solana/perf/src/sigverify.rs

967 lines
31 KiB
Rust

//! The `sigverify` module provides digital signature verification functions.
//! By default, signatures are verified in parallel using all available CPU
//! cores. When perf-libs are available signature verification is offloaded
//! to the GPU.
//!
use crate::cuda_runtime::PinnedVec;
use crate::packet::{Packet, Packets};
use crate::perf_libs;
use crate::recycler::Recycler;
use rayon::ThreadPool;
use solana_metrics::inc_new_counter_debug;
use solana_rayon_threadlimit::get_thread_count;
use solana_sdk::message::MESSAGE_HEADER_LENGTH;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::short_vec::decode_shortu16_len;
use solana_sdk::signature::Signature;
#[cfg(test)]
use solana_sdk::transaction::Transaction;
use std::convert::TryFrom;
use std::mem::size_of;
// Representing key tKeYE4wtowRb8yRroZShTipE18YVnqwXjsSAoNsFU6g
const TRACER_KEY_BYTES: [u8; 32] = [
13, 37, 180, 170, 252, 137, 36, 194, 183, 143, 161, 193, 201, 207, 211, 23, 189, 93, 33, 110,
155, 90, 30, 39, 116, 115, 238, 38, 126, 21, 232, 133,
];
const TRACER_KEY: Pubkey = Pubkey::new_from_array(TRACER_KEY_BYTES);
lazy_static! {
static ref PAR_THREAD_POOL: ThreadPool = rayon::ThreadPoolBuilder::new()
.num_threads(get_thread_count())
.thread_name(|ix| format!("sigverify_{}", ix))
.build()
.unwrap();
}
pub type TxOffset = PinnedVec<u32>;
type TxOffsets = (TxOffset, TxOffset, TxOffset, TxOffset, Vec<Vec<u32>>);
#[derive(Debug, PartialEq, Eq)]
struct PacketOffsets {
pub sig_len: u32,
pub sig_start: u32,
pub msg_start: u32,
pub pubkey_start: u32,
}
impl PacketOffsets {
pub fn new(sig_len: u32, sig_start: u32, msg_start: u32, pubkey_start: u32) -> Self {
Self {
sig_len,
sig_start,
msg_start,
pubkey_start,
}
}
}
#[derive(Debug, PartialEq)]
pub enum PacketError {
InvalidLen,
InvalidPubkeyLen,
InvalidShortVec,
InvalidSignatureLen,
MismatchSignatureLen,
PayerNotWritable,
}
impl std::convert::From<std::boxed::Box<bincode::ErrorKind>> for PacketError {
fn from(_e: std::boxed::Box<bincode::ErrorKind>) -> PacketError {
PacketError::InvalidShortVec
}
}
impl std::convert::From<std::num::TryFromIntError> for PacketError {
fn from(_e: std::num::TryFromIntError) -> Self {
Self::InvalidLen
}
}
pub fn init() {
if let Some(api) = perf_libs::api() {
unsafe {
(api.ed25519_set_verbose)(true);
if !(api.ed25519_init)() {
panic!("ed25519_init() failed");
}
(api.ed25519_set_verbose)(false);
}
}
}
fn verify_packet(packet: &mut Packet) {
let packet_offsets = get_packet_offsets(packet, 0);
let mut sig_start = packet_offsets.sig_start as usize;
let mut pubkey_start = packet_offsets.pubkey_start as usize;
let msg_start = packet_offsets.msg_start as usize;
// If this packet was already marked as discard, drop it
if packet.meta.discard {
return;
}
if packet_offsets.sig_len == 0 {
packet.meta.discard = true;
return;
}
if packet.meta.size <= msg_start {
packet.meta.discard = true;
return;
}
let msg_end = packet.meta.size;
for _ in 0..packet_offsets.sig_len {
let pubkey_end = pubkey_start.saturating_add(size_of::<Pubkey>());
let sig_end = sig_start.saturating_add(size_of::<Signature>());
if pubkey_end >= packet.meta.size || sig_end >= packet.meta.size {
packet.meta.discard = true;
return;
}
let signature = Signature::new(&packet.data[sig_start..sig_end]);
if !signature.verify(
&packet.data[pubkey_start..pubkey_end],
&packet.data[msg_start..msg_end],
) {
packet.meta.discard = true;
return;
}
// Check for tracer pubkey
if !packet.meta.is_tracer_tx
&& &packet.data[pubkey_start..pubkey_end] == TRACER_KEY.as_ref()
{
packet.meta.is_tracer_tx = true;
}
pubkey_start = pubkey_end;
sig_start = sig_end;
}
}
pub fn batch_size(batches: &[Packets]) -> usize {
batches.iter().map(|p| p.packets.len()).sum()
}
// internal function to be unit-tested; should be used only by get_packet_offsets
fn do_get_packet_offsets(
packet: &Packet,
current_offset: usize,
) -> Result<PacketOffsets, PacketError> {
// should have at least 1 signature, sig lengths and the message header
let _ = 1usize
.checked_add(size_of::<Signature>())
.and_then(|v| v.checked_add(MESSAGE_HEADER_LENGTH))
.filter(|v| *v <= packet.meta.size)
.ok_or(PacketError::InvalidLen)?;
// read the length of Transaction.signatures (serialized with short_vec)
let (sig_len_untrusted, sig_size) =
decode_shortu16_len(&packet.data).map_err(|_| PacketError::InvalidShortVec)?;
// Using msg_start_offset which is based on sig_len_untrusted introduces uncertainty.
// Ultimately, the actual sigverify will determine the uncertainty.
let msg_start_offset = sig_len_untrusted
.checked_mul(size_of::<Signature>())
.and_then(|v| v.checked_add(sig_size))
.ok_or(PacketError::InvalidLen)?;
let msg_start_offset_plus_one = msg_start_offset
.checked_add(1)
.ok_or(PacketError::InvalidLen)?;
// Packet should have data at least for signatures, MessageHeader, 1 byte for Message.account_keys.len
let _ = msg_start_offset_plus_one
.checked_add(MESSAGE_HEADER_LENGTH)
.filter(|v| *v <= packet.meta.size)
.ok_or(PacketError::InvalidSignatureLen)?;
// read MessageHeader.num_required_signatures (serialized with u8)
let sig_len_maybe_trusted = packet.data[msg_start_offset];
let message_account_keys_len_offset = msg_start_offset
.checked_add(MESSAGE_HEADER_LENGTH)
.ok_or(PacketError::InvalidLen)?;
// This reads and compares the MessageHeader num_required_signatures and
// num_readonly_signed_accounts bytes. If num_required_signatures is not larger than
// num_readonly_signed_accounts, the first account is not debitable, and cannot be charged
// required transaction fees.
let readonly_signer_offset = msg_start_offset_plus_one;
if sig_len_maybe_trusted <= packet.data[readonly_signer_offset] {
return Err(PacketError::PayerNotWritable);
}
if usize::from(sig_len_maybe_trusted) != sig_len_untrusted {
return Err(PacketError::MismatchSignatureLen);
}
// read the length of Message.account_keys (serialized with short_vec)
let (pubkey_len, pubkey_len_size) =
decode_shortu16_len(&packet.data[message_account_keys_len_offset..])
.map_err(|_| PacketError::InvalidShortVec)?;
let pubkey_start = message_account_keys_len_offset
.checked_add(pubkey_len_size)
.ok_or(PacketError::InvalidPubkeyLen)?;
let _ = pubkey_len
.checked_mul(size_of::<Pubkey>())
.and_then(|v| v.checked_add(pubkey_start))
.filter(|v| *v <= packet.meta.size)
.ok_or(PacketError::InvalidPubkeyLen)?;
let sig_start = current_offset
.checked_add(sig_size)
.ok_or(PacketError::InvalidLen)?;
let msg_start = current_offset
.checked_add(msg_start_offset)
.ok_or(PacketError::InvalidLen)?;
let pubkey_start = current_offset
.checked_add(pubkey_start)
.ok_or(PacketError::InvalidLen)?;
Ok(PacketOffsets::new(
u32::try_from(sig_len_untrusted)?,
u32::try_from(sig_start)?,
u32::try_from(msg_start)?,
u32::try_from(pubkey_start)?,
))
}
fn get_packet_offsets(packet: &Packet, current_offset: usize) -> PacketOffsets {
let unsanitized_packet_offsets = do_get_packet_offsets(packet, current_offset);
if let Ok(offsets) = unsanitized_packet_offsets {
offsets
} else {
// force sigverify to fail by returning zeros
PacketOffsets::new(0, 0, 0, 0)
}
}
pub fn generate_offsets(batches: &[Packets], recycler: &Recycler<TxOffset>) -> TxOffsets {
debug!("allocating..");
let mut signature_offsets: PinnedVec<_> = recycler.allocate("sig_offsets");
signature_offsets.set_pinnable();
let mut pubkey_offsets: PinnedVec<_> = recycler.allocate("pubkey_offsets");
pubkey_offsets.set_pinnable();
let mut msg_start_offsets: PinnedVec<_> = recycler.allocate("msg_start_offsets");
msg_start_offsets.set_pinnable();
let mut msg_sizes: PinnedVec<_> = recycler.allocate("msg_size_offsets");
msg_sizes.set_pinnable();
let mut current_offset: usize = 0;
let mut v_sig_lens = Vec::new();
batches.iter().for_each(|p| {
let mut sig_lens = Vec::new();
p.packets.iter().for_each(|packet| {
let packet_offsets = get_packet_offsets(packet, current_offset);
sig_lens.push(packet_offsets.sig_len);
trace!("pubkey_offset: {}", packet_offsets.pubkey_start);
let mut pubkey_offset = packet_offsets.pubkey_start;
let mut sig_offset = packet_offsets.sig_start;
let msg_size = current_offset.saturating_add(packet.meta.size) as u32;
for _ in 0..packet_offsets.sig_len {
signature_offsets.push(sig_offset);
sig_offset = sig_offset.saturating_add(size_of::<Signature>() as u32);
pubkey_offsets.push(pubkey_offset);
pubkey_offset = pubkey_offset.saturating_add(size_of::<Pubkey>() as u32);
msg_start_offsets.push(packet_offsets.msg_start);
let msg_size = msg_size.saturating_sub(packet_offsets.msg_start);
msg_sizes.push(msg_size);
}
current_offset = current_offset.saturating_add(size_of::<Packet>());
});
v_sig_lens.push(sig_lens);
});
(
signature_offsets,
pubkey_offsets,
msg_start_offsets,
msg_sizes,
v_sig_lens,
)
}
pub fn ed25519_verify_cpu(batches: &mut [Packets]) {
use rayon::prelude::*;
let count = batch_size(batches);
debug!("CPU ECDSA for {}", batch_size(batches));
PAR_THREAD_POOL.install(|| {
batches
.into_par_iter()
.for_each(|p| p.packets.par_iter_mut().for_each(|p| verify_packet(p)))
});
inc_new_counter_debug!("ed25519_verify_cpu", count);
}
pub fn ed25519_verify_disabled(batches: &mut [Packets]) {
use rayon::prelude::*;
let count = batch_size(batches);
debug!("disabled ECDSA for {}", batch_size(batches));
batches.into_par_iter().for_each(|p| {
p.packets
.par_iter_mut()
.for_each(|p| p.meta.discard = false)
});
inc_new_counter_debug!("ed25519_verify_disabled", count);
}
pub fn copy_return_values(sig_lens: &[Vec<u32>], out: &PinnedVec<u8>, rvs: &mut Vec<Vec<u8>>) {
let mut num = 0;
for (vs, sig_vs) in rvs.iter_mut().zip(sig_lens.iter()) {
for (v, sig_v) in vs.iter_mut().zip(sig_vs.iter()) {
if *sig_v == 0 {
*v = 0;
} else {
let mut vout = 1;
for _ in 0..*sig_v {
if 0 == out[num] {
vout = 0;
}
num = num.saturating_add(1);
}
*v = vout;
}
if *v != 0 {
trace!("VERIFIED PACKET!!!!!");
}
}
}
}
// return true for success, i.e ge unpacks and !ge.is_small_order()
pub fn check_packed_ge_small_order(ge: &[u8; 32]) -> bool {
if let Some(api) = perf_libs::api() {
unsafe {
// Returns 1 == fail, 0 == success
let res = (api.ed25519_check_packed_ge_small_order)(ge.as_ptr());
return res == 0;
}
}
false
}
pub fn get_checked_scalar(scalar: &[u8; 32]) -> Result<[u8; 32], PacketError> {
let mut out = [0u8; 32];
if let Some(api) = perf_libs::api() {
unsafe {
let res = (api.ed25519_get_checked_scalar)(out.as_mut_ptr(), scalar.as_ptr());
if res == 0 {
return Ok(out);
} else {
return Err(PacketError::InvalidLen);
}
}
}
Ok(out)
}
pub fn mark_disabled(batches: &mut [Packets], r: &[Vec<u8>]) {
batches.iter_mut().zip(r).for_each(|(b, v)| {
b.packets.iter_mut().zip(v).for_each(|(p, f)| {
p.meta.discard = *f == 0;
})
});
}
pub fn ed25519_verify(
batches: &mut [Packets],
recycler: &Recycler<TxOffset>,
recycler_out: &Recycler<PinnedVec<u8>>,
) {
let api = perf_libs::api();
if api.is_none() {
return ed25519_verify_cpu(batches);
}
let api = api.unwrap();
use crate::packet::PACKET_DATA_SIZE;
let count = batch_size(batches);
// micro-benchmarks show GPU time for smallest batch around 15-20ms
// and CPU speed for 64-128 sigverifies around 10-20ms. 64 is a nice
// power-of-two number around that accounting for the fact that the CPU
// may be busy doing other things while being a real validator
// TODO: dynamically adjust this crossover
if count < 64 {
return ed25519_verify_cpu(batches);
}
let (signature_offsets, pubkey_offsets, msg_start_offsets, msg_sizes, sig_lens) =
generate_offsets(batches, recycler);
debug!("CUDA ECDSA for {}", batch_size(batches));
debug!("allocating out..");
let mut out = recycler_out.allocate("out_buffer");
out.set_pinnable();
let mut elems = Vec::new();
let mut rvs = Vec::new();
let mut num_packets: usize = 0;
for p in batches.iter() {
elems.push(perf_libs::Elems {
elems: p.packets.as_ptr(),
num: p.packets.len() as u32,
});
let mut v = Vec::new();
v.resize(p.packets.len(), 0);
rvs.push(v);
num_packets = num_packets.saturating_add(p.packets.len());
}
out.resize(signature_offsets.len(), 0);
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
trace!("len offset: {}", PACKET_DATA_SIZE as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_verify_many)(
elems.as_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets as u32,
signature_offsets.len() as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
signature_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done verify");
copy_return_values(&sig_lens, &out, &mut rvs);
mark_disabled(batches, &rvs);
inc_new_counter_debug!("ed25519_verify_gpu", count);
}
#[cfg(test)]
pub fn make_packet_from_transaction(tx: Transaction) -> Packet {
use bincode::serialize;
let tx_bytes = serialize(&tx).unwrap();
let mut packet = Packet::default();
packet.meta.size = tx_bytes.len();
packet.data[..packet.meta.size].copy_from_slice(&tx_bytes);
packet
}
#[cfg(test)]
#[allow(clippy::integer_arithmetic)]
mod tests {
use super::*;
use crate::packet::{Packet, Packets};
use crate::sigverify;
use crate::sigverify::PacketOffsets;
use crate::test_tx::{test_multisig_tx, test_tx};
use bincode::{deserialize, serialize};
use solana_sdk::hash::Hash;
use solana_sdk::message::{Message, MessageHeader};
use solana_sdk::signature::Signature;
use solana_sdk::transaction::Transaction;
const SIG_OFFSET: usize = 1;
pub fn memfind<A: Eq>(a: &[A], b: &[A]) -> Option<usize> {
assert!(a.len() >= b.len());
let end = a.len() - b.len() + 1;
for i in 0..end {
if a[i..i + b.len()] == b[..] {
return Some(i);
}
}
None
}
#[test]
fn test_mark_disabled() {
let mut batch = Packets::default();
batch.packets.push(Packet::default());
let mut batches: Vec<Packets> = vec![batch];
mark_disabled(&mut batches, &[vec![0]]);
assert!(batches[0].packets[0].meta.discard);
mark_disabled(&mut batches, &[vec![1]]);
assert!(!batches[0].packets[0].meta.discard);
}
#[test]
fn test_layout() {
let tx = test_tx();
let tx_bytes = serialize(&tx).unwrap();
let packet = serialize(&tx).unwrap();
assert_matches!(memfind(&packet, &tx_bytes), Some(0));
assert_matches!(memfind(&packet, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), None);
}
#[test]
fn test_system_transaction_layout() {
let tx = test_tx();
let tx_bytes = serialize(&tx).unwrap();
let message_data = tx.message_data();
let packet = sigverify::make_packet_from_transaction(tx.clone());
let packet_offsets = sigverify::get_packet_offsets(&packet, 0);
assert_eq!(
memfind(&tx_bytes, tx.signatures[0].as_ref()),
Some(SIG_OFFSET)
);
assert_eq!(
memfind(&tx_bytes, tx.message().account_keys[0].as_ref()),
Some(packet_offsets.pubkey_start as usize)
);
assert_eq!(
memfind(&tx_bytes, &message_data),
Some(packet_offsets.msg_start as usize)
);
assert_eq!(
memfind(&tx_bytes, tx.signatures[0].as_ref()),
Some(packet_offsets.sig_start as usize)
);
assert_eq!(packet_offsets.sig_len, 1);
}
fn packet_from_num_sigs(required_num_sigs: u8, actual_num_sigs: usize) -> Packet {
let message = Message {
header: MessageHeader {
num_required_signatures: required_num_sigs,
num_readonly_signed_accounts: 12,
num_readonly_unsigned_accounts: 11,
},
account_keys: vec![],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let mut tx = Transaction::new_unsigned(message);
tx.signatures = vec![Signature::default(); actual_num_sigs as usize];
sigverify::make_packet_from_transaction(tx)
}
#[test]
fn test_untrustworthy_sigs() {
let required_num_sigs = 14;
let actual_num_sigs = 5;
let packet = packet_from_num_sigs(required_num_sigs, actual_num_sigs);
let unsanitized_packet_offsets = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(
unsanitized_packet_offsets,
Err(PacketError::MismatchSignatureLen)
);
}
#[test]
fn test_large_sigs() {
// use any large number to be misinterpreted as 2 bytes when decoded as short_vec
let required_num_sigs = 214;
let actual_num_sigs = 5;
let packet = packet_from_num_sigs(required_num_sigs, actual_num_sigs);
let unsanitized_packet_offsets = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(
unsanitized_packet_offsets,
Err(PacketError::MismatchSignatureLen)
);
}
#[test]
fn test_small_packet() {
let tx = test_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
packet.data[0] = 0xff;
packet.data[1] = 0xff;
packet.meta.size = 2;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidLen));
}
#[test]
fn test_large_sig_len() {
let tx = test_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
// Make the signatures len huge
packet.data[0] = 0x7f;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidSignatureLen));
}
#[test]
fn test_really_large_sig_len() {
let tx = test_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
// Make the signatures len huge
packet.data[0] = 0xff;
packet.data[1] = 0xff;
packet.data[2] = 0xff;
packet.data[3] = 0xff;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidShortVec));
}
#[test]
fn test_invalid_pubkey_len() {
let tx = test_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
let res = sigverify::do_get_packet_offsets(&packet, 0);
// make pubkey len huge
packet.data[res.unwrap().pubkey_start as usize - 1] = 0x7f;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidPubkeyLen));
}
#[test]
fn test_fee_payer_is_debitable() {
let message = Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let mut tx = Transaction::new_unsigned(message);
tx.signatures = vec![Signature::default()];
let packet = sigverify::make_packet_from_transaction(tx);
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::PayerNotWritable));
}
#[test]
fn test_system_transaction_data_layout() {
use crate::packet::PACKET_DATA_SIZE;
let mut tx0 = test_tx();
tx0.message.instructions[0].data = vec![1, 2, 3];
let message0a = tx0.message_data();
let tx_bytes = serialize(&tx0).unwrap();
assert!(tx_bytes.len() <= PACKET_DATA_SIZE);
assert_eq!(
memfind(&tx_bytes, tx0.signatures[0].as_ref()),
Some(SIG_OFFSET)
);
let tx1 = deserialize(&tx_bytes).unwrap();
assert_eq!(tx0, tx1);
assert_eq!(tx1.message().instructions[0].data, vec![1, 2, 3]);
tx0.message.instructions[0].data = vec![1, 2, 4];
let message0b = tx0.message_data();
assert_ne!(message0a, message0b);
}
// Just like get_packet_offsets, but not returning redundant information.
fn get_packet_offsets_from_tx(tx: Transaction, current_offset: u32) -> PacketOffsets {
let packet = sigverify::make_packet_from_transaction(tx);
let packet_offsets = sigverify::get_packet_offsets(&packet, current_offset as usize);
PacketOffsets::new(
packet_offsets.sig_len,
packet_offsets.sig_start - current_offset,
packet_offsets.msg_start - packet_offsets.sig_start,
packet_offsets.pubkey_start - packet_offsets.msg_start,
)
}
#[test]
fn test_get_packet_offsets() {
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 0),
PacketOffsets::new(1, 1, 64, 4)
);
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 100),
PacketOffsets::new(1, 1, 64, 4)
);
// Ensure we're not indexing packet by the `current_offset` parameter.
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 1_000_000),
PacketOffsets::new(1, 1, 64, 4)
);
// Ensure we're returning sig_len, not sig_size.
assert_eq!(
get_packet_offsets_from_tx(test_multisig_tx(), 0),
PacketOffsets::new(2, 1, 128, 4)
);
}
fn generate_packet_vec(
packet: &Packet,
num_packets_per_batch: usize,
num_batches: usize,
) -> Vec<Packets> {
// generate packet vector
let batches: Vec<_> = (0..num_batches)
.map(|_| {
let mut packets = Packets::default();
packets.packets.resize(0, Packet::default());
for _ in 0..num_packets_per_batch {
packets.packets.push(packet.clone());
}
assert_eq!(packets.packets.len(), num_packets_per_batch);
packets
})
.collect();
assert_eq!(batches.len(), num_batches);
batches
}
fn test_verify_n(n: usize, modify_data: bool) {
let tx = test_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
// jumble some data to test failure
if modify_data {
packet.data[20] = packet.data[20].wrapping_add(10);
}
let mut batches = generate_packet_vec(&packet, n, 2);
let recycler = Recycler::default();
let recycler_out = Recycler::default();
// verify packets
sigverify::ed25519_verify(&mut batches, &recycler, &recycler_out);
// check result
let should_discard = modify_data;
assert!(batches
.iter()
.flat_map(|p| &p.packets)
.all(|p| p.meta.discard == should_discard));
}
#[test]
fn test_verify_tampered_sig_len() {
let mut tx = test_tx();
// pretend malicious leader dropped a signature...
tx.signatures.pop();
let packet = sigverify::make_packet_from_transaction(tx);
let mut batches = generate_packet_vec(&packet, 1, 1);
let recycler = Recycler::default();
let recycler_out = Recycler::default();
// verify packets
sigverify::ed25519_verify(&mut batches, &recycler, &recycler_out);
assert!(batches
.iter()
.flat_map(|p| &p.packets)
.all(|p| p.meta.discard));
}
#[test]
fn test_verify_zero() {
test_verify_n(0, false);
}
#[test]
fn test_verify_one() {
test_verify_n(1, false);
}
#[test]
fn test_verify_seventy_one() {
test_verify_n(71, false);
}
#[test]
fn test_verify_multisig() {
solana_logger::setup();
let tx = test_multisig_tx();
let mut packet = sigverify::make_packet_from_transaction(tx);
let n = 4;
let num_batches = 3;
let mut batches = generate_packet_vec(&packet, n, num_batches);
packet.data[40] = packet.data[40].wrapping_add(8);
batches[0].packets.push(packet);
let recycler = Recycler::default();
let recycler_out = Recycler::default();
// verify packets
sigverify::ed25519_verify(&mut batches, &recycler, &recycler_out);
// check result
let ref_ans = 1u8;
let mut ref_vec = vec![vec![ref_ans; n]; num_batches];
ref_vec[0].push(0u8);
assert!(batches
.iter()
.flat_map(|p| &p.packets)
.zip(ref_vec.into_iter().flatten())
.all(|(p, discard)| {
if discard == 0 {
p.meta.discard
} else {
!p.meta.discard
}
}));
}
#[test]
fn test_verify_fuzz() {
use rand::{thread_rng, Rng};
solana_logger::setup();
let tx = test_multisig_tx();
let packet = sigverify::make_packet_from_transaction(tx);
let recycler = Recycler::default();
let recycler_out = Recycler::default();
for _ in 0..50 {
let n = thread_rng().gen_range(1, 30);
let num_batches = thread_rng().gen_range(2, 30);
let mut batches = generate_packet_vec(&packet, n, num_batches);
let num_modifications = thread_rng().gen_range(0, 5);
for _ in 0..num_modifications {
let batch = thread_rng().gen_range(0, batches.len());
let packet = thread_rng().gen_range(0, batches[batch].packets.len());
let offset = thread_rng().gen_range(0, batches[batch].packets[packet].meta.size);
let add = thread_rng().gen_range(0, 255);
batches[batch].packets[packet].data[offset] =
batches[batch].packets[packet].data[offset].wrapping_add(add);
}
// verify from GPU verification pipeline (when GPU verification is enabled) are
// equivalent to the CPU verification pipeline.
let mut batches_cpu = batches.clone();
sigverify::ed25519_verify(&mut batches, &recycler, &recycler_out);
ed25519_verify_cpu(&mut batches_cpu);
// check result
batches
.iter()
.flat_map(|p| &p.packets)
.zip(batches_cpu.iter().flat_map(|p| &p.packets))
.for_each(|(p1, p2)| assert_eq!(p1, p2));
}
}
#[test]
fn test_verify_fail() {
test_verify_n(5, true);
}
#[test]
fn test_get_checked_scalar() {
solana_logger::setup();
use curve25519_dalek::scalar::Scalar;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use std::sync::atomic::{AtomicU64, Ordering};
if perf_libs::api().is_none() {
return;
}
let passed_g = AtomicU64::new(0);
let failed_g = AtomicU64::new(0);
(0..4).into_par_iter().for_each(|_| {
let mut input = [0u8; 32];
let mut passed = 0;
let mut failed = 0;
for _ in 0..1_000_000 {
thread_rng().fill(&mut input);
let ans = get_checked_scalar(&input);
let ref_ans = Scalar::from_canonical_bytes(input);
if let Some(ref_ans) = ref_ans {
passed += 1;
assert_eq!(ans.unwrap(), ref_ans.to_bytes());
} else {
failed += 1;
assert!(ans.is_err());
}
}
passed_g.fetch_add(passed, Ordering::Relaxed);
failed_g.fetch_add(failed, Ordering::Relaxed);
});
info!(
"passed: {} failed: {}",
passed_g.load(Ordering::Relaxed),
failed_g.load(Ordering::Relaxed)
);
}
#[test]
fn test_ge_small_order() {
solana_logger::setup();
use curve25519_dalek::edwards::CompressedEdwardsY;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use std::sync::atomic::{AtomicU64, Ordering};
if perf_libs::api().is_none() {
return;
}
let passed_g = AtomicU64::new(0);
let failed_g = AtomicU64::new(0);
(0..4).into_par_iter().for_each(|_| {
let mut input = [0u8; 32];
let mut passed = 0;
let mut failed = 0;
for _ in 0..1_000_000 {
thread_rng().fill(&mut input);
let ans = check_packed_ge_small_order(&input);
let ref_ge = CompressedEdwardsY::from_slice(&input);
if let Some(ref_element) = ref_ge.decompress() {
if ref_element.is_small_order() {
assert!(!ans);
} else {
assert!(ans);
}
} else {
assert!(!ans);
}
if ans {
passed += 1;
} else {
failed += 1;
}
}
passed_g.fetch_add(passed, Ordering::Relaxed);
failed_g.fetch_add(failed, Ordering::Relaxed);
});
info!(
"passed: {} failed: {}",
passed_g.load(Ordering::Relaxed),
failed_g.load(Ordering::Relaxed)
);
}
}