solana/program-runtime/src/loaded_programs.rs

2730 lines
106 KiB
Rust

use {
crate::{
invoke_context::{BuiltinFunctionWithContext, InvokeContext},
timings::ExecuteDetailsTimings,
},
log::{debug, error, log_enabled, trace},
percentage::PercentageInteger,
rand::{thread_rng, Rng},
solana_measure::measure::Measure,
solana_rbpf::{
elf::Executable,
program::{BuiltinProgram, FunctionRegistry},
verifier::RequisiteVerifier,
vm::Config,
},
solana_sdk::{
bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable,
clock::{Epoch, Slot},
loader_v4,
pubkey::Pubkey,
saturating_add_assign,
},
std::{
collections::HashMap,
fmt::{Debug, Formatter},
sync::{
atomic::{AtomicU64, Ordering},
Arc, Condvar, Mutex, RwLock,
},
},
};
pub type ProgramRuntimeEnvironment = Arc<BuiltinProgram<InvokeContext<'static>>>;
pub const MAX_LOADED_ENTRY_COUNT: usize = 256;
pub const DELAY_VISIBILITY_SLOT_OFFSET: Slot = 1;
/// Relationship between two fork IDs
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum BlockRelation {
/// The slot is on the same fork and is an ancestor of the other slot
Ancestor,
/// The two slots are equal and are on the same fork
Equal,
/// The slot is on the same fork and is a descendant of the other slot
Descendant,
/// The slots are on two different forks and may have had a common ancestor at some point
Unrelated,
/// Either one or both of the slots are either older than the latest root, or are in future
Unknown,
}
/// Maps relationship between two slots.
pub trait ForkGraph {
/// Returns the BlockRelation of A to B
fn relationship(&self, a: Slot, b: Slot) -> BlockRelation;
/// Returns the epoch of the given slot
fn slot_epoch(&self, _slot: Slot) -> Option<Epoch> {
Some(0)
}
}
/// Actual payload of [LoadedProgram].
#[derive(Default)]
pub enum LoadedProgramType {
/// Tombstone for programs which currently do not pass the verifier but could if the feature set changed.
FailedVerification(ProgramRuntimeEnvironment),
/// Tombstone for programs that were either explicitly closed or never deployed.
///
/// It's also used for accounts belonging to program loaders, that don't actually contain program code (e.g. buffer accounts for LoaderV3 programs).
#[default]
Closed,
/// Tombstone for programs which have recently been modified but the new version is not visible yet.
DelayVisibility,
/// Successfully verified but not currently compiled.
///
/// It continues to track usage statistics even when the compiled executable of the program is evicted from memory.
Unloaded(ProgramRuntimeEnvironment),
/// Verified and compiled program of loader-v1 or loader-v2
LegacyV0(Executable<InvokeContext<'static>>),
/// Verified and compiled program of loader-v3 (aka upgradable loader)
LegacyV1(Executable<InvokeContext<'static>>),
/// Verified and compiled program of loader-v4
Typed(Executable<InvokeContext<'static>>),
#[cfg(test)]
TestLoaded(ProgramRuntimeEnvironment),
/// A built-in program which is not stored on-chain but backed into and distributed with the validator
Builtin(BuiltinProgram<InvokeContext<'static>>),
}
impl Debug for LoadedProgramType {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
LoadedProgramType::FailedVerification(_) => {
write!(f, "LoadedProgramType::FailedVerification")
}
LoadedProgramType::Closed => write!(f, "LoadedProgramType::Closed"),
LoadedProgramType::DelayVisibility => write!(f, "LoadedProgramType::DelayVisibility"),
LoadedProgramType::Unloaded(_) => write!(f, "LoadedProgramType::Unloaded"),
LoadedProgramType::LegacyV0(_) => write!(f, "LoadedProgramType::LegacyV0"),
LoadedProgramType::LegacyV1(_) => write!(f, "LoadedProgramType::LegacyV1"),
LoadedProgramType::Typed(_) => write!(f, "LoadedProgramType::Typed"),
#[cfg(test)]
LoadedProgramType::TestLoaded(_) => write!(f, "LoadedProgramType::TestLoaded"),
LoadedProgramType::Builtin(_) => write!(f, "LoadedProgramType::Builtin"),
}
}
}
impl LoadedProgramType {
/// Returns a reference to its environment if it has one
pub fn get_environment(&self) -> Option<&ProgramRuntimeEnvironment> {
match self {
LoadedProgramType::LegacyV0(program)
| LoadedProgramType::LegacyV1(program)
| LoadedProgramType::Typed(program) => Some(program.get_loader()),
LoadedProgramType::FailedVerification(env) | LoadedProgramType::Unloaded(env) => {
Some(env)
}
#[cfg(test)]
LoadedProgramType::TestLoaded(environment) => Some(environment),
_ => None,
}
}
}
/// Holds a program version at a specific address and on a specific slot / fork.
///
/// It contains the actual program in [LoadedProgramType] and a bunch of meta-data.
#[derive(Debug, Default)]
pub struct LoadedProgram {
/// The program of this entry
pub program: LoadedProgramType,
/// Size of account that stores the program and program data
pub account_size: usize,
/// Slot in which the program was (re)deployed
pub deployment_slot: Slot,
/// Slot in which this entry will become active (can be in the future)
pub effective_slot: Slot,
/// How often this entry was used by a transaction
pub tx_usage_counter: AtomicU64,
/// How often this entry was used by an instruction
pub ix_usage_counter: AtomicU64,
/// Latest slot in which the entry was used
pub latest_access_slot: AtomicU64,
}
/// Global cache statistics for [ProgramCache].
#[derive(Debug, Default)]
pub struct Stats {
/// a program was already in the cache
pub hits: AtomicU64,
/// a program was not found and loaded instead
pub misses: AtomicU64,
/// a compiled executable was unloaded
pub evictions: HashMap<Pubkey, u64>,
/// an unloaded program was loaded again (opposite of eviction)
pub reloads: AtomicU64,
/// a program was loaded or un/re/deployed
pub insertions: AtomicU64,
/// a program was loaded but can not be extracted on its own fork anymore
pub lost_insertions: AtomicU64,
/// a program which was already in the cache was reloaded by mistake
pub replacements: AtomicU64,
/// a program was only used once before being unloaded
pub one_hit_wonders: AtomicU64,
/// a program became unreachable in the fork graph because of rerooting
pub prunes_orphan: AtomicU64,
/// a program got pruned because it was not recompiled for the next epoch
pub prunes_environment: AtomicU64,
/// the [SecondLevel] was empty because all slot versions got pruned
pub empty_entries: AtomicU64,
}
impl Stats {
/// Logs the measurement values
pub fn submit(&self, slot: Slot) {
let hits = self.hits.load(Ordering::Relaxed);
let misses = self.misses.load(Ordering::Relaxed);
let evictions: u64 = self.evictions.values().sum();
let reloads = self.reloads.load(Ordering::Relaxed);
let insertions = self.insertions.load(Ordering::Relaxed);
let lost_insertions = self.lost_insertions.load(Ordering::Relaxed);
let replacements = self.replacements.load(Ordering::Relaxed);
let one_hit_wonders = self.one_hit_wonders.load(Ordering::Relaxed);
let prunes_orphan = self.prunes_orphan.load(Ordering::Relaxed);
let prunes_environment = self.prunes_environment.load(Ordering::Relaxed);
let empty_entries = self.empty_entries.load(Ordering::Relaxed);
datapoint_info!(
"loaded-programs-cache-stats",
("slot", slot, i64),
("hits", hits, i64),
("misses", misses, i64),
("evictions", evictions, i64),
("reloads", reloads, i64),
("insertions", insertions, i64),
("lost_insertions", lost_insertions, i64),
("replace_entry", replacements, i64),
("one_hit_wonders", one_hit_wonders, i64),
("prunes_orphan", prunes_orphan, i64),
("prunes_environment", prunes_environment, i64),
("empty_entries", empty_entries, i64),
);
debug!(
"Loaded Programs Cache Stats -- Hits: {}, Misses: {}, Evictions: {}, Reloads: {}, Insertions: {} Lost-Insertions: {}, Replacements: {}, One-Hit-Wonders: {}, Prunes-Orphan: {}, Prunes-Environment: {}, Empty: {}",
hits, misses, evictions, reloads, insertions, lost_insertions, replacements, one_hit_wonders, prunes_orphan, prunes_environment, empty_entries
);
if log_enabled!(log::Level::Trace) && !self.evictions.is_empty() {
let mut evictions = self.evictions.iter().collect::<Vec<_>>();
evictions.sort_by_key(|e| e.1);
let evictions = evictions
.into_iter()
.rev()
.map(|(program_id, evictions)| {
format!(" {:<44} {}", program_id.to_string(), evictions)
})
.collect::<Vec<_>>();
let evictions = evictions.join("\n");
trace!(
"Eviction Details:\n {:<44} {}\n{}",
"Program",
"Count",
evictions
);
}
}
pub fn reset(&mut self) {
*self = Stats::default();
}
}
/// Time measurements for loading a single [LoadedProgram].
#[derive(Debug, Default)]
pub struct LoadProgramMetrics {
/// Program address, but as text
pub program_id: String,
/// Microseconds it took to `create_program_runtime_environment`
pub register_syscalls_us: u64,
/// Microseconds it took to `Executable::<InvokeContext>::load`
pub load_elf_us: u64,
/// Microseconds it took to `executable.verify::<RequisiteVerifier>`
pub verify_code_us: u64,
/// Microseconds it took to `executable.jit_compile`
pub jit_compile_us: u64,
}
impl LoadProgramMetrics {
pub fn submit_datapoint(&self, timings: &mut ExecuteDetailsTimings) {
saturating_add_assign!(
timings.create_executor_register_syscalls_us,
self.register_syscalls_us
);
saturating_add_assign!(timings.create_executor_load_elf_us, self.load_elf_us);
saturating_add_assign!(timings.create_executor_verify_code_us, self.verify_code_us);
saturating_add_assign!(timings.create_executor_jit_compile_us, self.jit_compile_us);
datapoint_trace!(
"create_executor_trace",
("program_id", self.program_id, String),
("register_syscalls_us", self.register_syscalls_us, i64),
("load_elf_us", self.load_elf_us, i64),
("verify_code_us", self.verify_code_us, i64),
("jit_compile_us", self.jit_compile_us, i64),
);
}
}
impl PartialEq for LoadedProgram {
fn eq(&self, other: &Self) -> bool {
self.effective_slot == other.effective_slot
&& self.deployment_slot == other.deployment_slot
&& self.is_tombstone() == other.is_tombstone()
}
}
impl LoadedProgram {
/// Creates a new user program
pub fn new(
loader_key: &Pubkey,
program_runtime_environment: ProgramRuntimeEnvironment,
deployment_slot: Slot,
effective_slot: Slot,
elf_bytes: &[u8],
account_size: usize,
metrics: &mut LoadProgramMetrics,
) -> Result<Self, Box<dyn std::error::Error>> {
Self::new_internal(
loader_key,
program_runtime_environment,
deployment_slot,
effective_slot,
elf_bytes,
account_size,
metrics,
false, /* reloading */
)
}
/// Reloads a user program, *without* running the verifier.
///
/// # Safety
///
/// This method is unsafe since it assumes that the program has already been verified. Should
/// only be called when the program was previously verified and loaded in the cache, but was
/// unloaded due to inactivity. It should also be checked that the `program_runtime_environment`
/// hasn't changed since it was unloaded.
pub unsafe fn reload(
loader_key: &Pubkey,
program_runtime_environment: Arc<BuiltinProgram<InvokeContext<'static>>>,
deployment_slot: Slot,
effective_slot: Slot,
elf_bytes: &[u8],
account_size: usize,
metrics: &mut LoadProgramMetrics,
) -> Result<Self, Box<dyn std::error::Error>> {
Self::new_internal(
loader_key,
program_runtime_environment,
deployment_slot,
effective_slot,
elf_bytes,
account_size,
metrics,
true, /* reloading */
)
}
fn new_internal(
loader_key: &Pubkey,
program_runtime_environment: Arc<BuiltinProgram<InvokeContext<'static>>>,
deployment_slot: Slot,
effective_slot: Slot,
elf_bytes: &[u8],
account_size: usize,
metrics: &mut LoadProgramMetrics,
reloading: bool,
) -> Result<Self, Box<dyn std::error::Error>> {
let load_elf_time = Measure::start("load_elf_time");
// The following unused_mut exception is needed for architectures that do not
// support JIT compilation.
#[allow(unused_mut)]
let mut executable = Executable::load(elf_bytes, program_runtime_environment.clone())?;
metrics.load_elf_us = load_elf_time.end_as_us();
if !reloading {
let verify_code_time = Measure::start("verify_code_time");
executable.verify::<RequisiteVerifier>()?;
metrics.verify_code_us = verify_code_time.end_as_us();
}
#[cfg(all(not(target_os = "windows"), target_arch = "x86_64"))]
{
let jit_compile_time = Measure::start("jit_compile_time");
executable.jit_compile()?;
metrics.jit_compile_us = jit_compile_time.end_as_us();
}
let program = if bpf_loader_deprecated::check_id(loader_key) {
LoadedProgramType::LegacyV0(executable)
} else if bpf_loader::check_id(loader_key) || bpf_loader_upgradeable::check_id(loader_key) {
LoadedProgramType::LegacyV1(executable)
} else if loader_v4::check_id(loader_key) {
LoadedProgramType::Typed(executable)
} else {
panic!();
};
Ok(Self {
deployment_slot,
account_size,
effective_slot,
tx_usage_counter: AtomicU64::new(0),
program,
ix_usage_counter: AtomicU64::new(0),
latest_access_slot: AtomicU64::new(0),
})
}
pub fn to_unloaded(&self) -> Option<Self> {
match &self.program {
LoadedProgramType::LegacyV0(_)
| LoadedProgramType::LegacyV1(_)
| LoadedProgramType::Typed(_) => {}
#[cfg(test)]
LoadedProgramType::TestLoaded(_) => {}
LoadedProgramType::FailedVerification(_)
| LoadedProgramType::Closed
| LoadedProgramType::DelayVisibility
| LoadedProgramType::Unloaded(_)
| LoadedProgramType::Builtin(_) => {
return None;
}
}
Some(Self {
program: LoadedProgramType::Unloaded(self.program.get_environment()?.clone()),
account_size: self.account_size,
deployment_slot: self.deployment_slot,
effective_slot: self.effective_slot,
tx_usage_counter: AtomicU64::new(self.tx_usage_counter.load(Ordering::Relaxed)),
ix_usage_counter: AtomicU64::new(self.ix_usage_counter.load(Ordering::Relaxed)),
latest_access_slot: AtomicU64::new(self.latest_access_slot.load(Ordering::Relaxed)),
})
}
/// Creates a new built-in program
pub fn new_builtin(
deployment_slot: Slot,
account_size: usize,
builtin_function: BuiltinFunctionWithContext,
) -> Self {
let mut function_registry = FunctionRegistry::default();
function_registry
.register_function_hashed(*b"entrypoint", builtin_function)
.unwrap();
Self {
deployment_slot,
account_size,
effective_slot: deployment_slot,
tx_usage_counter: AtomicU64::new(0),
program: LoadedProgramType::Builtin(BuiltinProgram::new_builtin(function_registry)),
ix_usage_counter: AtomicU64::new(0),
latest_access_slot: AtomicU64::new(0),
}
}
pub fn new_tombstone(slot: Slot, reason: LoadedProgramType) -> Self {
let tombstone = Self {
program: reason,
account_size: 0,
deployment_slot: slot,
effective_slot: slot,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::new(0),
};
debug_assert!(tombstone.is_tombstone());
tombstone
}
pub fn is_tombstone(&self) -> bool {
matches!(
self.program,
LoadedProgramType::FailedVerification(_)
| LoadedProgramType::Closed
| LoadedProgramType::DelayVisibility
)
}
fn is_implicit_delay_visibility_tombstone(&self, slot: Slot) -> bool {
!matches!(self.program, LoadedProgramType::Builtin(_))
&& self.effective_slot.saturating_sub(self.deployment_slot)
== DELAY_VISIBILITY_SLOT_OFFSET
&& slot >= self.deployment_slot
&& slot < self.effective_slot
}
pub fn update_access_slot(&self, slot: Slot) {
let _ = self.latest_access_slot.fetch_max(slot, Ordering::Relaxed);
}
pub fn decayed_usage_counter(&self, now: Slot) -> u64 {
let last_access = self.latest_access_slot.load(Ordering::Relaxed);
// Shifting the u64 value for more than 63 will cause an overflow.
let decaying_for = std::cmp::min(63, now.saturating_sub(last_access));
self.tx_usage_counter.load(Ordering::Relaxed) >> decaying_for
}
}
/// Globally shared RBPF config and syscall registry
///
/// This is only valid in an epoch range as long as no feature affecting RBPF is activated.
#[derive(Clone, Debug)]
pub struct ProgramRuntimeEnvironments {
/// For program runtime V1
pub program_runtime_v1: ProgramRuntimeEnvironment,
/// For program runtime V2
pub program_runtime_v2: ProgramRuntimeEnvironment,
}
impl Default for ProgramRuntimeEnvironments {
fn default() -> Self {
let empty_loader = Arc::new(BuiltinProgram::new_loader(
Config::default(),
FunctionRegistry::default(),
));
Self {
program_runtime_v1: empty_loader.clone(),
program_runtime_v2: empty_loader,
}
}
}
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct LoadingTaskCookie(u64);
impl LoadingTaskCookie {
fn new() -> Self {
Self(0)
}
fn update(&mut self) {
let LoadingTaskCookie(cookie) = self;
*cookie = cookie.wrapping_add(1);
}
}
/// Suspends the thread in case no cooprative loading task was assigned
#[derive(Debug, Default)]
pub struct LoadingTaskWaiter {
cookie: Mutex<LoadingTaskCookie>,
cond: Condvar,
}
impl LoadingTaskWaiter {
pub fn new() -> Self {
Self {
cookie: Mutex::new(LoadingTaskCookie::new()),
cond: Condvar::new(),
}
}
pub fn cookie(&self) -> LoadingTaskCookie {
*self.cookie.lock().unwrap()
}
pub fn notify(&self) {
let mut cookie = self.cookie.lock().unwrap();
cookie.update();
self.cond.notify_all();
}
pub fn wait(&self, cookie: LoadingTaskCookie) -> LoadingTaskCookie {
let cookie_guard = self.cookie.lock().unwrap();
*self
.cond
.wait_while(cookie_guard, |current_cookie| *current_cookie == cookie)
.unwrap()
}
}
/// Contains all the program versions at a specific address.
#[derive(Debug, Default)]
struct SecondLevel {
/// List of all versions (across all forks) of a program sorted by the slot in which they were modified
slot_versions: Vec<Arc<LoadedProgram>>,
/// `Some` if there is currently a cooperative loading task for this program address
///
/// It is possible that multiple TX batches from different slots need different versions of a program.
/// However, that can only be figured out once a program is loaded and its deployment slot is known.
cooperative_loading_lock: Option<(Slot, std::thread::ThreadId)>,
}
/// This structure is the global cache of loaded, verified and compiled programs.
///
/// It ...
/// - is validator global and fork graph aware, so it can optimize the commonalities across banks.
/// - handles the visibility rules of un/re/deployments.
/// - stores the usage statistics and verification status of each program.
/// - is elastic and uses a probabilistic eviction stragety based on the usage statistics.
/// - also keeps the compiled executables around, but only for the most used programs.
/// - supports various kinds of tombstones to avoid loading programs which can not be loaded.
/// - cleans up entries on orphan branches when the block store is rerooted.
/// - supports the recompilation phase before feature activations which can change cached programs.
/// - manages the environments of the programs and upcoming environments for the next epoch.
/// - allows for cooperative loading of TX batches which hit the same missing programs simultaneously.
/// - enforces that all programs used in a batch are eagerly loaded ahead of execution.
/// - is not persisted to disk or a snapshot, so it needs to cold start and warm up first.
pub struct ProgramCache<FG: ForkGraph> {
/// A two level index:
///
/// The first level is for the address at which programs are deployed and the second level for the slot (and thus also fork).
entries: HashMap<Pubkey, SecondLevel>,
/// The slot of the last rerooting
pub latest_root_slot: Slot,
/// The epoch of the last rerooting
pub latest_root_epoch: Epoch,
/// Environments of the current epoch
pub environments: ProgramRuntimeEnvironments,
/// Anticipated replacement for `environments` at the next epoch
///
/// This is `None` during most of an epoch, and only `Some` around the boundaries (at the end and beginning of an epoch).
/// More precisely, it starts with the recompilation phase a few hundred slots before the epoch boundary,
/// and it ends with the first rerooting after the epoch boundary.
pub upcoming_environments: Option<ProgramRuntimeEnvironments>,
/// List of loaded programs which should be recompiled before the next epoch (but don't have to).
pub programs_to_recompile: Vec<(Pubkey, Arc<LoadedProgram>)>,
/// Statistics counters
pub stats: Stats,
/// Reference to the block store
pub fork_graph: Option<Arc<RwLock<FG>>>,
/// Coordinates TX batches waiting for others to complete their task during cooperative loading
pub loading_task_waiter: Arc<LoadingTaskWaiter>,
}
impl<FG: ForkGraph> Debug for ProgramCache<FG> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ProgramCache")
.field("root slot", &self.latest_root_slot)
.field("root epoch", &self.latest_root_epoch)
.field("stats", &self.stats)
.field("cache", &self.entries)
.finish()
}
}
/// Local view into [ProgramCache] which was extracted for a specific TX batch.
///
/// This isolation enables the global [ProgramCache] to continue to evolve (e.g. evictions),
/// while the TX batch is guaranteed it will continue to find all the programs it requires.
/// For program management instructions this also buffers them before they are merged back into the global [ProgramCache].
#[derive(Clone, Debug, Default)]
pub struct LoadedProgramsForTxBatch {
/// Pubkey is the address of a program.
/// LoadedProgram is the corresponding program entry valid for the slot in which a transaction is being executed.
entries: HashMap<Pubkey, Arc<LoadedProgram>>,
slot: Slot,
pub environments: ProgramRuntimeEnvironments,
/// Anticipated replacement for `environments` at the next epoch.
///
/// This is `None` during most of an epoch, and only `Some` around the boundaries (at the end and beginning of an epoch).
/// More precisely, it starts with the recompilation phase a few hundred slots before the epoch boundary,
/// and it ends with the first rerooting after the epoch boundary.
/// Needed when a program is deployed at the last slot of an epoch, becomes effective in the next epoch.
/// So needs to be compiled with the environment for the next epoch.
pub upcoming_environments: Option<ProgramRuntimeEnvironments>,
/// The epoch of the last rerooting
pub latest_root_epoch: Epoch,
pub hit_max_limit: bool,
}
impl LoadedProgramsForTxBatch {
pub fn new(
slot: Slot,
environments: ProgramRuntimeEnvironments,
upcoming_environments: Option<ProgramRuntimeEnvironments>,
latest_root_epoch: Epoch,
) -> Self {
Self {
entries: HashMap::new(),
slot,
environments,
upcoming_environments,
latest_root_epoch,
hit_max_limit: false,
}
}
pub fn new_from_cache<FG: ForkGraph>(
slot: Slot,
epoch: Epoch,
cache: &ProgramCache<FG>,
) -> Self {
Self {
entries: HashMap::new(),
slot,
environments: cache.get_environments_for_epoch(epoch).clone(),
upcoming_environments: cache.get_upcoming_environments_for_epoch(epoch),
latest_root_epoch: cache.latest_root_epoch,
hit_max_limit: false,
}
}
/// Returns the current environments depending on the given epoch
pub fn get_environments_for_epoch(&self, epoch: Epoch) -> &ProgramRuntimeEnvironments {
if epoch != self.latest_root_epoch {
if let Some(upcoming_environments) = self.upcoming_environments.as_ref() {
return upcoming_environments;
}
}
&self.environments
}
/// Refill the cache with a single entry. It's typically called during transaction loading, and
/// transaction processing (for program management instructions).
/// It replaces the existing entry (if any) with the provided entry. The return value contains
/// `true` if an entry existed.
/// The function also returns the newly inserted value.
pub fn replenish(
&mut self,
key: Pubkey,
entry: Arc<LoadedProgram>,
) -> (bool, Arc<LoadedProgram>) {
(self.entries.insert(key, entry.clone()).is_some(), entry)
}
pub fn find(&self, key: &Pubkey) -> Option<Arc<LoadedProgram>> {
self.entries.get(key).map(|entry| {
if entry.is_implicit_delay_visibility_tombstone(self.slot) {
// Found a program entry on the current fork, but it's not effective
// yet. It indicates that the program has delayed visibility. Return
// the tombstone to reflect that.
Arc::new(LoadedProgram::new_tombstone(
entry.deployment_slot,
LoadedProgramType::DelayVisibility,
))
} else {
entry.clone()
}
})
}
pub fn slot(&self) -> Slot {
self.slot
}
pub fn set_slot_for_tests(&mut self, slot: Slot) {
self.slot = slot;
}
pub fn merge(&mut self, other: &Self) {
other.entries.iter().for_each(|(key, entry)| {
self.replenish(*key, entry.clone());
})
}
}
pub enum LoadedProgramMatchCriteria {
DeployedOnOrAfterSlot(Slot),
Tombstone,
NoCriteria,
}
impl<FG: ForkGraph> ProgramCache<FG> {
pub fn new(root_slot: Slot, root_epoch: Epoch) -> Self {
Self {
entries: HashMap::new(),
latest_root_slot: root_slot,
latest_root_epoch: root_epoch,
environments: ProgramRuntimeEnvironments::default(),
upcoming_environments: None,
programs_to_recompile: Vec::default(),
stats: Stats::default(),
fork_graph: None,
loading_task_waiter: Arc::new(LoadingTaskWaiter::default()),
}
}
pub fn set_fork_graph(&mut self, fork_graph: Arc<RwLock<FG>>) {
self.fork_graph = Some(fork_graph);
}
/// Returns the current environments depending on the given epoch
pub fn get_environments_for_epoch(&self, epoch: Epoch) -> &ProgramRuntimeEnvironments {
if epoch != self.latest_root_epoch {
if let Some(upcoming_environments) = self.upcoming_environments.as_ref() {
return upcoming_environments;
}
}
&self.environments
}
/// Returns the upcoming environments depending on the given epoch
pub fn get_upcoming_environments_for_epoch(
&self,
epoch: Epoch,
) -> Option<ProgramRuntimeEnvironments> {
if epoch == self.latest_root_epoch {
return self.upcoming_environments.clone();
}
None
}
/// Insert a single entry. It's typically called during transaction loading,
/// when the cache doesn't contain the entry corresponding to program `key`.
pub fn assign_program(&mut self, key: Pubkey, entry: Arc<LoadedProgram>) -> bool {
debug_assert!(!matches!(
&entry.program,
LoadedProgramType::DelayVisibility
));
let slot_versions = &mut self.entries.entry(key).or_default().slot_versions;
match slot_versions.binary_search_by(|at| {
at.effective_slot
.cmp(&entry.effective_slot)
.then(at.deployment_slot.cmp(&entry.deployment_slot))
}) {
Ok(index) => {
let existing = slot_versions.get_mut(index).unwrap();
match (&existing.program, &entry.program) {
// Add test for Closed => Loaded transition in same slot
(LoadedProgramType::Builtin(_), LoadedProgramType::Builtin(_))
| (LoadedProgramType::Closed, LoadedProgramType::LegacyV0(_))
| (LoadedProgramType::Closed, LoadedProgramType::LegacyV1(_))
| (LoadedProgramType::Closed, LoadedProgramType::Typed(_))
| (LoadedProgramType::Unloaded(_), LoadedProgramType::LegacyV0(_))
| (LoadedProgramType::Unloaded(_), LoadedProgramType::LegacyV1(_))
| (LoadedProgramType::Unloaded(_), LoadedProgramType::Typed(_)) => {}
#[cfg(test)]
(LoadedProgramType::Closed, LoadedProgramType::TestLoaded(_))
| (LoadedProgramType::Unloaded(_), LoadedProgramType::TestLoaded(_)) => {}
_ => {
// Something is wrong, I can feel it ...
error!("ProgramCache::assign_program() failed key={:?} existing={:?} entry={:?}", key, slot_versions, entry);
debug_assert!(false, "Unexpected replacement of an entry");
self.stats.replacements.fetch_add(1, Ordering::Relaxed);
return true;
}
}
// Copy over the usage counter to the new entry
entry.tx_usage_counter.fetch_add(
existing.tx_usage_counter.load(Ordering::Relaxed),
Ordering::Relaxed,
);
entry.ix_usage_counter.fetch_add(
existing.ix_usage_counter.load(Ordering::Relaxed),
Ordering::Relaxed,
);
*existing = Arc::clone(&entry);
self.stats.reloads.fetch_add(1, Ordering::Relaxed);
}
Err(index) => {
self.stats.insertions.fetch_add(1, Ordering::Relaxed);
slot_versions.insert(index, Arc::clone(&entry));
}
}
false
}
pub fn prune_by_deployment_slot(&mut self, slot: Slot) {
for second_level in self.entries.values_mut() {
second_level
.slot_versions
.retain(|entry| entry.deployment_slot != slot);
}
self.remove_programs_with_no_entries();
}
/// Before rerooting the blockstore this removes all superfluous entries
pub fn prune(&mut self, new_root_slot: Slot, new_root_epoch: Epoch) {
let Some(fork_graph) = self.fork_graph.clone() else {
error!("Program cache doesn't have fork graph.");
return;
};
let Ok(fork_graph) = fork_graph.read() else {
error!("Failed to lock fork graph for reading.");
return;
};
let mut recompilation_phase_ends = false;
if self.latest_root_epoch != new_root_epoch {
self.latest_root_epoch = new_root_epoch;
if let Some(upcoming_environments) = self.upcoming_environments.take() {
recompilation_phase_ends = true;
self.environments = upcoming_environments;
self.programs_to_recompile.clear();
}
}
for second_level in self.entries.values_mut() {
// Remove entries un/re/deployed on orphan forks
let mut first_ancestor_found = false;
let mut first_ancestor_env = None;
second_level.slot_versions = second_level
.slot_versions
.iter()
.rev()
.filter(|entry| {
let relation = fork_graph.relationship(entry.deployment_slot, new_root_slot);
if entry.deployment_slot >= new_root_slot {
matches!(relation, BlockRelation::Equal | BlockRelation::Descendant)
} else if matches!(relation, BlockRelation::Ancestor)
|| entry.deployment_slot <= self.latest_root_slot
{
if !first_ancestor_found {
first_ancestor_found = true;
first_ancestor_env = entry.program.get_environment();
return true;
}
// Do not prune the entry if the runtime environment of the entry is different
// than the entry that was previously found (stored in first_ancestor_env).
// Different environment indicates that this entry might belong to an older
// epoch that had a different environment (e.g. different feature set).
// Once the root moves to the new/current epoch, the entry will get pruned.
// But, until then the entry might still be getting used by an older slot.
if let Some(entry_env) = entry.program.get_environment() {
if let Some(env) = first_ancestor_env {
if !Arc::ptr_eq(entry_env, env) {
return true;
}
}
}
self.stats.prunes_orphan.fetch_add(1, Ordering::Relaxed);
false
} else {
self.stats.prunes_orphan.fetch_add(1, Ordering::Relaxed);
false
}
})
.filter(|entry| {
// Remove outdated environment of previous feature set
if recompilation_phase_ends
&& !Self::matches_environment(entry, &self.environments)
{
self.stats
.prunes_environment
.fetch_add(1, Ordering::Relaxed);
return false;
}
true
})
.cloned()
.collect();
second_level.slot_versions.reverse();
}
self.remove_programs_with_no_entries();
debug_assert!(self.latest_root_slot <= new_root_slot);
self.latest_root_slot = new_root_slot;
}
fn matches_environment(
entry: &Arc<LoadedProgram>,
environments: &ProgramRuntimeEnvironments,
) -> bool {
let Some(environment) = entry.program.get_environment() else {
return true;
};
Arc::ptr_eq(environment, &environments.program_runtime_v1)
|| Arc::ptr_eq(environment, &environments.program_runtime_v2)
}
fn matches_loaded_program_criteria(
program: &Arc<LoadedProgram>,
criteria: &LoadedProgramMatchCriteria,
) -> bool {
match criteria {
LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(slot) => {
program.deployment_slot >= *slot
}
LoadedProgramMatchCriteria::Tombstone => program.is_tombstone(),
LoadedProgramMatchCriteria::NoCriteria => true,
}
}
/// Extracts a subset of the programs relevant to a transaction batch
/// and returns which program accounts the accounts DB needs to load.
pub fn extract(
&mut self,
search_for: &mut Vec<(Pubkey, (LoadedProgramMatchCriteria, u64))>,
loaded_programs_for_tx_batch: &mut LoadedProgramsForTxBatch,
is_first_round: bool,
) -> Option<(Pubkey, u64)> {
debug_assert!(self.fork_graph.is_some());
let locked_fork_graph = self.fork_graph.as_ref().unwrap().read().unwrap();
let mut cooperative_loading_task = None;
search_for.retain(|(key, (match_criteria, usage_count))| {
if let Some(second_level) = self.entries.get_mut(key) {
for entry in second_level.slot_versions.iter().rev() {
if entry.deployment_slot <= self.latest_root_slot
|| matches!(
locked_fork_graph.relationship(
entry.deployment_slot,
loaded_programs_for_tx_batch.slot
),
BlockRelation::Equal | BlockRelation::Ancestor
)
{
let entry_to_return = if loaded_programs_for_tx_batch.slot
>= entry.effective_slot
&& Self::matches_environment(
entry,
&loaded_programs_for_tx_batch.environments,
) {
if !Self::matches_loaded_program_criteria(entry, match_criteria) {
break;
}
if let LoadedProgramType::Unloaded(_environment) = &entry.program {
break;
}
entry.clone()
} else if entry.is_implicit_delay_visibility_tombstone(
loaded_programs_for_tx_batch.slot,
) {
// Found a program entry on the current fork, but it's not effective
// yet. It indicates that the program has delayed visibility. Return
// the tombstone to reflect that.
Arc::new(LoadedProgram::new_tombstone(
entry.deployment_slot,
LoadedProgramType::DelayVisibility,
))
} else {
continue;
};
entry_to_return.update_access_slot(loaded_programs_for_tx_batch.slot);
entry_to_return
.tx_usage_counter
.fetch_add(*usage_count, Ordering::Relaxed);
loaded_programs_for_tx_batch
.entries
.insert(*key, entry_to_return);
return false;
}
}
}
if cooperative_loading_task.is_none() {
// We have not selected a task so far
let second_level = self.entries.entry(*key).or_default();
if second_level.cooperative_loading_lock.is_none() {
// Select this missing entry which is not selected by any other TX batch yet
cooperative_loading_task = Some((*key, *usage_count));
second_level.cooperative_loading_lock = Some((
loaded_programs_for_tx_batch.slot,
std::thread::current().id(),
));
}
}
true
});
drop(locked_fork_graph);
if is_first_round {
self.stats
.misses
.fetch_add(search_for.len() as u64, Ordering::Relaxed);
self.stats.hits.fetch_add(
loaded_programs_for_tx_batch.entries.len() as u64,
Ordering::Relaxed,
);
}
cooperative_loading_task
}
/// Called by Bank::replenish_program_cache() for each program that is done loading.
pub fn finish_cooperative_loading_task(
&mut self,
slot: Slot,
key: Pubkey,
loaded_program: Arc<LoadedProgram>,
) -> bool {
let second_level = self.entries.entry(key).or_default();
debug_assert_eq!(
second_level.cooperative_loading_lock,
Some((slot, std::thread::current().id()))
);
second_level.cooperative_loading_lock = None;
// Check that it will be visible to our own fork once inserted
if loaded_program.deployment_slot > self.latest_root_slot
&& !matches!(
self.fork_graph
.as_ref()
.unwrap()
.read()
.unwrap()
.relationship(loaded_program.deployment_slot, slot),
BlockRelation::Equal | BlockRelation::Ancestor
)
{
self.stats.lost_insertions.fetch_add(1, Ordering::Relaxed);
}
let was_occupied = self.assign_program(key, loaded_program);
self.loading_task_waiter.notify();
was_occupied
}
pub fn merge(&mut self, tx_batch_cache: &LoadedProgramsForTxBatch) {
tx_batch_cache.entries.iter().for_each(|(key, entry)| {
self.assign_program(*key, entry.clone());
})
}
/// Returns the list of loaded programs which are verified and compiled.
pub fn get_flattened_entries(
&self,
include_program_runtime_v1: bool,
include_program_runtime_v2: bool,
) -> Vec<(Pubkey, Arc<LoadedProgram>)> {
self.entries
.iter()
.flat_map(|(id, second_level)| {
second_level
.slot_versions
.iter()
.filter_map(move |program| match program.program {
LoadedProgramType::LegacyV0(_) | LoadedProgramType::LegacyV1(_)
if include_program_runtime_v1 =>
{
Some((*id, program.clone()))
}
LoadedProgramType::Typed(_) if include_program_runtime_v2 => {
Some((*id, program.clone()))
}
#[cfg(test)]
LoadedProgramType::TestLoaded(_) => Some((*id, program.clone())),
_ => None,
})
})
.collect()
}
/// Unloads programs which were used infrequently
pub fn sort_and_unload(&mut self, shrink_to: PercentageInteger) {
let mut sorted_candidates = self.get_flattened_entries(true, true);
sorted_candidates
.sort_by_cached_key(|(_id, program)| program.tx_usage_counter.load(Ordering::Relaxed));
let num_to_unload = sorted_candidates
.len()
.saturating_sub(shrink_to.apply_to(MAX_LOADED_ENTRY_COUNT));
self.unload_program_entries(sorted_candidates.iter().take(num_to_unload));
}
/// Evicts programs using 2's random selection, choosing the least used program out of the two entries.
/// The eviction is performed enough number of times to reduce the cache usage to the given percentage.
pub fn evict_using_2s_random_selection(&mut self, shrink_to: PercentageInteger, now: Slot) {
let mut candidates = self.get_flattened_entries(true, true);
let num_to_unload = candidates
.len()
.saturating_sub(shrink_to.apply_to(MAX_LOADED_ENTRY_COUNT));
fn random_index_and_usage_counter(
candidates: &[(Pubkey, Arc<LoadedProgram>)],
now: Slot,
) -> (usize, u64) {
let mut rng = thread_rng();
let index = rng.gen_range(0..candidates.len());
let usage_counter = candidates
.get(index)
.expect("Failed to get cached entry")
.1
.decayed_usage_counter(now);
(index, usage_counter)
}
for _ in 0..num_to_unload {
let (index1, usage_counter1) = random_index_and_usage_counter(&candidates, now);
let (index2, usage_counter2) = random_index_and_usage_counter(&candidates, now);
let (program, entry) = if usage_counter1 < usage_counter2 {
candidates.swap_remove(index1)
} else {
candidates.swap_remove(index2)
};
self.unload_program_entry(&program, &entry);
}
}
/// Removes all the entries at the given keys, if they exist
pub fn remove_programs(&mut self, keys: impl Iterator<Item = Pubkey>) {
for k in keys {
self.entries.remove(&k);
}
}
/// Returns the `slot_versions` of the second level for the given program id.
pub fn get_slot_versions_for_tests(&self, key: &Pubkey) -> &[Arc<LoadedProgram>] {
self.entries
.get(key)
.map(|second_level| second_level.slot_versions.as_ref())
.unwrap_or(&[])
}
/// This function removes the given entry for the given program from the cache.
/// The function expects that the program and entry exists in the cache. Otherwise it'll panic.
fn unload_program_entry(&mut self, program: &Pubkey, remove_entry: &Arc<LoadedProgram>) {
let second_level = self.entries.get_mut(program).expect("Cache lookup failed");
let candidate = second_level
.slot_versions
.iter_mut()
.find(|entry| entry == &remove_entry)
.expect("Program entry not found");
// Certain entry types cannot be unloaded, such as tombstones, or already unloaded entries.
// For such entries, `to_unloaded()` will return None.
// These entry types do not occupy much memory.
if let Some(unloaded) = candidate.to_unloaded() {
if candidate.tx_usage_counter.load(Ordering::Relaxed) == 1 {
self.stats.one_hit_wonders.fetch_add(1, Ordering::Relaxed);
}
self.stats
.evictions
.entry(*program)
.and_modify(|c| saturating_add_assign!(*c, 1))
.or_insert(1);
*candidate = Arc::new(unloaded);
}
}
fn unload_program_entries<'a>(
&mut self,
remove: impl Iterator<Item = &'a (Pubkey, Arc<LoadedProgram>)>,
) {
for (program, entry) in remove {
self.unload_program_entry(program, entry);
}
}
fn remove_programs_with_no_entries(&mut self) {
let num_programs_before_removal = self.entries.len();
self.entries.retain(|_, second_level| {
!second_level.slot_versions.is_empty()
|| second_level.cooperative_loading_lock.is_some()
});
if self.entries.len() < num_programs_before_removal {
self.stats.empty_entries.fetch_add(
num_programs_before_removal.saturating_sub(self.entries.len()) as u64,
Ordering::Relaxed,
);
}
}
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl solana_frozen_abi::abi_example::AbiExample for LoadedProgram {
fn example() -> Self {
// LoadedProgram isn't serializable by definition.
Self::default()
}
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl<FG: ForkGraph> solana_frozen_abi::abi_example::AbiExample for ProgramCache<FG> {
fn example() -> Self {
// ProgramCache isn't serializable by definition.
Self::new(Slot::default(), Epoch::default())
}
}
#[cfg(test)]
mod tests {
use {
crate::loaded_programs::{
BlockRelation, ForkGraph, LoadedProgram, LoadedProgramMatchCriteria, LoadedProgramType,
LoadedProgramsForTxBatch, ProgramCache, ProgramRuntimeEnvironment,
ProgramRuntimeEnvironments, DELAY_VISIBILITY_SLOT_OFFSET,
},
assert_matches::assert_matches,
percentage::Percentage,
solana_rbpf::program::BuiltinProgram,
solana_sdk::{clock::Slot, pubkey::Pubkey},
std::{
ops::ControlFlow,
sync::{
atomic::{AtomicU64, Ordering},
Arc, RwLock,
},
},
test_case::{test_case, test_matrix},
};
static MOCK_ENVIRONMENT: std::sync::OnceLock<ProgramRuntimeEnvironment> =
std::sync::OnceLock::<ProgramRuntimeEnvironment>::new();
fn new_mock_cache<FG: ForkGraph>() -> ProgramCache<FG> {
let mut cache = ProgramCache::new(0, 0);
cache.environments.program_runtime_v1 = MOCK_ENVIRONMENT
.get_or_init(|| Arc::new(BuiltinProgram::new_mock()))
.clone();
cache
}
fn new_test_loaded_program(deployment_slot: Slot, effective_slot: Slot) -> Arc<LoadedProgram> {
new_test_loaded_program_with_usage(deployment_slot, effective_slot, AtomicU64::default())
}
fn new_test_loaded_program_with_usage(
deployment_slot: Slot,
effective_slot: Slot,
usage_counter: AtomicU64,
) -> Arc<LoadedProgram> {
Arc::new(LoadedProgram {
program: LoadedProgramType::TestLoaded(MOCK_ENVIRONMENT.get().unwrap().clone()),
account_size: 0,
deployment_slot,
effective_slot,
tx_usage_counter: usage_counter,
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::new(deployment_slot),
})
}
fn new_test_builtin_program(deployment_slot: Slot, effective_slot: Slot) -> Arc<LoadedProgram> {
Arc::new(LoadedProgram {
program: LoadedProgramType::Builtin(BuiltinProgram::new_mock()),
account_size: 0,
deployment_slot,
effective_slot,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
})
}
fn set_tombstone<FG: ForkGraph>(
cache: &mut ProgramCache<FG>,
key: Pubkey,
slot: Slot,
reason: LoadedProgramType,
) -> Arc<LoadedProgram> {
let program = Arc::new(LoadedProgram::new_tombstone(slot, reason));
cache.assign_program(key, program.clone());
program
}
fn insert_unloaded_program<FG: ForkGraph>(
cache: &mut ProgramCache<FG>,
key: Pubkey,
slot: Slot,
) -> Arc<LoadedProgram> {
let unloaded = Arc::new(
LoadedProgram {
program: LoadedProgramType::TestLoaded(
cache.environments.program_runtime_v1.clone(),
),
account_size: 0,
deployment_slot: slot,
effective_slot: slot.saturating_add(1),
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
}
.to_unloaded()
.expect("Failed to unload the program"),
);
cache.assign_program(key, unloaded.clone());
unloaded
}
fn num_matching_entries<P, FG>(cache: &ProgramCache<FG>, predicate: P) -> usize
where
P: Fn(&LoadedProgramType) -> bool,
FG: ForkGraph,
{
cache
.entries
.values()
.map(|second_level| {
second_level
.slot_versions
.iter()
.filter(|program| predicate(&program.program))
.count()
})
.sum()
}
#[test]
fn test_usage_counter_decay() {
let _cache = new_mock_cache::<TestForkGraph>();
let program = new_test_loaded_program_with_usage(10, 11, AtomicU64::new(32));
program.update_access_slot(15);
assert_eq!(program.decayed_usage_counter(15), 32);
assert_eq!(program.decayed_usage_counter(16), 16);
assert_eq!(program.decayed_usage_counter(17), 8);
assert_eq!(program.decayed_usage_counter(18), 4);
assert_eq!(program.decayed_usage_counter(19), 2);
assert_eq!(program.decayed_usage_counter(20), 1);
assert_eq!(program.decayed_usage_counter(21), 0);
assert_eq!(program.decayed_usage_counter(15), 32);
assert_eq!(program.decayed_usage_counter(14), 32);
program.update_access_slot(18);
assert_eq!(program.decayed_usage_counter(15), 32);
assert_eq!(program.decayed_usage_counter(16), 32);
assert_eq!(program.decayed_usage_counter(17), 32);
assert_eq!(program.decayed_usage_counter(18), 32);
assert_eq!(program.decayed_usage_counter(19), 16);
assert_eq!(program.decayed_usage_counter(20), 8);
assert_eq!(program.decayed_usage_counter(21), 4);
// Decay for 63 or more slots
assert_eq!(program.decayed_usage_counter(18 + 63), 0);
assert_eq!(program.decayed_usage_counter(100), 0);
}
fn program_deploy_test_helper(
cache: &mut ProgramCache<TestForkGraph>,
program: Pubkey,
deployment_slots: Vec<Slot>,
usage_counters: Vec<u64>,
programs: &mut Vec<(Pubkey, Slot, u64)>,
) {
// Add multiple entries for program
deployment_slots
.iter()
.enumerate()
.for_each(|(i, deployment_slot)| {
let usage_counter = *usage_counters.get(i).unwrap_or(&0);
cache.assign_program(
program,
new_test_loaded_program_with_usage(
*deployment_slot,
(*deployment_slot).saturating_add(2),
AtomicU64::new(usage_counter),
),
);
programs.push((program, *deployment_slot, usage_counter));
});
// Add tombstones entries for program
let env = Arc::new(BuiltinProgram::new_mock());
for slot in 21..31 {
set_tombstone(
cache,
program,
slot,
LoadedProgramType::FailedVerification(env.clone()),
);
}
// Add unloaded entries for program
for slot in 31..41 {
insert_unloaded_program(cache, program, slot);
}
}
#[test]
fn test_random_eviction() {
let mut programs = vec![];
let mut cache = new_mock_cache::<TestForkGraph>();
// This test adds different kind of entries to the cache.
// Tombstones and unloaded entries are expected to not be evicted.
// It also adds multiple entries for three programs as it tries to create a typical cache instance.
// Program 1
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![0, 10, 20],
vec![4, 5, 25],
&mut programs,
);
// Program 2
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![5, 11],
vec![0, 2],
&mut programs,
);
// Program 3
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![0, 5, 15],
vec![100, 3, 20],
&mut programs,
);
// 1 for each deployment slot
let num_loaded_expected = 8;
// 10 for each program
let num_unloaded_expected = 30;
// 10 for each program
let num_tombstones_expected = 30;
// Count the number of loaded, unloaded and tombstone entries.
programs.sort_by_key(|(_id, _slot, usage_count)| *usage_count);
let num_loaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::TestLoaded(_))
});
let num_unloaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::Unloaded(_))
});
let num_tombstones = num_matching_entries(&cache, |program_type| {
matches!(
program_type,
LoadedProgramType::DelayVisibility
| LoadedProgramType::FailedVerification(_)
| LoadedProgramType::Closed
)
});
// Test that the cache is constructed with the expected number of entries.
assert_eq!(num_loaded, num_loaded_expected);
assert_eq!(num_unloaded, num_unloaded_expected);
assert_eq!(num_tombstones, num_tombstones_expected);
// Evict entries from the cache
let eviction_pct = 2;
let num_loaded_expected =
Percentage::from(eviction_pct).apply_to(crate::loaded_programs::MAX_LOADED_ENTRY_COUNT);
let num_unloaded_expected = num_unloaded_expected + num_loaded - num_loaded_expected;
cache.evict_using_2s_random_selection(Percentage::from(eviction_pct), 21);
// Count the number of loaded, unloaded and tombstone entries.
let num_loaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::TestLoaded(_))
});
let num_unloaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::Unloaded(_))
});
let num_tombstones = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::FailedVerification(_))
});
// However many entries are left after the shrink
assert_eq!(num_loaded, num_loaded_expected);
// The original unloaded entries + the evicted loaded entries
assert_eq!(num_unloaded, num_unloaded_expected);
// The original tombstones are not evicted
assert_eq!(num_tombstones, num_tombstones_expected);
}
#[test]
fn test_eviction() {
let mut programs = vec![];
let mut cache = new_mock_cache::<TestForkGraph>();
// Program 1
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![0, 10, 20],
vec![4, 5, 25],
&mut programs,
);
// Program 2
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![5, 11],
vec![0, 2],
&mut programs,
);
// Program 3
program_deploy_test_helper(
&mut cache,
Pubkey::new_unique(),
vec![0, 5, 15],
vec![100, 3, 20],
&mut programs,
);
// 1 for each deployment slot
let num_loaded_expected = 8;
// 10 for each program
let num_unloaded_expected = 30;
// 10 for each program
let num_tombstones_expected = 30;
// Count the number of loaded, unloaded and tombstone entries.
programs.sort_by_key(|(_id, _slot, usage_count)| *usage_count);
let num_loaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::TestLoaded(_))
});
let num_unloaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::Unloaded(_))
});
let num_tombstones = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::FailedVerification(_))
});
// Test that the cache is constructed with the expected number of entries.
assert_eq!(num_loaded, num_loaded_expected);
assert_eq!(num_unloaded, num_unloaded_expected);
assert_eq!(num_tombstones, num_tombstones_expected);
// Evict entries from the cache
let eviction_pct = 2;
let num_loaded_expected =
Percentage::from(eviction_pct).apply_to(crate::loaded_programs::MAX_LOADED_ENTRY_COUNT);
let num_unloaded_expected = num_unloaded_expected + num_loaded - num_loaded_expected;
cache.sort_and_unload(Percentage::from(eviction_pct));
// Check that every program is still in the cache.
programs.iter().for_each(|entry| {
assert!(cache.entries.get(&entry.0).is_some());
});
let unloaded = cache
.entries
.iter()
.flat_map(|(id, second_level)| {
second_level.slot_versions.iter().filter_map(|program| {
matches!(program.program, LoadedProgramType::Unloaded(_))
.then_some((*id, program.tx_usage_counter.load(Ordering::Relaxed)))
})
})
.collect::<Vec<(Pubkey, u64)>>();
for index in 0..3 {
let expected = programs.get(index).expect("Missing program");
assert!(unloaded.contains(&(expected.0, expected.2)));
}
// Count the number of loaded, unloaded and tombstone entries.
let num_loaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::TestLoaded(_))
});
let num_unloaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::Unloaded(_))
});
let num_tombstones = num_matching_entries(&cache, |program_type| {
matches!(
program_type,
LoadedProgramType::DelayVisibility
| LoadedProgramType::FailedVerification(_)
| LoadedProgramType::Closed
)
});
// However many entries are left after the shrink
assert_eq!(num_loaded, num_loaded_expected);
// The original unloaded entries + the evicted loaded entries
assert_eq!(num_unloaded, num_unloaded_expected);
// The original tombstones are not evicted
assert_eq!(num_tombstones, num_tombstones_expected);
}
#[test]
fn test_usage_count_of_unloaded_program() {
let mut cache = new_mock_cache::<TestForkGraph>();
let program = Pubkey::new_unique();
let evict_to_pct = 2;
let cache_capacity_after_shrink =
Percentage::from(evict_to_pct).apply_to(crate::loaded_programs::MAX_LOADED_ENTRY_COUNT);
// Add enough programs to the cache to trigger 1 eviction after shrinking.
let num_total_programs = (cache_capacity_after_shrink + 1) as u64;
(0..num_total_programs).for_each(|i| {
cache.assign_program(
program,
new_test_loaded_program_with_usage(i, i + 2, AtomicU64::new(i + 10)),
);
});
cache.sort_and_unload(Percentage::from(evict_to_pct));
let num_unloaded = num_matching_entries(&cache, |program_type| {
matches!(program_type, LoadedProgramType::Unloaded(_))
});
assert_eq!(num_unloaded, 1);
cache.entries.values().for_each(|second_level| {
second_level.slot_versions.iter().for_each(|program| {
if matches!(program.program, LoadedProgramType::Unloaded(_)) {
// Test that the usage counter is retained for the unloaded program
assert_eq!(program.tx_usage_counter.load(Ordering::Relaxed), 10);
assert_eq!(program.deployment_slot, 0);
assert_eq!(program.effective_slot, 2);
}
})
});
// Replenish the program that was just unloaded. Use 0 as the usage counter. This should be
// updated with the usage counter from the unloaded program.
cache.assign_program(
program,
new_test_loaded_program_with_usage(0, 2, AtomicU64::new(0)),
);
cache.entries.values().for_each(|second_level| {
second_level.slot_versions.iter().for_each(|program| {
if matches!(program.program, LoadedProgramType::Unloaded(_))
&& program.deployment_slot == 0
&& program.effective_slot == 2
{
// Test that the usage counter was correctly updated.
assert_eq!(program.tx_usage_counter.load(Ordering::Relaxed), 10);
}
})
});
}
#[test]
fn test_fuzz_assign_program_order() {
use rand::prelude::SliceRandom;
const EXPECTED_ENTRIES: [(u64, u64); 7] =
[(1, 2), (5, 5), (5, 6), (5, 10), (9, 10), (10, 10), (3, 12)];
let mut rng = rand::thread_rng();
let program_id = Pubkey::new_unique();
for _ in 0..1000 {
let mut entries = EXPECTED_ENTRIES.to_vec();
entries.shuffle(&mut rng);
let mut cache = new_mock_cache::<TestForkGraph>();
for (deployment_slot, effective_slot) in entries {
assert!(!cache.assign_program(
program_id,
new_test_loaded_program(deployment_slot, effective_slot)
));
}
for ((deployment_slot, effective_slot), entry) in EXPECTED_ENTRIES
.iter()
.zip(cache.entries.get(&program_id).unwrap().slot_versions.iter())
{
assert_eq!(entry.deployment_slot, *deployment_slot);
assert_eq!(entry.effective_slot, *effective_slot);
}
}
}
#[test_matrix(
(
LoadedProgramType::FailedVerification(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::TestLoaded(Arc::new(BuiltinProgram::new_mock())),
),
(
LoadedProgramType::FailedVerification(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::Closed,
LoadedProgramType::Unloaded(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::TestLoaded(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::Builtin(BuiltinProgram::new_mock()),
)
)]
#[test_matrix(
(
LoadedProgramType::Closed,
LoadedProgramType::Unloaded(Arc::new(BuiltinProgram::new_mock())),
),
(
LoadedProgramType::FailedVerification(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::Closed,
LoadedProgramType::Unloaded(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::Builtin(BuiltinProgram::new_mock()),
)
)]
#[test_matrix(
(LoadedProgramType::Builtin(BuiltinProgram::new_mock()),),
(
LoadedProgramType::FailedVerification(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::Closed,
LoadedProgramType::Unloaded(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::TestLoaded(Arc::new(BuiltinProgram::new_mock())),
)
)]
#[should_panic(expected = "Unexpected replacement of an entry")]
fn test_assign_program_failure(old: LoadedProgramType, new: LoadedProgramType) {
let mut cache = new_mock_cache::<TestForkGraph>();
let program_id = Pubkey::new_unique();
assert!(!cache.assign_program(
program_id,
Arc::new(LoadedProgram {
program: old,
account_size: 0,
deployment_slot: 10,
effective_slot: 11,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
}),
));
cache.assign_program(
program_id,
Arc::new(LoadedProgram {
program: new,
account_size: 0,
deployment_slot: 10,
effective_slot: 11,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
}),
);
}
#[test_case(
LoadedProgramType::Closed,
LoadedProgramType::TestLoaded(Arc::new(BuiltinProgram::new_mock()))
)]
#[test_case(
LoadedProgramType::Unloaded(Arc::new(BuiltinProgram::new_mock())),
LoadedProgramType::TestLoaded(Arc::new(BuiltinProgram::new_mock()))
)]
#[test_case(
LoadedProgramType::Builtin(BuiltinProgram::new_mock()),
LoadedProgramType::Builtin(BuiltinProgram::new_mock())
)]
fn test_assign_program_success(old: LoadedProgramType, new: LoadedProgramType) {
let mut cache = new_mock_cache::<TestForkGraph>();
let program_id = Pubkey::new_unique();
assert!(!cache.assign_program(
program_id,
Arc::new(LoadedProgram {
program: old,
account_size: 0,
deployment_slot: 10,
effective_slot: 11,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
}),
));
assert!(!cache.assign_program(
program_id,
Arc::new(LoadedProgram {
program: new,
account_size: 0,
deployment_slot: 10,
effective_slot: 11,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
}),
));
}
#[test]
fn test_tombstone() {
let env = Arc::new(BuiltinProgram::new_mock());
let tombstone =
LoadedProgram::new_tombstone(0, LoadedProgramType::FailedVerification(env.clone()));
assert_matches!(tombstone.program, LoadedProgramType::FailedVerification(_));
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 0);
assert_eq!(tombstone.effective_slot, 0);
let tombstone = LoadedProgram::new_tombstone(100, LoadedProgramType::Closed);
assert_matches!(tombstone.program, LoadedProgramType::Closed);
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 100);
assert_eq!(tombstone.effective_slot, 100);
let mut cache = new_mock_cache::<TestForkGraph>();
let program1 = Pubkey::new_unique();
let tombstone = set_tombstone(
&mut cache,
program1,
10,
LoadedProgramType::FailedVerification(env.clone()),
);
let second_level = &cache
.entries
.get(&program1)
.expect("Failed to find the entry");
assert_eq!(second_level.slot_versions.len(), 1);
assert!(second_level.slot_versions.first().unwrap().is_tombstone());
assert_eq!(tombstone.deployment_slot, 10);
assert_eq!(tombstone.effective_slot, 10);
// Add a program at slot 50, and a tombstone for the program at slot 60
let program2 = Pubkey::new_unique();
cache.assign_program(program2, new_test_builtin_program(50, 51));
let second_level = &cache
.entries
.get(&program2)
.expect("Failed to find the entry");
assert_eq!(second_level.slot_versions.len(), 1);
assert!(!second_level.slot_versions.first().unwrap().is_tombstone());
let tombstone = set_tombstone(
&mut cache,
program2,
60,
LoadedProgramType::FailedVerification(env),
);
let second_level = &cache
.entries
.get(&program2)
.expect("Failed to find the entry");
assert_eq!(second_level.slot_versions.len(), 2);
assert!(!second_level.slot_versions.first().unwrap().is_tombstone());
assert!(second_level.slot_versions.get(1).unwrap().is_tombstone());
assert!(tombstone.is_tombstone());
assert_eq!(tombstone.deployment_slot, 60);
assert_eq!(tombstone.effective_slot, 60);
}
struct TestForkGraph {
relation: BlockRelation,
}
impl ForkGraph for TestForkGraph {
fn relationship(&self, _a: Slot, _b: Slot) -> BlockRelation {
self.relation
}
}
#[test]
fn test_prune_empty() {
let mut cache = new_mock_cache::<TestForkGraph>();
let fork_graph = Arc::new(RwLock::new(TestForkGraph {
relation: BlockRelation::Unrelated,
}));
cache.set_fork_graph(fork_graph);
cache.prune(0, 0);
assert!(cache.entries.is_empty());
cache.prune(10, 0);
assert!(cache.entries.is_empty());
let mut cache = new_mock_cache::<TestForkGraph>();
let fork_graph = Arc::new(RwLock::new(TestForkGraph {
relation: BlockRelation::Ancestor,
}));
cache.set_fork_graph(fork_graph);
cache.prune(0, 0);
assert!(cache.entries.is_empty());
cache.prune(10, 0);
assert!(cache.entries.is_empty());
let mut cache = new_mock_cache::<TestForkGraph>();
let fork_graph = Arc::new(RwLock::new(TestForkGraph {
relation: BlockRelation::Descendant,
}));
cache.set_fork_graph(fork_graph);
cache.prune(0, 0);
assert!(cache.entries.is_empty());
cache.prune(10, 0);
assert!(cache.entries.is_empty());
let mut cache = new_mock_cache::<TestForkGraph>();
let fork_graph = Arc::new(RwLock::new(TestForkGraph {
relation: BlockRelation::Unknown,
}));
cache.set_fork_graph(fork_graph);
cache.prune(0, 0);
assert!(cache.entries.is_empty());
cache.prune(10, 0);
assert!(cache.entries.is_empty());
}
#[test]
fn test_prune_different_env() {
let mut cache = new_mock_cache::<TestForkGraph>();
let fork_graph = Arc::new(RwLock::new(TestForkGraph {
relation: BlockRelation::Ancestor,
}));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(10, 10));
let new_env = Arc::new(BuiltinProgram::new_mock());
cache.upcoming_environments = Some(ProgramRuntimeEnvironments {
program_runtime_v1: new_env.clone(),
program_runtime_v2: new_env.clone(),
});
let updated_program = Arc::new(LoadedProgram {
program: LoadedProgramType::TestLoaded(new_env.clone()),
account_size: 0,
deployment_slot: 20,
effective_slot: 20,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
});
cache.assign_program(program1, updated_program.clone());
// Test that there are 2 entries for the program
assert_eq!(
cache
.entries
.get(&program1)
.expect("failed to find the program")
.slot_versions
.len(),
2
);
cache.prune(21, cache.latest_root_epoch);
// Test that prune didn't remove the entry, since environments are different.
assert_eq!(
cache
.entries
.get(&program1)
.expect("failed to find the program")
.slot_versions
.len(),
2
);
cache.prune(22, cache.latest_root_epoch.saturating_add(1));
let second_level = cache
.entries
.get(&program1)
.expect("failed to find the program");
// Test that prune removed 1 entry, since epoch changed
assert_eq!(second_level.slot_versions.len(), 1);
let entry = second_level
.slot_versions
.first()
.expect("Failed to get the program")
.clone();
// Test that the correct entry remains in the cache
assert_eq!(entry, updated_program);
}
#[derive(Default)]
struct TestForkGraphSpecific {
forks: Vec<Vec<Slot>>,
}
impl TestForkGraphSpecific {
fn insert_fork(&mut self, fork: &[Slot]) {
let mut fork = fork.to_vec();
fork.sort();
self.forks.push(fork)
}
}
impl ForkGraph for TestForkGraphSpecific {
fn relationship(&self, a: Slot, b: Slot) -> BlockRelation {
match self.forks.iter().try_for_each(|fork| {
let relation = fork
.iter()
.position(|x| *x == a)
.and_then(|a_pos| {
fork.iter().position(|x| *x == b).and_then(|b_pos| {
(a_pos == b_pos)
.then_some(BlockRelation::Equal)
.or_else(|| (a_pos < b_pos).then_some(BlockRelation::Ancestor))
.or(Some(BlockRelation::Descendant))
})
})
.unwrap_or(BlockRelation::Unrelated);
if relation != BlockRelation::Unrelated {
return ControlFlow::Break(relation);
}
ControlFlow::Continue(())
}) {
ControlFlow::Break(relation) => relation,
_ => BlockRelation::Unrelated,
}
}
}
fn match_slot(
extracted: &LoadedProgramsForTxBatch,
program: &Pubkey,
deployment_slot: Slot,
working_slot: Slot,
) -> bool {
assert_eq!(extracted.slot, working_slot);
extracted
.entries
.get(program)
.map(|entry| entry.deployment_slot == deployment_slot)
.unwrap_or(false)
}
fn match_missing(
missing: &[(Pubkey, (LoadedProgramMatchCriteria, u64))],
program: &Pubkey,
_reload: bool,
) -> bool {
missing.iter().any(|(key, _)| key == program)
}
#[test]
fn test_fork_extract_and_prune() {
let mut cache = new_mock_cache::<TestForkGraphSpecific>();
// Fork graph created for the test
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20, 22]);
fork_graph.insert_fork(&[0, 5, 11, 15, 16, 18, 19, 21, 23]);
fork_graph.insert_fork(&[0, 5, 11, 25, 27]);
let fork_graph = Arc::new(RwLock::new(fork_graph));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(0, 1));
cache.assign_program(program1, new_test_loaded_program(10, 11));
cache.assign_program(program1, new_test_loaded_program(20, 21));
let program2 = Pubkey::new_unique();
cache.assign_program(program2, new_test_loaded_program(5, 6));
cache.assign_program(
program2,
new_test_loaded_program(11, 11 + DELAY_VISIBILITY_SLOT_OFFSET),
);
let program3 = Pubkey::new_unique();
cache.assign_program(program3, new_test_loaded_program(25, 26));
let program4 = Pubkey::new_unique();
cache.assign_program(program4, new_test_loaded_program(0, 1));
cache.assign_program(program4, new_test_loaded_program(5, 6));
// The following is a special case, where effective slot is 3 slots in the future
cache.assign_program(
program4,
new_test_loaded_program(15, 15 + DELAY_VISIBILITY_SLOT_OFFSET),
);
// Current fork graph
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
// Testing fork 0 - 10 - 12 - 22 with current slot at 22
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 2)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 3)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 4)),
];
let mut extracted = LoadedProgramsForTxBatch::new(22, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 20, 22));
assert!(match_slot(&extracted, &program4, 0, 22));
assert!(match_missing(&missing, &program2, false));
assert!(match_missing(&missing, &program3, false));
// Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 16
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(15, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 15));
assert!(match_slot(&extracted, &program2, 11, 15));
// The effective slot of program4 deployed in slot 15 is 19. So it should not be usable in slot 16.
// A delay visibility tombstone should be returned here.
let tombstone = extracted
.find(&program4)
.expect("Failed to find the tombstone");
assert_matches!(tombstone.program, LoadedProgramType::DelayVisibility);
assert_eq!(tombstone.deployment_slot, 15);
assert!(match_missing(&missing, &program3, false));
// Testing the same fork above, but current slot is now 18 (equal to effective slot of program4).
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(18, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 18));
assert!(match_slot(&extracted, &program2, 11, 18));
// The effective slot of program4 deployed in slot 15 is 18. So it should be usable in slot 18.
assert!(match_slot(&extracted, &program4, 15, 18));
assert!(match_missing(&missing, &program3, false));
// Testing the same fork above, but current slot is now 23 (future slot than effective slot of program4).
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(23, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 23));
assert!(match_slot(&extracted, &program2, 11, 23));
// The effective slot of program4 deployed in slot 15 is 19. So it should be usable in slot 23.
assert!(match_slot(&extracted, &program4, 15, 23));
assert!(match_missing(&missing, &program3, false));
// Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 11
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(11, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 11));
// program2 was updated at slot 11, but is not effective till slot 12. The result should contain a tombstone.
let tombstone = extracted
.find(&program2)
.expect("Failed to find the tombstone");
assert_matches!(tombstone.program, LoadedProgramType::DelayVisibility);
assert_eq!(tombstone.deployment_slot, 11);
assert!(match_slot(&extracted, &program4, 5, 11));
assert!(match_missing(&missing, &program3, false));
cache.prune(5, 0);
// Fork graph after pruning
// 0
// |
// 5
// |
// 11
// | \
// 15 25
// | |
// 16 27
// |
// 19
// |
// 23
// Testing fork 11 - 15 - 16- 19 - 22 with root at 5 and current slot at 22
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(21, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
// Since the fork was pruned, we should not find the entry deployed at slot 20.
assert!(match_slot(&extracted, &program1, 0, 21));
assert!(match_slot(&extracted, &program2, 11, 21));
assert!(match_slot(&extracted, &program4, 15, 21));
assert!(match_missing(&missing, &program3, false));
// Testing fork 0 - 5 - 11 - 25 - 27 with current slot at 27
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(27, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 27));
assert!(match_slot(&extracted, &program2, 11, 27));
assert!(match_slot(&extracted, &program3, 25, 27));
assert!(match_slot(&extracted, &program4, 5, 27));
cache.prune(15, 0);
// Fork graph after pruning
// 0
// |
// 5
// |
// 11
// |
// 15
// |
// 16
// |
// 19
// |
// 23
// Testing fork 16, 19, 23, with root at 15, current slot at 23
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program4, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(23, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 23));
assert!(match_slot(&extracted, &program2, 11, 23));
assert!(match_slot(&extracted, &program4, 15, 23));
// program3 was deployed on slot 25, which has been pruned
assert!(match_missing(&missing, &program3, false));
}
#[test]
fn test_extract_using_deployment_slot() {
let mut cache = new_mock_cache::<TestForkGraphSpecific>();
// Fork graph created for the test
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20, 22]);
fork_graph.insert_fork(&[0, 5, 11, 12, 15, 16, 18, 19, 21, 23]);
fork_graph.insert_fork(&[0, 5, 11, 25, 27]);
let fork_graph = Arc::new(RwLock::new(fork_graph));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(0, 1));
cache.assign_program(program1, new_test_loaded_program(20, 21));
let program2 = Pubkey::new_unique();
cache.assign_program(program2, new_test_loaded_program(5, 6));
cache.assign_program(program2, new_test_loaded_program(11, 12));
let program3 = Pubkey::new_unique();
cache.assign_program(program3, new_test_loaded_program(25, 26));
// Testing fork 0 - 5 - 11 - 15 - 16 - 19 - 21 - 23 with current slot at 19
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(12, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 12));
assert!(match_slot(&extracted, &program2, 11, 12));
assert!(match_missing(&missing, &program3, false));
// Test the same fork, but request the program modified at a later slot than what's in the cache.
let mut missing = vec![
(
program1,
(LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(5), 1),
),
(
program2,
(LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(5), 1),
),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(12, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program2, 11, 12));
assert!(match_missing(&missing, &program1, false));
assert!(match_missing(&missing, &program3, false));
}
#[test]
fn test_extract_unloaded() {
let mut cache = new_mock_cache::<TestForkGraphSpecific>();
// Fork graph created for the test
// 0
// / \
// 10 5
// | |
// 20 11
// | | \
// 22 15 25
// | |
// 16 27
// |
// 19
// |
// 23
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20, 22]);
fork_graph.insert_fork(&[0, 5, 11, 15, 16, 19, 21, 23]);
fork_graph.insert_fork(&[0, 5, 11, 25, 27]);
let fork_graph = Arc::new(RwLock::new(fork_graph));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(0, 1));
cache.assign_program(program1, new_test_loaded_program(20, 21));
let program2 = Pubkey::new_unique();
cache.assign_program(program2, new_test_loaded_program(5, 6));
cache.assign_program(program2, new_test_loaded_program(11, 12));
let program3 = Pubkey::new_unique();
// Insert an unloaded program with correct/cache's environment at slot 25
let _ = insert_unloaded_program(&mut cache, program3, 25);
// Insert another unloaded program with a different environment at slot 20
// Since this entry's environment won't match cache's environment, looking up this
// entry should return missing instead of unloaded entry.
cache.assign_program(
program3,
Arc::new(
new_test_loaded_program(20, 21)
.to_unloaded()
.expect("Failed to create unloaded program"),
),
);
// Testing fork 0 - 5 - 11 - 15 - 16 - 19 - 21 - 23 with current slot at 19
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(19, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 19));
assert!(match_slot(&extracted, &program2, 11, 19));
assert!(match_missing(&missing, &program3, false));
// Testing fork 0 - 5 - 11 - 25 - 27 with current slot at 27
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(27, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 27));
assert!(match_slot(&extracted, &program2, 11, 27));
assert!(match_missing(&missing, &program3, true));
// Testing fork 0 - 10 - 20 - 22 with current slot at 22
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program3, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(22, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 20, 22));
assert!(match_missing(&missing, &program2, false));
assert!(match_missing(&missing, &program3, true));
}
#[test]
fn test_unloaded() {
let mut cache = new_mock_cache::<TestForkGraph>();
for loaded_program_type in [
LoadedProgramType::FailedVerification(cache.environments.program_runtime_v1.clone()),
LoadedProgramType::Closed,
LoadedProgramType::Unloaded(cache.environments.program_runtime_v1.clone()),
LoadedProgramType::Builtin(BuiltinProgram::new_mock()),
] {
let entry = Arc::new(LoadedProgram {
program: loaded_program_type,
account_size: 0,
deployment_slot: 0,
effective_slot: 0,
tx_usage_counter: AtomicU64::default(),
ix_usage_counter: AtomicU64::default(),
latest_access_slot: AtomicU64::default(),
});
assert!(entry.to_unloaded().is_none());
// Check that unload_program_entry() does nothing for this entry
let program_id = Pubkey::new_unique();
cache.assign_program(program_id, entry.clone());
cache.unload_program_entry(&program_id, &entry);
assert_eq!(
cache.entries.get(&program_id).unwrap().slot_versions.len(),
1
);
assert!(cache.stats.evictions.is_empty());
}
let entry = new_test_loaded_program_with_usage(1, 2, AtomicU64::new(3));
let unloaded_entry = entry.to_unloaded().unwrap();
assert_eq!(unloaded_entry.deployment_slot, 1);
assert_eq!(unloaded_entry.effective_slot, 2);
assert_eq!(unloaded_entry.latest_access_slot.load(Ordering::Relaxed), 1);
assert_eq!(unloaded_entry.tx_usage_counter.load(Ordering::Relaxed), 3);
// Check that unload_program_entry() does its work
let program_id = Pubkey::new_unique();
cache.assign_program(program_id, entry.clone());
cache.unload_program_entry(&program_id, &entry);
assert!(cache.stats.evictions.get(&program_id).is_some());
}
#[test]
fn test_fork_prune_find_first_ancestor() {
let mut cache = new_mock_cache::<TestForkGraphSpecific>();
// Fork graph created for the test
// 0
// / \
// 10 5
// |
// 20
// Deploy program on slot 0, and slot 5.
// Prune the fork that has slot 5. The cache should still have the program
// deployed at slot 0.
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20]);
fork_graph.insert_fork(&[0, 5]);
let fork_graph = Arc::new(RwLock::new(fork_graph));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(0, 1));
cache.assign_program(program1, new_test_loaded_program(5, 6));
cache.prune(10, 0);
let mut missing = vec![(program1, (LoadedProgramMatchCriteria::NoCriteria, 1))];
let mut extracted = LoadedProgramsForTxBatch::new(20, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
// The cache should have the program deployed at slot 0
assert_eq!(
extracted
.find(&program1)
.expect("Did not find the program")
.deployment_slot,
0
);
}
#[test]
fn test_prune_by_deployment_slot() {
let mut cache = new_mock_cache::<TestForkGraphSpecific>();
// Fork graph created for the test
// 0
// / \
// 10 5
// |
// 20
// Deploy program on slot 0, and slot 5.
// Prune the fork that has slot 5. The cache should still have the program
// deployed at slot 0.
let mut fork_graph = TestForkGraphSpecific::default();
fork_graph.insert_fork(&[0, 10, 20]);
fork_graph.insert_fork(&[0, 5, 6]);
let fork_graph = Arc::new(RwLock::new(fork_graph));
cache.set_fork_graph(fork_graph);
let program1 = Pubkey::new_unique();
cache.assign_program(program1, new_test_loaded_program(0, 1));
cache.assign_program(program1, new_test_loaded_program(5, 6));
let program2 = Pubkey::new_unique();
cache.assign_program(program2, new_test_loaded_program(10, 11));
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(20, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 20));
assert!(match_slot(&extracted, &program2, 10, 20));
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(6, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 5, 6));
assert!(match_missing(&missing, &program2, false));
// Pruning slot 5 will remove program1 entry deployed at slot 5.
// On fork chaining from slot 5, the entry deployed at slot 0 will become visible.
cache.prune_by_deployment_slot(5);
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(20, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 20));
assert!(match_slot(&extracted, &program2, 10, 20));
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(6, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 6));
assert!(match_missing(&missing, &program2, false));
// Pruning slot 10 will remove program2 entry deployed at slot 10.
// As there is no other entry for program2, extract() will return it as missing.
cache.prune_by_deployment_slot(10);
let mut missing = vec![
(program1, (LoadedProgramMatchCriteria::NoCriteria, 1)),
(program2, (LoadedProgramMatchCriteria::NoCriteria, 1)),
];
let mut extracted = LoadedProgramsForTxBatch::new(20, cache.environments.clone(), None, 0);
cache.extract(&mut missing, &mut extracted, true);
assert!(match_slot(&extracted, &program1, 0, 20));
assert!(match_missing(&missing, &program2, false));
}
#[test]
fn test_usable_entries_for_slot() {
new_mock_cache::<TestForkGraph>();
let tombstone = Arc::new(LoadedProgram::new_tombstone(0, LoadedProgramType::Closed));
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&tombstone,
&LoadedProgramMatchCriteria::NoCriteria
)
);
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&tombstone,
&LoadedProgramMatchCriteria::Tombstone
)
);
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&tombstone,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(0)
)
);
assert!(
!ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&tombstone,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(1)
)
);
let program = new_test_loaded_program(0, 1);
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::NoCriteria
)
);
assert!(
!ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::Tombstone
)
);
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(0)
)
);
assert!(
!ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(1)
)
);
let program = Arc::new(new_test_loaded_program_with_usage(
0,
1,
AtomicU64::default(),
));
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::NoCriteria
)
);
assert!(
!ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::Tombstone
)
);
assert!(
ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(0)
)
);
assert!(
!ProgramCache::<TestForkGraph>::matches_loaded_program_criteria(
&program,
&LoadedProgramMatchCriteria::DeployedOnOrAfterSlot(1)
)
);
}
}