2.pubkey()), Ok(_));
// 3 entries: first has a transfer, 2nd has a conflict with 1st, 3rd has a conflict with itself
let entry_1_to_mint = next_entry(
&bank.last_blockhash(),
1,
vec![system_transaction::transfer(
&keypair1,
&mint_keypair.pubkey(),
1,
bank.last_blockhash(),
)],
);
// should now be:
// keypair1=4
// keypair2=4
// keypair3=0
let entry_2_to_3_and_1_to_mint = next_entry(
&entry_1_to_mint.hash,
1,
vec![
system_transaction::create_user_account(
&keypair2,
&keypair3.pubkey(),
2,
bank.last_blockhash(),
), // should be fine
system_transaction::transfer(
&keypair1,
&mint_keypair.pubkey(),
2,
bank.last_blockhash(),
), // will collide with predecessor
],
);
// should now be:
// keypair1=2
// keypair2=2
// keypair3=2
let entry_conflict_itself = next_entry(
&entry_2_to_3_and_1_to_mint.hash,
1,
vec![
system_transaction::transfer(
&keypair1,
&keypair3.pubkey(),
1,
bank.last_blockhash(),
),
system_transaction::transfer(
&keypair1,
&keypair2.pubkey(),
1,
bank.last_blockhash(),
), // should be fine
],
);
// would now be:
// keypair1=0
// keypair2=3
// keypair3=3
assert!(process_entries(
&bank,
&[
entry_1_to_mint.clone(),
entry_2_to_3_and_1_to_mint.clone(),
entry_conflict_itself.clone()
]
)
.is_err());
// last entry should have been aborted before par_execute_entries
assert_eq!(bank.get_balance(&keypair1.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair2.pubkey()), 2);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 2);
}
#[test]
fn test_process_entries_2_entries_par() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let keypair4 = Keypair::new();
//load accounts
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair1.pubkey(),
1,
bank.last_blockhash(),
);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair2.pubkey(),
1,
bank.last_blockhash(),
);
assert_eq!(bank.process_transaction(&tx), Ok(()));
// ensure bank can process 2 entries that do not have a common account and no tick is registered
let blockhash = bank.last_blockhash();
let tx = system_transaction::create_user_account(
&keypair1,
&keypair3.pubkey(),
1,
bank.last_blockhash(),
);
let entry_1 = next_entry(&blockhash, 1, vec![tx]);
let tx = system_transaction::create_user_account(
&keypair2,
&keypair4.pubkey(),
1,
bank.last_blockhash(),
);
let entry_2 = next_entry(&entry_1.hash, 1, vec![tx]);
assert_eq!(process_entries(&bank, &[entry_1, entry_2]), Ok(()));
assert_eq!(bank.get_balance(&keypair3.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair4.pubkey()), 1);
assert_eq!(bank.last_blockhash(), blockhash);
}
#[test]
fn test_process_entries_2_entries_tick() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let keypair4 = Keypair::new();
//load accounts
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair1.pubkey(),
1,
bank.last_blockhash(),
);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let tx = system_transaction::create_user_account(
&mint_keypair,
&keypair2.pubkey(),
1,
bank.last_blockhash(),
);
assert_eq!(bank.process_transaction(&tx), Ok(()));
let blockhash = bank.last_blockhash();
while blockhash == bank.last_blockhash() {
bank.register_tick(&Hash::default());
}
// ensure bank can process 2 entries that do not have a common account and tick is registered
let tx =
system_transaction::create_user_account(&keypair2, &keypair3.pubkey(), 1, blockhash);
let entry_1 = next_entry(&blockhash, 1, vec![tx]);
let tick = next_entry(&entry_1.hash, 1, vec![]);
let tx = system_transaction::create_user_account(
&keypair1,
&keypair4.pubkey(),
1,
bank.last_blockhash(),
);
let entry_2 = next_entry(&tick.hash, 1, vec![tx]);
assert_eq!(
process_entries(&bank, &[entry_1.clone(), tick.clone(), entry_2.clone()]),
Ok(())
);
assert_eq!(bank.get_balance(&keypair3.pubkey()), 1);
assert_eq!(bank.get_balance(&keypair4.pubkey()), 1);
// ensure that an error is returned for an empty account (keypair2)
let tx = system_transaction::create_user_account(
&keypair2,
&keypair3.pubkey(),
1,
bank.last_blockhash(),
);
let entry_3 = next_entry(&entry_2.hash, 1, vec![tx]);
assert_eq!(
process_entries(&bank, &[entry_3]),
Err(TransactionError::AccountNotFound)
);
}
#[test]
fn test_update_transaction_statuses() {
// Make sure instruction errors still update the signature cache
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(11_000);
let bank = Bank::new(&genesis_block);
let pubkey = Pubkey::new_rand();
bank.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank.transaction_count(), 1);
assert_eq!(bank.get_balance(&pubkey), 1_000);
assert_eq!(
bank.transfer(10_001, &mint_keypair, &pubkey),
Err(TransactionError::InstructionError(
0,
InstructionError::new_result_with_negative_lamports(),
))
);
assert_eq!(
bank.transfer(10_001, &mint_keypair, &pubkey),
Err(TransactionError::DuplicateSignature)
);
// Make sure other errors don't update the signature cache
let tx =
system_transaction::create_user_account(&mint_keypair, &pubkey, 1000, Hash::default());
let signature = tx.signatures[0];
// Should fail with blockhash not found
assert_eq!(
bank.process_transaction(&tx).map(|_| signature),
Err(TransactionError::BlockhashNotFound)
);
// Should fail again with blockhash not found
assert_eq!(
bank.process_transaction(&tx).map(|_| signature),
Err(TransactionError::BlockhashNotFound)
);
}
#[test]
fn test_update_transaction_statuses_fail() {
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(11_000);
let bank = Bank::new(&genesis_block);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let success_tx = system_transaction::create_user_account(
&mint_keypair,
&keypair1.pubkey(),
1,
bank.last_blockhash(),
);
let fail_tx = system_transaction::create_user_account(
&mint_keypair,
&keypair2.pubkey(),
2,
bank.last_blockhash(),
);
let entry_1_to_mint = next_entry(
&bank.last_blockhash(),
1,
vec![
success_tx,
fail_tx.clone(), // will collide
],
);
assert_eq!(
process_entries(&bank, &[entry_1_to_mint]),
Err(TransactionError::AccountInUse)
);
// Should not see duplicate signature error
assert_eq!(bank.process_transaction(&fail_tx), Ok(()));
}
#[test]
#[ignore]
fn test_process_entries_stress() {
// this test throws lots of rayon threads at process_entries()
// finds bugs in very low-layer stuff
solana_logger::setup();
let GenesisBlockInfo {
genesis_block,
mint_keypair,
..
} = create_genesis_block(1_000_000_000);
let mut bank = Bank::new(&genesis_block);
const NUM_TRANSFERS: usize = 100;
let keypairs: Vec<_> = (0..NUM_TRANSFERS * 2).map(|_| Keypair::new()).collect();
// give everybody one lamport
for keypair in &keypairs {
bank.transfer(1, &mint_keypair, &keypair.pubkey())
.expect("funding failed");
}
let mut i = 0;
let mut hash = bank.last_blockhash();
loop {
let entries: Vec<_> = (0..NUM_TRANSFERS)
.map(|i| {
next_entry_mut(
&mut hash,
0,
vec![system_transaction::transfer(
&keypairs[i],
&keypairs[i + NUM_TRANSFERS].pubkey(),
1,
bank.last_blockhash(),
)],
)
})
.collect();
info!("paying iteration {}", i);
process_entries(&bank, &entries).expect("paying failed");
let entries: Vec<_> = (0..NUM_TRANSFERS)
.map(|i| {
next_entry_mut(
&mut hash,
0,
vec![system_transaction::transfer(
&keypairs[i + NUM_TRANSFERS],
&keypairs[i].pubkey(),
1,
bank.last_blockhash(),
)],
)
})
.collect();
info!("refunding iteration {}", i);
process_entries(&bank, &entries).expect("refunding failed");
// advance to next block
process_entries(
&bank,
&(0..bank.ticks_per_slot())
.map(|_| next_entry_mut(&mut hash, 1, vec![]))
.collect::<Vec<_>>(),
)
.expect("process ticks failed");
bank.squash();
i += 1;
bank = Bank::new_from_parent(&Arc::new(bank), &Pubkey::default(), i as u64);
}
}
fn get_epoch_schedule(
genesis_block: &GenesisBlock,
account_paths: Option<String>,
) -> EpochSchedule {
let bank = Bank::new_with_paths(&genesis_block, account_paths);
bank.epoch_schedule().clone()
}
}