227 lines
7.1 KiB
Rust
227 lines
7.1 KiB
Rust
#![allow(clippy::integer_arithmetic)]
|
|
#![feature(test)]
|
|
|
|
extern crate test;
|
|
|
|
use {
|
|
rand::seq::SliceRandom,
|
|
raptorq::{Decoder, Encoder},
|
|
solana_entry::entry::{create_ticks, Entry},
|
|
solana_ledger::shred::{
|
|
max_entries_per_n_shred, max_ticks_per_n_shreds, ProcessShredsStats, ReedSolomonCache,
|
|
Shred, ShredFlags, Shredder, DATA_SHREDS_PER_FEC_BLOCK, LEGACY_SHRED_DATA_CAPACITY,
|
|
},
|
|
solana_perf::test_tx,
|
|
solana_sdk::{hash::Hash, packet::PACKET_DATA_SIZE, signature::Keypair},
|
|
test::Bencher,
|
|
};
|
|
|
|
// Copied these values here to avoid exposing shreds
|
|
// internals only for the sake of benchmarks.
|
|
|
|
// size of nonce: 4
|
|
// size of common shred header: 83
|
|
// size of coding shred header: 6
|
|
const VALID_SHRED_DATA_LEN: usize = PACKET_DATA_SIZE - 4 - 83 - 6;
|
|
|
|
fn make_test_entry(txs_per_entry: u64) -> Entry {
|
|
Entry {
|
|
num_hashes: 100_000,
|
|
hash: Hash::default(),
|
|
transactions: vec![test_tx::test_tx().into(); txs_per_entry as usize],
|
|
}
|
|
}
|
|
fn make_large_unchained_entries(txs_per_entry: u64, num_entries: u64) -> Vec<Entry> {
|
|
(0..num_entries)
|
|
.map(|_| make_test_entry(txs_per_entry))
|
|
.collect()
|
|
}
|
|
|
|
fn make_shreds(num_shreds: usize) -> Vec<Shred> {
|
|
let txs_per_entry = 128;
|
|
let num_entries = max_entries_per_n_shred(
|
|
&make_test_entry(txs_per_entry),
|
|
2 * num_shreds as u64,
|
|
Some(LEGACY_SHRED_DATA_CAPACITY),
|
|
);
|
|
let entries = make_large_unchained_entries(txs_per_entry, num_entries);
|
|
let shredder = Shredder::new(1, 0, 0, 0).unwrap();
|
|
let (data_shreds, _) = shredder.entries_to_shreds(
|
|
&Keypair::new(),
|
|
&entries,
|
|
true, // is_last_in_slot
|
|
0, // next_shred_index
|
|
0, // next_code_index
|
|
false, // merkle_variant
|
|
&ReedSolomonCache::default(),
|
|
&mut ProcessShredsStats::default(),
|
|
);
|
|
assert!(data_shreds.len() >= num_shreds);
|
|
data_shreds
|
|
}
|
|
|
|
fn make_concatenated_shreds(num_shreds: usize) -> Vec<u8> {
|
|
let data_shreds = make_shreds(num_shreds);
|
|
let mut data: Vec<u8> = vec![0; num_shreds * VALID_SHRED_DATA_LEN];
|
|
for (i, shred) in (data_shreds[0..num_shreds]).iter().enumerate() {
|
|
data[i * VALID_SHRED_DATA_LEN..(i + 1) * VALID_SHRED_DATA_LEN]
|
|
.copy_from_slice(&shred.payload()[..VALID_SHRED_DATA_LEN]);
|
|
}
|
|
|
|
data
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_ticks(bencher: &mut Bencher) {
|
|
let kp = Keypair::new();
|
|
let shred_size = LEGACY_SHRED_DATA_CAPACITY;
|
|
let num_shreds = ((1000 * 1000) + (shred_size - 1)) / shred_size;
|
|
// ~1Mb
|
|
let num_ticks = max_ticks_per_n_shreds(1, Some(LEGACY_SHRED_DATA_CAPACITY)) * num_shreds as u64;
|
|
let entries = create_ticks(num_ticks, 0, Hash::default());
|
|
let reed_solomon_cache = ReedSolomonCache::default();
|
|
bencher.iter(|| {
|
|
let shredder = Shredder::new(1, 0, 0, 0).unwrap();
|
|
shredder.entries_to_shreds(
|
|
&kp,
|
|
&entries,
|
|
true,
|
|
0,
|
|
0,
|
|
true, // merkle_variant
|
|
&reed_solomon_cache,
|
|
&mut ProcessShredsStats::default(),
|
|
);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_large_entries(bencher: &mut Bencher) {
|
|
let kp = Keypair::new();
|
|
let shred_size = LEGACY_SHRED_DATA_CAPACITY;
|
|
let num_shreds = ((1000 * 1000) + (shred_size - 1)) / shred_size;
|
|
let txs_per_entry = 128;
|
|
let num_entries = max_entries_per_n_shred(
|
|
&make_test_entry(txs_per_entry),
|
|
num_shreds as u64,
|
|
Some(shred_size),
|
|
);
|
|
let entries = make_large_unchained_entries(txs_per_entry, num_entries);
|
|
let reed_solomon_cache = ReedSolomonCache::default();
|
|
// 1Mb
|
|
bencher.iter(|| {
|
|
let shredder = Shredder::new(1, 0, 0, 0).unwrap();
|
|
shredder.entries_to_shreds(
|
|
&kp,
|
|
&entries,
|
|
true,
|
|
0,
|
|
0,
|
|
true, // merkle_variant
|
|
&reed_solomon_cache,
|
|
&mut ProcessShredsStats::default(),
|
|
);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_deshredder(bencher: &mut Bencher) {
|
|
let kp = Keypair::new();
|
|
let shred_size = LEGACY_SHRED_DATA_CAPACITY;
|
|
// ~10Mb
|
|
let num_shreds = ((10000 * 1000) + (shred_size - 1)) / shred_size;
|
|
let num_ticks = max_ticks_per_n_shreds(1, Some(shred_size)) * num_shreds as u64;
|
|
let entries = create_ticks(num_ticks, 0, Hash::default());
|
|
let shredder = Shredder::new(1, 0, 0, 0).unwrap();
|
|
let (data_shreds, _) = shredder.entries_to_shreds(
|
|
&kp,
|
|
&entries,
|
|
true,
|
|
0,
|
|
0,
|
|
true, // merkle_variant
|
|
&ReedSolomonCache::default(),
|
|
&mut ProcessShredsStats::default(),
|
|
);
|
|
bencher.iter(|| {
|
|
let raw = &mut Shredder::deshred(&data_shreds).unwrap();
|
|
assert_ne!(raw.len(), 0);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_deserialize_hdr(bencher: &mut Bencher) {
|
|
let data = vec![0; LEGACY_SHRED_DATA_CAPACITY];
|
|
|
|
let shred = Shred::new_from_data(2, 1, 1, &data, ShredFlags::LAST_SHRED_IN_SLOT, 0, 0, 1);
|
|
|
|
bencher.iter(|| {
|
|
let payload = shred.payload().clone();
|
|
let _ = Shred::new_from_serialized_shred(payload).unwrap();
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_coding(bencher: &mut Bencher) {
|
|
let symbol_count = DATA_SHREDS_PER_FEC_BLOCK;
|
|
let data_shreds = make_shreds(symbol_count);
|
|
let reed_solomon_cache = ReedSolomonCache::default();
|
|
bencher.iter(|| {
|
|
Shredder::generate_coding_shreds(
|
|
&data_shreds[..symbol_count],
|
|
0, // next_code_index
|
|
&reed_solomon_cache,
|
|
)
|
|
.len();
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_decoding(bencher: &mut Bencher) {
|
|
let symbol_count = DATA_SHREDS_PER_FEC_BLOCK;
|
|
let data_shreds = make_shreds(symbol_count);
|
|
let reed_solomon_cache = ReedSolomonCache::default();
|
|
let coding_shreds = Shredder::generate_coding_shreds(
|
|
&data_shreds[..symbol_count],
|
|
0, // next_code_index
|
|
&reed_solomon_cache,
|
|
);
|
|
bencher.iter(|| {
|
|
Shredder::try_recovery(coding_shreds[..].to_vec(), &reed_solomon_cache).unwrap();
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_coding_raptorq(bencher: &mut Bencher) {
|
|
let symbol_count = DATA_SHREDS_PER_FEC_BLOCK;
|
|
let data = make_concatenated_shreds(symbol_count);
|
|
bencher.iter(|| {
|
|
let encoder = Encoder::with_defaults(&data, VALID_SHRED_DATA_LEN as u16);
|
|
encoder.get_encoded_packets(symbol_count as u32);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_shredder_decoding_raptorq(bencher: &mut Bencher) {
|
|
let symbol_count = DATA_SHREDS_PER_FEC_BLOCK;
|
|
let data = make_concatenated_shreds(symbol_count);
|
|
let encoder = Encoder::with_defaults(&data, VALID_SHRED_DATA_LEN as u16);
|
|
let mut packets = encoder.get_encoded_packets(symbol_count as u32);
|
|
packets.shuffle(&mut rand::thread_rng());
|
|
|
|
// Here we simulate losing 1 less than 50% of the packets randomly
|
|
packets.truncate(packets.len() - packets.len() / 2 + 1);
|
|
|
|
bencher.iter(|| {
|
|
let mut decoder = Decoder::new(encoder.get_config());
|
|
let mut result = None;
|
|
for packet in &packets {
|
|
result = decoder.decode(packet.clone());
|
|
if result.is_some() {
|
|
break;
|
|
}
|
|
}
|
|
assert_eq!(result.unwrap(), data);
|
|
})
|
|
}
|