solana/src/sigverify.rs

230 lines
6.7 KiB
Rust

//! The `sigverify` module provides digital signature verification functions.
//! By default, signatures are verified in parallel using all available CPU
//! cores. When `--features=cuda` is enabled, signature verification is
//! offloaded to the GPU.
//!
use counter::Counter;
use packet::{Packet, SharedPackets};
use std::mem::size_of;
use std::sync::atomic::AtomicUsize;
use transaction::{PUB_KEY_OFFSET, SIGNED_DATA_OFFSET, SIG_OFFSET};
pub const TX_OFFSET: usize = 0;
#[cfg(feature = "cuda")]
#[repr(C)]
struct Elems {
elems: *const Packet,
num: u32,
}
#[cfg(feature = "cuda")]
#[link(name = "cuda_verify_ed25519")]
extern "C" {
fn ed25519_verify_many(
vecs: *const Elems,
num: u32, //number of vecs
message_size: u32, //size of each element inside the elems field of the vec
public_key_offset: u32,
signature_offset: u32,
signed_message_offset: u32,
signed_message_len_offset: u32,
out: *mut u8, //combined length of all the items in vecs
) -> u32;
}
#[cfg(not(feature = "cuda"))]
fn verify_packet(packet: &Packet) -> u8 {
use ring::signature;
use signature::{PublicKey, Signature};
use untrusted;
let msg_start = TX_OFFSET + SIGNED_DATA_OFFSET;
let sig_start = TX_OFFSET + SIG_OFFSET;
let sig_end = sig_start + size_of::<Signature>();
let pub_key_start = TX_OFFSET + PUB_KEY_OFFSET;
let pub_key_end = pub_key_start + size_of::<PublicKey>();
if packet.meta.size <= msg_start {
return 0;
}
let msg_end = packet.meta.size;
signature::verify(
&signature::ED25519,
untrusted::Input::from(&packet.data[pub_key_start..pub_key_end]),
untrusted::Input::from(&packet.data[msg_start..msg_end]),
untrusted::Input::from(&packet.data[sig_start..sig_end]),
).is_ok() as u8
}
fn batch_size(batches: &[SharedPackets]) -> usize {
batches
.iter()
.map(|p| p.read().unwrap().packets.len())
.sum()
}
#[cfg_attr(feature = "cargo-clippy", allow(ptr_arg))]
#[cfg(not(feature = "cuda"))]
pub fn ed25519_verify(batches: &Vec<SharedPackets>) -> Vec<Vec<u8>> {
use rayon::prelude::*;
static mut COUNTER: Counter = create_counter!("ed25519_verify", 1);
let count = batch_size(batches);
info!("CPU ECDSA for {}", batch_size(batches));
let rv = batches
.into_par_iter()
.map(|p| {
p.read()
.expect("'p' read lock in ed25519_verify")
.packets
.par_iter()
.map(verify_packet)
.collect()
})
.collect();
inc_counter!(COUNTER, count);
rv
}
#[cfg(feature = "cuda")]
pub fn ed25519_verify(batches: &Vec<SharedPackets>) -> Vec<Vec<u8>> {
use packet::PACKET_DATA_SIZE;
static mut COUNTER: Counter = create_counter!("ed25519_verify_cuda", 1);
let count = batch_size(batches);
info!("CUDA ECDSA for {}", batch_size(batches));
let mut out = Vec::new();
let mut elems = Vec::new();
let mut locks = Vec::new();
let mut rvs = Vec::new();
for packets in batches {
locks.push(
packets
.read()
.expect("'packets' read lock in pub fn ed25519_verify"),
);
}
let mut num = 0;
for p in locks {
elems.push(Elems {
elems: p.packets.as_ptr(),
num: p.packets.len() as u32,
});
let mut v = Vec::new();
v.resize(p.packets.len(), 0);
rvs.push(v);
num += p.packets.len();
}
out.resize(num, 0);
trace!("Starting verify num packets: {}", num);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
trace!("pub key: {}", (TX_OFFSET + PUB_KEY_OFFSET) as u32);
trace!("sig offset: {}", (TX_OFFSET + SIG_OFFSET) as u32);
trace!("sign data: {}", (TX_OFFSET + SIGNED_DATA_OFFSET) as u32);
trace!("len offset: {}", PACKET_DATA_SIZE as u32);
unsafe {
let res = ed25519_verify_many(
elems.as_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
(TX_OFFSET + PUB_KEY_OFFSET) as u32,
(TX_OFFSET + SIG_OFFSET) as u32,
(TX_OFFSET + SIGNED_DATA_OFFSET) as u32,
PACKET_DATA_SIZE as u32,
out.as_mut_ptr(),
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done verify");
let mut num = 0;
for vs in rvs.iter_mut() {
for mut v in vs.iter_mut() {
*v = out[num];
if *v != 0 {
trace!("VERIFIED PACKET!!!!!");
}
num += 1;
}
}
inc_counter!(COUNTER, count);
rvs
}
#[cfg(test)]
mod tests {
use bincode::serialize;
use packet::{Packet, Packets, SharedPackets};
use sigverify;
use std::sync::RwLock;
use transaction::Transaction;
use transaction::{memfind, test_tx};
#[test]
fn test_layout() {
let tx = test_tx();
let tx_bytes = serialize(&tx).unwrap();
let packet = serialize(&tx).unwrap();
assert_matches!(memfind(&packet, &tx_bytes), Some(sigverify::TX_OFFSET));
assert_matches!(memfind(&packet, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), None);
}
fn make_packet_from_transaction(tx: Transaction) -> Packet {
let tx_bytes = serialize(&tx).unwrap();
let mut packet = Packet::default();
packet.meta.size = tx_bytes.len();
packet.data[..packet.meta.size].copy_from_slice(&tx_bytes);
return packet;
}
fn test_verify_n(n: usize, modify_data: bool) {
let tx = test_tx();
let mut packet = make_packet_from_transaction(tx);
// jumble some data to test failure
if modify_data {
packet.data[20] = packet.data[20].wrapping_add(10);
}
// generate packet vector
let mut packets = Packets::default();
packets.packets = Vec::new();
for _ in 0..n {
packets.packets.push(packet.clone());
}
let shared_packets = SharedPackets::new(RwLock::new(packets));
let batches = vec![shared_packets.clone(), shared_packets.clone()];
// verify packets
let ans = sigverify::ed25519_verify(&batches);
// check result
let ref_ans = if modify_data { 0u8 } else { 1u8 };
assert_eq!(ans, vec![vec![ref_ans; n], vec![ref_ans; n]]);
}
#[test]
fn test_verify_zero() {
test_verify_n(0, false);
}
#[test]
fn test_verify_one() {
test_verify_n(1, false);
}
#[test]
fn test_verify_seventy_one() {
test_verify_n(71, false);
}
#[test]
fn test_verify_fail() {
test_verify_n(5, true);
}
}