solana/runtime/src/bank.rs

16623 lines
628 KiB
Rust

//! The `bank` module tracks client accounts and the progress of on-chain
//! programs.
//!
//! A single bank relates to a block produced by a single leader and each bank
//! except for the genesis bank points back to a parent bank.
//!
//! The bank is the main entrypoint for processing verified transactions with the function
//! `Bank::process_transactions`
//!
//! It does this by loading the accounts using the reference it holds on the account store,
//! and then passing those to an InvokeContext which handles loading the programs specified
//! by the Transaction and executing it.
//!
//! The bank then stores the results to the accounts store.
//!
//! It then has apis for retrieving if a transaction has been processed and it's status.
//! See `get_signature_status` et al.
//!
//! Bank lifecycle:
//!
//! A bank is newly created and open to transactions. Transactions are applied
//! until either the bank reached the tick count when the node is the leader for that slot, or the
//! node has applied all transactions present in all `Entry`s in the slot.
//!
//! Once it is complete, the bank can then be frozen. After frozen, no more transactions can
//! be applied or state changes made. At the frozen step, rent will be applied and various
//! sysvar special accounts update to the new state of the system.
//!
//! After frozen, and the bank has had the appropriate number of votes on it, then it can become
//! rooted. At this point, it will not be able to be removed from the chain and the
//! state is finalized.
//!
//! It offers a high-level API that signs transactions
//! on behalf of the caller, and a low-level API for when they have
//! already been signed and verified.
#[allow(deprecated)]
use solana_sdk::recent_blockhashes_account;
use {
crate::{
accounts::{AccountAddressFilter, Accounts, LoadedTransaction, TransactionLoadResult},
accounts_db::{
AccountShrinkThreshold, AccountsDbConfig, ErrorCounters, SnapshotStorages,
ACCOUNTS_DB_CONFIG_FOR_BENCHMARKS, ACCOUNTS_DB_CONFIG_FOR_TESTING,
},
accounts_index::{AccountSecondaryIndexes, IndexKey, ScanConfig, ScanResult},
accounts_update_notifier_interface::AccountsUpdateNotifier,
ancestors::{Ancestors, AncestorsForSerialization},
blockhash_queue::BlockhashQueue,
builtins::{self, BuiltinAction, BuiltinFeatureTransition, Builtins},
cost_tracker::CostTracker,
epoch_stakes::{EpochStakes, NodeVoteAccounts},
inline_spl_associated_token_account, inline_spl_token,
message_processor::MessageProcessor,
rent_collector::{CollectedInfo, RentCollector},
stake_weighted_timestamp::{
calculate_stake_weighted_timestamp, MaxAllowableDrift, MAX_ALLOWABLE_DRIFT_PERCENTAGE,
MAX_ALLOWABLE_DRIFT_PERCENTAGE_FAST, MAX_ALLOWABLE_DRIFT_PERCENTAGE_SLOW,
},
stakes::{InvalidCacheEntryReason, Stakes, StakesCache},
status_cache::{SlotDelta, StatusCache},
system_instruction_processor::{get_system_account_kind, SystemAccountKind},
transaction_batch::TransactionBatch,
vote_account::VoteAccount,
vote_parser,
},
byteorder::{ByteOrder, LittleEndian},
dashmap::DashMap,
itertools::Itertools,
log::*,
rand::Rng,
rayon::{
iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator},
ThreadPool, ThreadPoolBuilder,
},
solana_measure::measure::Measure,
solana_metrics::{inc_new_counter_debug, inc_new_counter_info},
solana_program_runtime::{
compute_budget::ComputeBudget,
invoke_context::{
BuiltinProgram, Executor, Executors, ProcessInstructionWithContext, TransactionExecutor,
},
log_collector::LogCollector,
sysvar_cache::SysvarCache,
timings::ExecuteTimings,
},
solana_sdk::{
account::{
create_account_shared_data_with_fields as create_account, from_account, Account,
AccountSharedData, InheritableAccountFields, ReadableAccount, WritableAccount,
},
account_utils::StateMut,
clock::{
BankId, Epoch, Slot, SlotCount, SlotIndex, UnixTimestamp, DEFAULT_TICKS_PER_SECOND,
INITIAL_RENT_EPOCH, MAX_PROCESSING_AGE, MAX_RECENT_BLOCKHASHES,
MAX_TRANSACTION_FORWARDING_DELAY, SECONDS_PER_DAY,
},
ed25519_program,
epoch_info::EpochInfo,
epoch_schedule::EpochSchedule,
feature,
feature_set::{
self, disable_fee_calculator, nonce_must_be_writable, requestable_heap_size,
tx_wide_compute_cap, FeatureSet,
},
fee::FeeStructure,
fee_calculator::{FeeCalculator, FeeRateGovernor},
genesis_config::{ClusterType, GenesisConfig},
hard_forks::HardForks,
hash::{extend_and_hash, hashv, Hash},
incinerator,
inflation::Inflation,
instruction::CompiledInstruction,
lamports::LamportsError,
message::SanitizedMessage,
native_loader,
native_token::sol_to_lamports,
nonce, nonce_account,
packet::PACKET_DATA_SIZE,
precompiles::get_precompiles,
pubkey::Pubkey,
saturating_add_assign, secp256k1_program,
signature::{Keypair, Signature},
slot_hashes::SlotHashes,
slot_history::SlotHistory,
system_transaction,
sysvar::{self, Sysvar, SysvarId},
timing::years_as_slots,
transaction::{
Result, SanitizedTransaction, Transaction, TransactionError,
TransactionVerificationMode, VersionedTransaction,
},
transaction_context::{InstructionTrace, TransactionAccount, TransactionContext},
},
solana_stake_program::stake_state::{
self, InflationPointCalculationEvent, PointValue, StakeState,
},
solana_vote_program::vote_state::{VoteState, VoteStateVersions},
std::{
borrow::Cow,
cell::RefCell,
collections::{HashMap, HashSet},
convert::{TryFrom, TryInto},
fmt, mem,
ops::{Div, RangeInclusive},
path::PathBuf,
ptr,
rc::Rc,
sync::{
atomic::{
AtomicBool, AtomicU64,
Ordering::{AcqRel, Acquire, Relaxed, Release},
},
Arc, LockResult, RwLock, RwLockReadGuard, RwLockWriteGuard,
},
time::{Duration, Instant},
},
};
mod address_lookup_table;
mod builtin_programs;
mod sysvar_cache;
mod transaction_account_state_info;
pub const SECONDS_PER_YEAR: f64 = 365.25 * 24.0 * 60.0 * 60.0;
pub const MAX_LEADER_SCHEDULE_STAKES: Epoch = 5;
#[derive(Clone, Debug, PartialEq)]
pub struct RentDebit {
rent_collected: u64,
post_balance: u64,
}
impl RentDebit {
fn try_into_reward_info(self) -> Option<RewardInfo> {
let rent_debit = i64::try_from(self.rent_collected)
.ok()
.and_then(|r| r.checked_neg());
rent_debit.map(|rent_debit| RewardInfo {
reward_type: RewardType::Rent,
lamports: rent_debit,
post_balance: self.post_balance,
commission: None, // Not applicable
})
}
}
#[derive(Clone, Debug, Default, PartialEq)]
pub struct RentDebits(HashMap<Pubkey, RentDebit>);
impl RentDebits {
fn get_account_rent_debit(&self, address: &Pubkey) -> u64 {
self.0
.get(address)
.map(|r| r.rent_collected)
.unwrap_or_default()
}
pub fn insert(&mut self, address: &Pubkey, rent_collected: u64, post_balance: u64) {
if rent_collected != 0 {
self.0.insert(
*address,
RentDebit {
rent_collected,
post_balance,
},
);
}
}
pub fn into_unordered_rewards_iter(self) -> impl Iterator<Item = (Pubkey, RewardInfo)> {
self.0
.into_iter()
.filter_map(|(address, rent_debit)| Some((address, rent_debit.try_into_reward_info()?)))
}
}
type BankStatusCache = StatusCache<Result<()>>;
#[frozen_abi(digest = "6XkxpmzmKZguLZMS1KmU7N2dAcv8MmNhyobJCwRLkTdi")]
pub type BankSlotDelta = SlotDelta<Result<()>>;
// Eager rent collection repeats in cyclic manner.
// Each cycle is composed of <partition_count> number of tiny pubkey subranges
// to scan, which is always multiple of the number of slots in epoch.
type PartitionIndex = u64;
type PartitionsPerCycle = u64;
type Partition = (PartitionIndex, PartitionIndex, PartitionsPerCycle);
type RentCollectionCycleParams = (
Epoch,
SlotCount,
bool,
Epoch,
EpochCount,
PartitionsPerCycle,
);
pub struct SquashTiming {
pub squash_accounts_ms: u64,
pub squash_accounts_cache_ms: u64,
pub squash_accounts_index_ms: u64,
pub squash_accounts_store_ms: u64,
pub squash_cache_ms: u64,
}
type EpochCount = u64;
mod executor_cache {
use {super::*, log};
#[derive(Debug, Default)]
pub struct Stats {
pub hits: AtomicU64,
pub misses: AtomicU64,
pub evictions: HashMap<Pubkey, u64>,
pub insertions: AtomicU64,
pub replacements: AtomicU64,
}
impl Stats {
pub fn submit(&self, slot: Slot) {
let hits = self.hits.load(Relaxed);
let misses = self.misses.load(Relaxed);
let insertions = self.insertions.load(Relaxed);
let replacements = self.replacements.load(Relaxed);
let evictions: u64 = self.evictions.values().sum();
datapoint_info!(
"bank-executor-cache-stats",
("slot", slot, i64),
("hits", hits, i64),
("misses", misses, i64),
("evictions", evictions, i64),
("insertions", insertions, i64),
("replacements", replacements, i64),
);
debug!(
"Executor Cache Stats -- Hits: {}, Misses: {}, Evictions: {}, Insertions: {}, Replacements: {}",
hits, misses, evictions, insertions, replacements,
);
if log_enabled!(log::Level::Trace) && !self.evictions.is_empty() {
let mut evictions = self.evictions.iter().collect::<Vec<_>>();
evictions.sort_by_key(|e| e.1);
let evictions = evictions
.into_iter()
.rev()
.map(|(program_id, evictions)| {
format!(" {:<44} {}", program_id.to_string(), evictions)
})
.collect::<Vec<_>>();
let evictions = evictions.join("\n");
trace!(
"Eviction Details:\n {:<44} {}\n{}",
"Program",
"Count",
evictions
);
}
}
}
}
const MAX_CACHED_EXECUTORS: usize = 100; // 10 MB assuming programs are around 100k
#[derive(Debug)]
struct CachedExecutorsEntry {
prev_epoch_count: u64,
epoch_count: AtomicU64,
executor: Arc<dyn Executor>,
}
/// LFU Cache of executors with single-epoch memory of usage counts
#[derive(Debug)]
struct CachedExecutors {
max: usize,
current_epoch: Epoch,
pub(self) executors: HashMap<Pubkey, CachedExecutorsEntry>,
stats: executor_cache::Stats,
}
impl Default for CachedExecutors {
fn default() -> Self {
Self {
max: MAX_CACHED_EXECUTORS,
current_epoch: Epoch::default(),
executors: HashMap::default(),
stats: executor_cache::Stats::default(),
}
}
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl AbiExample for CachedExecutors {
fn example() -> Self {
// Delegate AbiExample impl to Default before going deep and stuck with
// not easily impl-able Arc<dyn Executor> due to rust's coherence issue
// This is safe because CachedExecutors isn't serializable by definition.
Self::default()
}
}
impl Clone for CachedExecutors {
fn clone(&self) -> Self {
let executors = self.executors.iter().map(|(&key, entry)| {
let entry = CachedExecutorsEntry {
prev_epoch_count: entry.prev_epoch_count,
epoch_count: AtomicU64::new(entry.epoch_count.load(Relaxed)),
executor: entry.executor.clone(),
};
(key, entry)
});
Self {
max: self.max,
current_epoch: self.current_epoch,
executors: executors.collect(),
stats: executor_cache::Stats::default(),
}
}
}
impl CachedExecutors {
fn clone_with_epoch(self: &Arc<Self>, epoch: Epoch) -> Arc<Self> {
if self.current_epoch == epoch {
return self.clone();
}
let executors = self.executors.iter().map(|(&key, entry)| {
// The total_count = prev_epoch_count + epoch_count will be used for LFU eviction.
// If the epoch has changed, we store the prev_epoch_count and reset the epoch_count to 0.
let entry = CachedExecutorsEntry {
prev_epoch_count: entry.epoch_count.load(Relaxed),
epoch_count: AtomicU64::default(),
executor: entry.executor.clone(),
};
(key, entry)
});
Arc::new(Self {
max: self.max,
current_epoch: epoch,
executors: executors.collect(),
stats: executor_cache::Stats::default(),
})
}
fn new(max: usize, current_epoch: Epoch) -> Self {
Self {
max,
current_epoch,
executors: HashMap::new(),
stats: executor_cache::Stats::default(),
}
}
fn get(&self, pubkey: &Pubkey) -> Option<Arc<dyn Executor>> {
if let Some(entry) = self.executors.get(pubkey) {
self.stats.hits.fetch_add(1, Relaxed);
entry.epoch_count.fetch_add(1, Relaxed);
Some(entry.executor.clone())
} else {
self.stats.misses.fetch_add(1, Relaxed);
None
}
}
fn put(&mut self, executors: &[(&Pubkey, Arc<dyn Executor>)]) {
let mut new_executors: Vec<_> = executors
.iter()
.filter_map(|(key, executor)| {
if let Some(mut entry) = self.executors.remove(key) {
self.stats.replacements.fetch_add(1, Relaxed);
entry.executor = executor.clone();
let _ = self.executors.insert(**key, entry);
None
} else {
self.stats.insertions.fetch_add(1, Relaxed);
Some((*key, executor))
}
})
.collect();
if !new_executors.is_empty() {
let mut counts = self
.executors
.iter()
.map(|(key, entry)| {
let count = entry.prev_epoch_count + entry.epoch_count.load(Relaxed);
(key, count)
})
.collect::<Vec<_>>();
counts.sort_unstable_by_key(|(_, count)| *count);
let primer_counts = Self::get_primer_counts(counts.as_slice(), new_executors.len());
if self.executors.len() >= self.max {
let mut least_keys = counts
.iter()
.take(new_executors.len())
.map(|least| *least.0)
.collect::<Vec<_>>();
for least_key in least_keys.drain(..) {
let _ = self.executors.remove(&least_key);
self.stats
.evictions
.entry(least_key)
.and_modify(|c| saturating_add_assign!(*c, 1))
.or_insert(1);
}
}
for ((key, executor), primer_count) in new_executors.drain(..).zip(primer_counts) {
let entry = CachedExecutorsEntry {
prev_epoch_count: 0,
epoch_count: AtomicU64::new(primer_count),
executor: executor.clone(),
};
let _ = self.executors.insert(*key, entry);
}
}
}
fn remove(&mut self, pubkey: &Pubkey) {
let _ = self.executors.remove(pubkey);
}
fn get_primer_count_upper_bound_inclusive(counts: &[(&Pubkey, u64)]) -> u64 {
const PRIMER_COUNT_TARGET_PERCENTILE: u64 = 85;
#[allow(clippy::assertions_on_constants)]
{
assert!(PRIMER_COUNT_TARGET_PERCENTILE <= 100);
}
// Executor use-frequencies are assumed to fit a Pareto distribution. Choose an
// upper-bound for our primer count as the actual count at the target rank to avoid
// an upward bias
let target_index = u64::try_from(counts.len().saturating_sub(1))
.ok()
.and_then(|counts| {
let index = counts
.saturating_mul(PRIMER_COUNT_TARGET_PERCENTILE)
.div(100); // switch to u64::saturating_div once stable
usize::try_from(index).ok()
})
.unwrap_or(0);
counts
.get(target_index)
.map(|(_, count)| *count)
.unwrap_or(0)
}
fn get_primer_counts(counts: &[(&Pubkey, u64)], num_counts: usize) -> Vec<u64> {
let max_primer_count = Self::get_primer_count_upper_bound_inclusive(counts);
let mut rng = rand::thread_rng();
(0..num_counts)
.map(|_| rng.gen_range(0, max_primer_count.saturating_add(1)))
.collect::<Vec<_>>()
}
}
#[derive(Debug)]
pub struct BankRc {
/// where all the Accounts are stored
pub accounts: Arc<Accounts>,
/// Previous checkpoint of this bank
pub(crate) parent: RwLock<Option<Arc<Bank>>>,
/// Current slot
pub(crate) slot: Slot,
pub(crate) bank_id_generator: Arc<AtomicU64>,
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
use solana_frozen_abi::abi_example::AbiExample;
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl AbiExample for BankRc {
fn example() -> Self {
BankRc {
// Set parent to None to cut the recursion into another Bank
parent: RwLock::new(None),
// AbiExample for Accounts is specially implemented to contain a storage example
accounts: AbiExample::example(),
slot: AbiExample::example(),
bank_id_generator: Arc::new(AtomicU64::new(0)),
}
}
}
impl BankRc {
pub(crate) fn new(accounts: Accounts, slot: Slot) -> Self {
Self {
accounts: Arc::new(accounts),
parent: RwLock::new(None),
slot,
bank_id_generator: Arc::new(AtomicU64::new(0)),
}
}
}
#[derive(Default, Debug, AbiExample)]
pub struct StatusCacheRc {
/// where all the Accounts are stored
/// A cache of signature statuses
pub status_cache: Arc<RwLock<BankStatusCache>>,
}
impl StatusCacheRc {
pub fn slot_deltas(&self, slots: &[Slot]) -> Vec<BankSlotDelta> {
let sc = self.status_cache.read().unwrap();
sc.slot_deltas(slots)
}
pub fn roots(&self) -> Vec<Slot> {
self.status_cache
.read()
.unwrap()
.roots()
.iter()
.cloned()
.sorted()
.collect()
}
pub fn append(&self, slot_deltas: &[BankSlotDelta]) {
let mut sc = self.status_cache.write().unwrap();
sc.append(slot_deltas);
}
}
pub type TransactionCheckResult = (Result<()>, Option<NoncePartial>);
pub struct TransactionResults {
pub fee_collection_results: Vec<Result<()>>,
pub execution_results: Vec<TransactionExecutionResult>,
pub rent_debits: Vec<RentDebits>,
}
#[derive(Debug, Clone)]
pub struct TransactionExecutionDetails {
pub status: Result<()>,
pub log_messages: Option<Vec<String>>,
pub inner_instructions: Option<InnerInstructionsList>,
pub durable_nonce_fee: Option<DurableNonceFee>,
}
/// Type safe representation of a transaction execution attempt which
/// differentiates between a transaction that was executed (will be
/// committed to the ledger) and a transaction which wasn't executed
/// and will be dropped.
///
/// Note: `Result<TransactionExecutionDetails, TransactionError>` is not
/// used because it's easy to forget that the inner `details.status` field
/// is what should be checked to detect a successful transaction. This
/// enum provides a convenience method `Self::was_executed_successfully` to
/// make such checks hard to do incorrectly.
#[derive(Debug, Clone)]
pub enum TransactionExecutionResult {
Executed(TransactionExecutionDetails),
NotExecuted(TransactionError),
}
impl TransactionExecutionResult {
pub fn was_executed_successfully(&self) -> bool {
match self {
Self::Executed(details) => details.status.is_ok(),
Self::NotExecuted { .. } => false,
}
}
pub fn was_executed(&self) -> bool {
match self {
Self::Executed(_) => true,
Self::NotExecuted(_) => false,
}
}
pub fn details(&self) -> Option<&TransactionExecutionDetails> {
match self {
Self::Executed(details) => Some(details),
Self::NotExecuted(_) => None,
}
}
pub fn flattened_result(&self) -> Result<()> {
match self {
Self::Executed(details) => details.status.clone(),
Self::NotExecuted(err) => Err(err.clone()),
}
}
}
pub struct LoadAndExecuteTransactionsOutput {
pub loaded_transactions: Vec<TransactionLoadResult>,
// Vector of results indicating whether a transaction was executed or could not
// be executed. Note executed transactions can still have failed!
pub execution_results: Vec<TransactionExecutionResult>,
pub retryable_transaction_indexes: Vec<usize>,
// Total number of transactions that were executed
pub executed_transactions_count: usize,
// Total number of the executed transactions that returned success/not
// an error.
pub executed_with_successful_result_count: usize,
pub signature_count: u64,
}
#[derive(Debug, Clone)]
pub enum DurableNonceFee {
Valid(u64),
Invalid,
}
impl From<&NonceFull> for DurableNonceFee {
fn from(nonce: &NonceFull) -> Self {
match nonce.lamports_per_signature() {
Some(lamports_per_signature) => Self::Valid(lamports_per_signature),
None => Self::Invalid,
}
}
}
impl DurableNonceFee {
pub fn lamports_per_signature(&self) -> Option<u64> {
match self {
Self::Valid(lamports_per_signature) => Some(*lamports_per_signature),
Self::Invalid => None,
}
}
}
pub struct TransactionSimulationResult {
pub result: Result<()>,
pub logs: TransactionLogMessages,
pub post_simulation_accounts: Vec<TransactionAccount>,
pub units_consumed: u64,
}
pub struct TransactionBalancesSet {
pub pre_balances: TransactionBalances,
pub post_balances: TransactionBalances,
}
impl TransactionBalancesSet {
pub fn new(pre_balances: TransactionBalances, post_balances: TransactionBalances) -> Self {
assert_eq!(pre_balances.len(), post_balances.len());
Self {
pre_balances,
post_balances,
}
}
}
pub type TransactionBalances = Vec<Vec<u64>>;
/// An ordered list of compiled instructions that were invoked during a
/// transaction instruction
pub type InnerInstructions = Vec<CompiledInstruction>;
/// A list of compiled instructions that were invoked during each instruction of
/// a transaction
pub type InnerInstructionsList = Vec<InnerInstructions>;
/// Convert from an IntrustionTrace to InnerInstructionsList
pub fn inner_instructions_list_from_instruction_trace(
instruction_trace: &InstructionTrace,
) -> InnerInstructionsList {
instruction_trace
.iter()
.map(|inner_instructions_trace| {
inner_instructions_trace
.iter()
.skip(1)
.map(|instruction_context| {
CompiledInstruction::new_from_raw_parts(
instruction_context.get_program_id_index() as u8,
instruction_context.get_instruction_data().to_vec(),
(instruction_context.get_number_of_program_accounts()
..instruction_context.get_number_of_accounts())
.map(|index_in_instruction| {
instruction_context
.get_index_in_transaction(index_in_instruction)
.unwrap_or_default() as u8
})
.collect(),
)
})
.collect()
})
.collect()
}
/// A list of log messages emitted during a transaction
pub type TransactionLogMessages = Vec<String>;
#[derive(Serialize, Deserialize, AbiExample, AbiEnumVisitor, Debug, PartialEq)]
pub enum TransactionLogCollectorFilter {
All,
AllWithVotes,
None,
OnlyMentionedAddresses,
}
impl Default for TransactionLogCollectorFilter {
fn default() -> Self {
Self::None
}
}
#[derive(AbiExample, Debug, Default)]
pub struct TransactionLogCollectorConfig {
pub mentioned_addresses: HashSet<Pubkey>,
pub filter: TransactionLogCollectorFilter,
}
#[derive(AbiExample, Clone, Debug, PartialEq)]
pub struct TransactionLogInfo {
pub signature: Signature,
pub result: Result<()>,
pub is_vote: bool,
pub log_messages: TransactionLogMessages,
}
#[derive(AbiExample, Default, Debug)]
pub struct TransactionLogCollector {
// All the logs collected for from this Bank. Exact contents depend on the
// active `TransactionLogCollectorFilter`
pub logs: Vec<TransactionLogInfo>,
// For each `mentioned_addresses`, maintain a list of indices into `logs` to easily
// locate the logs from transactions that included the mentioned addresses.
pub mentioned_address_map: HashMap<Pubkey, Vec<usize>>,
}
impl TransactionLogCollector {
pub fn get_logs_for_address(
&self,
address: Option<&Pubkey>,
) -> Option<Vec<TransactionLogInfo>> {
match address {
None => Some(self.logs.clone()),
Some(address) => self.mentioned_address_map.get(address).map(|log_indices| {
log_indices
.iter()
.filter_map(|i| self.logs.get(*i).cloned())
.collect()
}),
}
}
}
pub trait NonceInfo {
fn address(&self) -> &Pubkey;
fn account(&self) -> &AccountSharedData;
fn lamports_per_signature(&self) -> Option<u64>;
fn fee_payer_account(&self) -> Option<&AccountSharedData>;
}
/// Holds limited nonce info available during transaction checks
#[derive(Clone, Debug, Default, PartialEq)]
pub struct NoncePartial {
address: Pubkey,
account: AccountSharedData,
}
impl NoncePartial {
pub fn new(address: Pubkey, account: AccountSharedData) -> Self {
Self { address, account }
}
}
impl NonceInfo for NoncePartial {
fn address(&self) -> &Pubkey {
&self.address
}
fn account(&self) -> &AccountSharedData {
&self.account
}
fn lamports_per_signature(&self) -> Option<u64> {
nonce_account::lamports_per_signature_of(&self.account)
}
fn fee_payer_account(&self) -> Option<&AccountSharedData> {
None
}
}
/// Holds fee subtracted nonce info
#[derive(Clone, Debug, Default, PartialEq)]
pub struct NonceFull {
address: Pubkey,
account: AccountSharedData,
fee_payer_account: Option<AccountSharedData>,
}
impl NonceFull {
pub fn new(
address: Pubkey,
account: AccountSharedData,
fee_payer_account: Option<AccountSharedData>,
) -> Self {
Self {
address,
account,
fee_payer_account,
}
}
pub fn from_partial(
partial: NoncePartial,
message: &SanitizedMessage,
accounts: &[TransactionAccount],
rent_debits: &RentDebits,
) -> Result<Self> {
let fee_payer = (0..message.account_keys().len()).find_map(|i| {
if let Some((k, a)) = &accounts.get(i) {
if message.is_non_loader_key(i) {
return Some((k, a));
}
}
None
});
if let Some((fee_payer_address, fee_payer_account)) = fee_payer {
let mut fee_payer_account = fee_payer_account.clone();
let rent_debit = rent_debits.get_account_rent_debit(fee_payer_address);
fee_payer_account.set_lamports(fee_payer_account.lamports().saturating_add(rent_debit));
let nonce_address = *partial.address();
if *fee_payer_address == nonce_address {
Ok(Self::new(nonce_address, fee_payer_account, None))
} else {
Ok(Self::new(
nonce_address,
partial.account().clone(),
Some(fee_payer_account),
))
}
} else {
Err(TransactionError::AccountNotFound)
}
}
}
impl NonceInfo for NonceFull {
fn address(&self) -> &Pubkey {
&self.address
}
fn account(&self) -> &AccountSharedData {
&self.account
}
fn lamports_per_signature(&self) -> Option<u64> {
nonce_account::lamports_per_signature_of(&self.account)
}
fn fee_payer_account(&self) -> Option<&AccountSharedData> {
self.fee_payer_account.as_ref()
}
}
// Bank's common fields shared by all supported snapshot versions for deserialization.
// Sync fields with BankFieldsToSerialize! This is paired with it.
// All members are made public to remain Bank's members private and to make versioned deserializer workable on this
#[derive(Clone, Debug, Default)]
pub(crate) struct BankFieldsToDeserialize {
pub(crate) blockhash_queue: BlockhashQueue,
pub(crate) ancestors: AncestorsForSerialization,
pub(crate) hash: Hash,
pub(crate) parent_hash: Hash,
pub(crate) parent_slot: Slot,
pub(crate) hard_forks: HardForks,
pub(crate) transaction_count: u64,
pub(crate) tick_height: u64,
pub(crate) signature_count: u64,
pub(crate) capitalization: u64,
pub(crate) max_tick_height: u64,
pub(crate) hashes_per_tick: Option<u64>,
pub(crate) ticks_per_slot: u64,
pub(crate) ns_per_slot: u128,
pub(crate) genesis_creation_time: UnixTimestamp,
pub(crate) slots_per_year: f64,
pub(crate) slot: Slot,
pub(crate) epoch: Epoch,
pub(crate) block_height: u64,
pub(crate) collector_id: Pubkey,
pub(crate) collector_fees: u64,
pub(crate) fee_calculator: FeeCalculator,
pub(crate) fee_rate_governor: FeeRateGovernor,
pub(crate) collected_rent: u64,
pub(crate) rent_collector: RentCollector,
pub(crate) epoch_schedule: EpochSchedule,
pub(crate) inflation: Inflation,
pub(crate) stakes: Stakes,
pub(crate) epoch_stakes: HashMap<Epoch, EpochStakes>,
pub(crate) is_delta: bool,
}
// Bank's common fields shared by all supported snapshot versions for serialization.
// This is separated from BankFieldsToDeserialize to avoid cloning by using refs.
// So, sync fields with BankFieldsToDeserialize!
// all members are made public to keep Bank private and to make versioned serializer workable on this
#[derive(Debug)]
pub(crate) struct BankFieldsToSerialize<'a> {
pub(crate) blockhash_queue: &'a RwLock<BlockhashQueue>,
pub(crate) ancestors: &'a AncestorsForSerialization,
pub(crate) hash: Hash,
pub(crate) parent_hash: Hash,
pub(crate) parent_slot: Slot,
pub(crate) hard_forks: &'a RwLock<HardForks>,
pub(crate) transaction_count: u64,
pub(crate) tick_height: u64,
pub(crate) signature_count: u64,
pub(crate) capitalization: u64,
pub(crate) max_tick_height: u64,
pub(crate) hashes_per_tick: Option<u64>,
pub(crate) ticks_per_slot: u64,
pub(crate) ns_per_slot: u128,
pub(crate) genesis_creation_time: UnixTimestamp,
pub(crate) slots_per_year: f64,
pub(crate) slot: Slot,
pub(crate) epoch: Epoch,
pub(crate) block_height: u64,
pub(crate) collector_id: Pubkey,
pub(crate) collector_fees: u64,
pub(crate) fee_calculator: FeeCalculator,
pub(crate) fee_rate_governor: FeeRateGovernor,
pub(crate) collected_rent: u64,
pub(crate) rent_collector: RentCollector,
pub(crate) epoch_schedule: EpochSchedule,
pub(crate) inflation: Inflation,
pub(crate) stakes: &'a StakesCache,
pub(crate) epoch_stakes: &'a HashMap<Epoch, EpochStakes>,
pub(crate) is_delta: bool,
}
// Can't derive PartialEq because RwLock doesn't implement PartialEq
impl PartialEq for Bank {
fn eq(&self, other: &Self) -> bool {
if ptr::eq(self, other) {
return true;
}
*self.blockhash_queue.read().unwrap() == *other.blockhash_queue.read().unwrap()
&& self.ancestors == other.ancestors
&& *self.hash.read().unwrap() == *other.hash.read().unwrap()
&& self.parent_hash == other.parent_hash
&& self.parent_slot == other.parent_slot
&& *self.hard_forks.read().unwrap() == *other.hard_forks.read().unwrap()
&& self.transaction_count.load(Relaxed) == other.transaction_count.load(Relaxed)
&& self.tick_height.load(Relaxed) == other.tick_height.load(Relaxed)
&& self.signature_count.load(Relaxed) == other.signature_count.load(Relaxed)
&& self.capitalization.load(Relaxed) == other.capitalization.load(Relaxed)
&& self.max_tick_height == other.max_tick_height
&& self.hashes_per_tick == other.hashes_per_tick
&& self.ticks_per_slot == other.ticks_per_slot
&& self.ns_per_slot == other.ns_per_slot
&& self.genesis_creation_time == other.genesis_creation_time
&& self.slots_per_year == other.slots_per_year
&& self.slot == other.slot
&& self.epoch == other.epoch
&& self.block_height == other.block_height
&& self.collector_id == other.collector_id
&& self.collector_fees.load(Relaxed) == other.collector_fees.load(Relaxed)
&& self.fee_calculator == other.fee_calculator
&& self.fee_rate_governor == other.fee_rate_governor
&& self.collected_rent.load(Relaxed) == other.collected_rent.load(Relaxed)
&& self.rent_collector == other.rent_collector
&& self.epoch_schedule == other.epoch_schedule
&& *self.inflation.read().unwrap() == *other.inflation.read().unwrap()
&& *self.stakes_cache.stakes() == *other.stakes_cache.stakes()
&& self.epoch_stakes == other.epoch_stakes
&& self.is_delta.load(Relaxed) == other.is_delta.load(Relaxed)
}
}
#[derive(Debug, PartialEq, Serialize, Deserialize, AbiExample, AbiEnumVisitor, Clone, Copy)]
pub enum RewardType {
Fee,
Rent,
Staking,
Voting,
}
#[derive(Debug)]
pub enum RewardCalculationEvent<'a, 'b> {
Staking(&'a Pubkey, &'b InflationPointCalculationEvent),
}
fn null_tracer() -> Option<impl Fn(&RewardCalculationEvent) + Send + Sync> {
None::<fn(&RewardCalculationEvent)>
}
impl fmt::Display for RewardType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}",
match self {
RewardType::Fee => "fee",
RewardType::Rent => "rent",
RewardType::Staking => "staking",
RewardType::Voting => "voting",
}
)
}
}
pub trait DropCallback: fmt::Debug {
fn callback(&self, b: &Bank);
fn clone_box(&self) -> Box<dyn DropCallback + Send + Sync>;
}
/// Noop callback on dropping banks is useful for simulation banks, which are
/// new banks created from a frozen bank, but should not be purged in the same
/// way.
#[derive(Debug, Clone)]
struct NoopDropCallback;
impl DropCallback for NoopDropCallback {
fn callback(&self, _b: &Bank) {}
fn clone_box(&self) -> Box<dyn DropCallback + Send + Sync> {
Box::new(self.clone())
}
}
#[derive(Debug, PartialEq, Serialize, Deserialize, AbiExample, Clone, Copy)]
pub struct RewardInfo {
pub reward_type: RewardType,
pub lamports: i64, // Reward amount
pub post_balance: u64, // Account balance in lamports after `lamports` was applied
pub commission: Option<u8>, // Vote account commission when the reward was credited, only present for voting and staking rewards
}
#[derive(Debug, Default)]
pub struct OptionalDropCallback(Option<Box<dyn DropCallback + Send + Sync>>);
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl AbiExample for OptionalDropCallback {
fn example() -> Self {
Self(None)
}
}
#[derive(Debug, Clone, Default)]
pub struct BuiltinPrograms {
pub vec: Vec<BuiltinProgram>,
}
#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl AbiExample for BuiltinPrograms {
fn example() -> Self {
Self::default()
}
}
/// Manager for the state of all accounts and programs after processing its entries.
/// AbiExample is needed even without Serialize/Deserialize; actual (de-)serialization
/// are implemented elsewhere for versioning
#[derive(AbiExample, Debug)]
pub struct Bank {
/// References to accounts, parent and signature status
pub rc: BankRc,
pub src: StatusCacheRc,
/// FIFO queue of `recent_blockhash` items
blockhash_queue: RwLock<BlockhashQueue>,
/// The set of parents including this bank
pub ancestors: Ancestors,
/// Hash of this Bank's state. Only meaningful after freezing.
hash: RwLock<Hash>,
/// Hash of this Bank's parent's state
parent_hash: Hash,
/// parent's slot
parent_slot: Slot,
/// slots to hard fork at
hard_forks: Arc<RwLock<HardForks>>,
/// The number of transactions processed without error
transaction_count: AtomicU64,
/// The number of transaction errors in this slot
transaction_error_count: AtomicU64,
/// The number of transaction entries in this slot
transaction_entries_count: AtomicU64,
/// The max number of transaction in an entry in this slot
transactions_per_entry_max: AtomicU64,
/// Bank tick height
tick_height: AtomicU64,
/// The number of signatures from valid transactions in this slot
signature_count: AtomicU64,
/// Total capitalization, used to calculate inflation
capitalization: AtomicU64,
// Bank max_tick_height
max_tick_height: u64,
/// The number of hashes in each tick. None value means hashing is disabled.
hashes_per_tick: Option<u64>,
/// The number of ticks in each slot.
ticks_per_slot: u64,
/// length of a slot in ns
pub ns_per_slot: u128,
/// genesis time, used for computed clock
genesis_creation_time: UnixTimestamp,
/// The number of slots per year, used for inflation
slots_per_year: f64,
/// Bank slot (i.e. block)
slot: Slot,
bank_id: BankId,
/// Bank epoch
epoch: Epoch,
/// Bank block_height
block_height: u64,
/// The pubkey to send transactions fees to.
collector_id: Pubkey,
/// Fees that have been collected
collector_fees: AtomicU64,
/// Deprecated, do not use
/// Latest transaction fees for transactions processed by this bank
fee_calculator: FeeCalculator,
/// Track cluster signature throughput and adjust fee rate
fee_rate_governor: FeeRateGovernor,
/// Rent that has been collected
collected_rent: AtomicU64,
/// latest rent collector, knows the epoch
rent_collector: RentCollector,
/// initialized from genesis
epoch_schedule: EpochSchedule,
/// inflation specs
inflation: Arc<RwLock<Inflation>>,
/// cache of vote_account and stake_account state for this fork
stakes_cache: StakesCache,
/// staked nodes on epoch boundaries, saved off when a bank.slot() is at
/// a leader schedule calculation boundary
epoch_stakes: HashMap<Epoch, EpochStakes>,
/// A boolean reflecting whether any entries were recorded into the PoH
/// stream for the slot == self.slot
is_delta: AtomicBool,
/// The builtin programs
builtin_programs: BuiltinPrograms,
compute_budget: Option<ComputeBudget>,
/// Dynamic feature transitions for builtin programs
#[allow(clippy::rc_buffer)]
builtin_feature_transitions: Arc<Vec<BuiltinFeatureTransition>>,
/// Protocol-level rewards that were distributed by this bank
pub rewards: RwLock<Vec<(Pubkey, RewardInfo)>>,
pub cluster_type: Option<ClusterType>,
pub lazy_rent_collection: AtomicBool,
// this is temporary field only to remove rewards_pool entirely
pub rewards_pool_pubkeys: Arc<HashSet<Pubkey>>,
/// Cached executors
// Inner Arc is meant to implement copy-on-write semantics as opposed to
// sharing mutations (hence RwLock<Arc<...>> instead of Arc<RwLock<...>>).
cached_executors: RwLock<Arc<CachedExecutors>>,
transaction_debug_keys: Option<Arc<HashSet<Pubkey>>>,
// Global configuration for how transaction logs should be collected across all banks
pub transaction_log_collector_config: Arc<RwLock<TransactionLogCollectorConfig>>,
// Logs from transactions that this Bank executed collected according to the criteria in
// `transaction_log_collector_config`
pub transaction_log_collector: Arc<RwLock<TransactionLogCollector>>,
pub feature_set: Arc<FeatureSet>,
pub drop_callback: RwLock<OptionalDropCallback>,
pub freeze_started: AtomicBool,
vote_only_bank: bool,
pub cost_tracker: RwLock<CostTracker>,
sysvar_cache: RwLock<SysvarCache>,
/// Current size of the accounts data. Used when processing messages to enforce a limit on its
/// maximum size.
accounts_data_len: AtomicU64,
/// Transaction fee structure
pub fee_structure: FeeStructure,
}
impl Default for BlockhashQueue {
fn default() -> Self {
Self::new(MAX_RECENT_BLOCKHASHES)
}
}
struct VoteWithStakeDelegations {
vote_state: Arc<VoteState>,
vote_account: AccountSharedData,
delegations: Vec<(Pubkey, (StakeState, AccountSharedData))>,
}
struct LoadVoteAndStakeAccountsResult {
vote_with_stake_delegations_map: DashMap<Pubkey, VoteWithStakeDelegations>,
invalid_stake_keys: DashMap<Pubkey, InvalidCacheEntryReason>,
invalid_vote_keys: DashMap<Pubkey, InvalidCacheEntryReason>,
}
#[derive(Debug, Default)]
pub struct NewBankOptions {
pub vote_only_bank: bool,
pub simulation_bank: bool,
}
impl Bank {
pub fn default_for_tests() -> Self {
Self::default_with_accounts(Accounts::default_for_tests())
}
pub fn new_for_benches(genesis_config: &GenesisConfig) -> Self {
// this will diverge
Self::new_for_tests(genesis_config)
}
pub fn new_for_tests(genesis_config: &GenesisConfig) -> Self {
// this will diverge
Self::new_with_paths_for_tests(
genesis_config,
Vec::new(),
None,
None,
AccountSecondaryIndexes::default(),
false,
AccountShrinkThreshold::default(),
false,
)
}
pub fn new_no_wallclock_throttle_for_tests(genesis_config: &GenesisConfig) -> Self {
let mut bank = Self::new_with_paths_for_tests(
genesis_config,
Vec::new(),
None,
None,
AccountSecondaryIndexes::default(),
false,
AccountShrinkThreshold::default(),
false,
);
bank.ns_per_slot = std::u128::MAX;
bank
}
#[cfg(test)]
pub(crate) fn new_with_config(
genesis_config: &GenesisConfig,
account_indexes: AccountSecondaryIndexes,
accounts_db_caching_enabled: bool,
shrink_ratio: AccountShrinkThreshold,
) -> Self {
Self::new_with_paths_for_tests(
genesis_config,
Vec::new(),
None,
None,
account_indexes,
accounts_db_caching_enabled,
shrink_ratio,
false,
)
}
fn default_with_accounts(accounts: Accounts) -> Self {
let bank = Self {
rc: BankRc::new(accounts, Slot::default()),
src: StatusCacheRc::default(),
blockhash_queue: RwLock::<BlockhashQueue>::default(),
ancestors: Ancestors::default(),
hash: RwLock::<Hash>::default(),
parent_hash: Hash::default(),
parent_slot: Slot::default(),
hard_forks: Arc::<RwLock<HardForks>>::default(),
transaction_count: AtomicU64::default(),
transaction_error_count: AtomicU64::default(),
transaction_entries_count: AtomicU64::default(),
transactions_per_entry_max: AtomicU64::default(),
tick_height: AtomicU64::default(),
signature_count: AtomicU64::default(),
capitalization: AtomicU64::default(),
max_tick_height: u64::default(),
hashes_per_tick: Option::<u64>::default(),
ticks_per_slot: u64::default(),
ns_per_slot: u128::default(),
genesis_creation_time: UnixTimestamp::default(),
slots_per_year: f64::default(),
slot: Slot::default(),
bank_id: BankId::default(),
epoch: Epoch::default(),
block_height: u64::default(),
collector_id: Pubkey::default(),
collector_fees: AtomicU64::default(),
fee_calculator: FeeCalculator::default(),
fee_rate_governor: FeeRateGovernor::default(),
collected_rent: AtomicU64::default(),
rent_collector: RentCollector::default(),
epoch_schedule: EpochSchedule::default(),
inflation: Arc::<RwLock<Inflation>>::default(),
stakes_cache: StakesCache::default(),
epoch_stakes: HashMap::<Epoch, EpochStakes>::default(),
is_delta: AtomicBool::default(),
builtin_programs: BuiltinPrograms::default(),
compute_budget: Option::<ComputeBudget>::default(),
builtin_feature_transitions: Arc::<Vec<BuiltinFeatureTransition>>::default(),
rewards: RwLock::<Vec<(Pubkey, RewardInfo)>>::default(),
cluster_type: Option::<ClusterType>::default(),
lazy_rent_collection: AtomicBool::default(),
rewards_pool_pubkeys: Arc::<HashSet<Pubkey>>::default(),
cached_executors: RwLock::<Arc<CachedExecutors>>::default(),
transaction_debug_keys: Option::<Arc<HashSet<Pubkey>>>::default(),
transaction_log_collector_config: Arc::<RwLock<TransactionLogCollectorConfig>>::default(
),
transaction_log_collector: Arc::<RwLock<TransactionLogCollector>>::default(),
feature_set: Arc::<FeatureSet>::default(),
drop_callback: RwLock::<OptionalDropCallback>::default(),
freeze_started: AtomicBool::default(),
vote_only_bank: false,
cost_tracker: RwLock::<CostTracker>::default(),
sysvar_cache: RwLock::<SysvarCache>::default(),
accounts_data_len: AtomicU64::default(),
fee_structure: FeeStructure::default(),
};
let total_accounts_stats = bank.get_total_accounts_stats().unwrap();
bank.store_accounts_data_len(total_accounts_stats.data_len as u64);
bank
}
pub fn new_with_paths_for_tests(
genesis_config: &GenesisConfig,
paths: Vec<PathBuf>,
debug_keys: Option<Arc<HashSet<Pubkey>>>,
additional_builtins: Option<&Builtins>,
account_indexes: AccountSecondaryIndexes,
accounts_db_caching_enabled: bool,
shrink_ratio: AccountShrinkThreshold,
debug_do_not_add_builtins: bool,
) -> Self {
Self::new_with_paths(
genesis_config,
paths,
debug_keys,
additional_builtins,
account_indexes,
accounts_db_caching_enabled,
shrink_ratio,
debug_do_not_add_builtins,
Some(ACCOUNTS_DB_CONFIG_FOR_TESTING),
None,
)
}
pub fn new_with_paths_for_benches(
genesis_config: &GenesisConfig,
paths: Vec<PathBuf>,
debug_keys: Option<Arc<HashSet<Pubkey>>>,
additional_builtins: Option<&Builtins>,
account_indexes: AccountSecondaryIndexes,
accounts_db_caching_enabled: bool,
shrink_ratio: AccountShrinkThreshold,
debug_do_not_add_builtins: bool,
) -> Self {
Self::new_with_paths(
genesis_config,
paths,
debug_keys,
additional_builtins,
account_indexes,
accounts_db_caching_enabled,
shrink_ratio,
debug_do_not_add_builtins,
Some(ACCOUNTS_DB_CONFIG_FOR_BENCHMARKS),
None,
)
}
#[allow(clippy::too_many_arguments)]
pub fn new_with_paths(
genesis_config: &GenesisConfig,
paths: Vec<PathBuf>,
debug_keys: Option<Arc<HashSet<Pubkey>>>,
additional_builtins: Option<&Builtins>,
account_indexes: AccountSecondaryIndexes,
accounts_db_caching_enabled: bool,
shrink_ratio: AccountShrinkThreshold,
debug_do_not_add_builtins: bool,
accounts_db_config: Option<AccountsDbConfig>,
accounts_update_notifier: Option<AccountsUpdateNotifier>,
) -> Self {
let accounts = Accounts::new_with_config(
paths,
&genesis_config.cluster_type,
account_indexes,
accounts_db_caching_enabled,
shrink_ratio,
accounts_db_config,
accounts_update_notifier,
);
let mut bank = Self::default_with_accounts(accounts);
bank.ancestors = Ancestors::from(vec![bank.slot()]);
bank.transaction_debug_keys = debug_keys;
bank.cluster_type = Some(genesis_config.cluster_type);
bank.process_genesis_config(genesis_config);
bank.finish_init(
genesis_config,
additional_builtins,
debug_do_not_add_builtins,
);
// genesis needs stakes for all epochs up to the epoch implied by
// slot = 0 and genesis configuration
{
let stakes = bank.stakes_cache.stakes();
for epoch in 0..=bank.get_leader_schedule_epoch(bank.slot) {
bank.epoch_stakes
.insert(epoch, EpochStakes::new(&stakes, epoch));
}
bank.update_stake_history(None);
}
bank.update_clock(None);
bank.update_rent();
bank.update_epoch_schedule();
bank.update_recent_blockhashes();
bank.fill_missing_sysvar_cache_entries();
bank
}
/// Create a new bank that points to an immutable checkpoint of another bank.
pub fn new_from_parent(parent: &Arc<Bank>, collector_id: &Pubkey, slot: Slot) -> Self {
Self::_new_from_parent(
parent,
collector_id,
slot,
null_tracer(),
NewBankOptions::default(),
)
}
pub fn new_from_parent_with_options(
parent: &Arc<Bank>,
collector_id: &Pubkey,
slot: Slot,
new_bank_options: NewBankOptions,
) -> Self {
Self::_new_from_parent(parent, collector_id, slot, null_tracer(), new_bank_options)
}
pub fn new_from_parent_with_tracer(
parent: &Arc<Bank>,
collector_id: &Pubkey,
slot: Slot,
reward_calc_tracer: impl Fn(&RewardCalculationEvent) + Send + Sync,
) -> Self {
Self::_new_from_parent(
parent,
collector_id,
slot,
Some(reward_calc_tracer),
NewBankOptions::default(),
)
}
fn get_rent_collector_from(rent_collector: &RentCollector, epoch: Epoch) -> RentCollector {
rent_collector.clone_with_epoch(epoch)
}
fn _new_from_parent(
parent: &Arc<Bank>,
collector_id: &Pubkey,
slot: Slot,
reward_calc_tracer: Option<impl Fn(&RewardCalculationEvent) + Send + Sync>,
new_bank_options: NewBankOptions,
) -> Self {
let mut time = Measure::start("bank::new_from_parent");
let NewBankOptions {
vote_only_bank,
simulation_bank,
} = new_bank_options;
parent.freeze();
assert_ne!(slot, parent.slot());
let epoch_schedule = parent.epoch_schedule;
let epoch = epoch_schedule.get_epoch(slot);
let (rc, bank_rc_time) = Measure::this(
|_| BankRc {
accounts: Arc::new(Accounts::new_from_parent(
&parent.rc.accounts,
slot,
parent.slot(),
simulation_bank,
)),
parent: RwLock::new(Some(parent.clone())),
slot,
bank_id_generator: parent.rc.bank_id_generator.clone(),
},
(),
"bank_rc_creation",
);
let (src, status_cache_rc_time) = Measure::this(
|_| StatusCacheRc {
status_cache: parent.src.status_cache.clone(),
},
(),
"status_cache_rc_creation",
);
let ((fee_rate_governor, fee_calculator), fee_components_time) = Measure::this(
|_| {
let fee_rate_governor = FeeRateGovernor::new_derived(
&parent.fee_rate_governor,
parent.signature_count(),
);
let fee_calculator = if parent.feature_set.is_active(&disable_fee_calculator::id())
{
FeeCalculator::default()
} else {
fee_rate_governor.create_fee_calculator()
};
(fee_rate_governor, fee_calculator)
},
(),
"fee_components_creation",
);
let bank_id = rc.bank_id_generator.fetch_add(1, Relaxed) + 1;
let (blockhash_queue, blockhash_queue_time) = Measure::this(
|_| RwLock::new(parent.blockhash_queue.read().unwrap().clone()),
(),
"blockhash_queue_creation",
);
let (stakes_cache, stakes_cache_time) = Measure::this(
|_| StakesCache::new(parent.stakes_cache.stakes().clone()),
(),
"stakes_cache_creation",
);
let (epoch_stakes, epoch_stakes_time) =
Measure::this(|_| parent.epoch_stakes.clone(), (), "epoch_stakes_reation");
let (builtin_programs, builtin_programs_time) = Measure::this(
|_| parent.builtin_programs.clone(),
(),
"builtin_programs_creation",
);
let (rewards_pool_pubkeys, rewards_pool_pubkeys_time) = Measure::this(
|_| parent.rewards_pool_pubkeys.clone(),
(),
"rewards_pool_pubkeys_creation",
);
let (cached_executors, cached_executors_time) = Measure::this(
|_| {
let cached_executors = parent.cached_executors.read().unwrap();
RwLock::new(cached_executors.clone_with_epoch(epoch))
},
(),
"cached_executors_creation",
);
let (transaction_debug_keys, transaction_debug_keys_time) = Measure::this(
|_| parent.transaction_debug_keys.clone(),
(),
"transation_debug_keys_creation",
);
let (transaction_log_collector_config, transaction_log_collector_config_time) =
Measure::this(
|_| parent.transaction_log_collector_config.clone(),
(),
"transaction_log_collector_config_creation",
);
let (feature_set, feature_set_time) =
Measure::this(|_| parent.feature_set.clone(), (), "feature_set_creation");
let drop_callback = if simulation_bank {
RwLock::new(OptionalDropCallback(Some(Box::new(NoopDropCallback))))
} else {
RwLock::new(OptionalDropCallback(
parent
.drop_callback
.read()
.unwrap()
.0
.as_ref()
.map(|drop_callback| drop_callback.clone_box()),
))
};
let mut new = Bank {
rc,
src,
slot,
bank_id,
epoch,
blockhash_queue,
// TODO: clean this up, so much special-case copying...
hashes_per_tick: parent.hashes_per_tick,
ticks_per_slot: parent.ticks_per_slot,
ns_per_slot: parent.ns_per_slot,
genesis_creation_time: parent.genesis_creation_time,
slots_per_year: parent.slots_per_year,
epoch_schedule,
collected_rent: AtomicU64::new(0),
rent_collector: Self::get_rent_collector_from(&parent.rent_collector, epoch),
max_tick_height: (slot + 1) * parent.ticks_per_slot,
block_height: parent.block_height + 1,
fee_calculator,
fee_rate_governor,
capitalization: AtomicU64::new(parent.capitalization()),
vote_only_bank,
inflation: parent.inflation.clone(),
transaction_count: AtomicU64::new(parent.transaction_count()),
transaction_error_count: AtomicU64::new(0),
transaction_entries_count: AtomicU64::new(0),
transactions_per_entry_max: AtomicU64::new(0),
// we will .clone_with_epoch() this soon after stake data update; so just .clone() for now
stakes_cache,
epoch_stakes,
parent_hash: parent.hash(),
parent_slot: parent.slot(),
collector_id: *collector_id,
collector_fees: AtomicU64::new(0),
ancestors: Ancestors::default(),
hash: RwLock::new(Hash::default()),
is_delta: AtomicBool::new(false),
tick_height: AtomicU64::new(parent.tick_height.load(Relaxed)),
signature_count: AtomicU64::new(0),
builtin_programs,
compute_budget: parent.compute_budget,
builtin_feature_transitions: parent.builtin_feature_transitions.clone(),
hard_forks: parent.hard_forks.clone(),
rewards: RwLock::new(vec![]),
cluster_type: parent.cluster_type,
lazy_rent_collection: AtomicBool::new(parent.lazy_rent_collection.load(Relaxed)),
rewards_pool_pubkeys,
cached_executors,
transaction_debug_keys,
transaction_log_collector_config,
transaction_log_collector: Arc::new(RwLock::new(TransactionLogCollector::default())),
feature_set,
drop_callback,
freeze_started: AtomicBool::new(false),
cost_tracker: RwLock::new(CostTracker::default()),
sysvar_cache: RwLock::new(SysvarCache::default()),
accounts_data_len: AtomicU64::new(parent.load_accounts_data_len()),
fee_structure: parent.fee_structure.clone(),
};
let (_, ancestors_time) = Measure::this(
|_| {
let mut ancestors = Vec::with_capacity(1 + new.parents().len());
ancestors.push(new.slot());
new.parents().iter().for_each(|p| {
ancestors.push(p.slot());
});
new.ancestors = Ancestors::from(ancestors);
},
(),
"ancestors_creation",
);
// Following code may touch AccountsDb, requiring proper ancestors
let parent_epoch = parent.epoch();
let (_, update_epoch_time) = Measure::this(
|_| {
if parent_epoch < new.epoch() {
let (thread_pool, thread_pool_time) = Measure::this(
|_| ThreadPoolBuilder::new().build().unwrap(),
(),
"thread_pool_creation",
);
let (_, apply_feature_activations_time) = Measure::this(
|_| new.apply_feature_activations(false, false),
(),
"apply_feature_activation",
);
// Add new entry to stakes.stake_history, set appropriate epoch and
// update vote accounts with warmed up stakes before saving a
// snapshot of stakes in epoch stakes
let (_, activate_epoch_time) = Measure::this(
|_| new.stakes_cache.activate_epoch(epoch, &thread_pool),
(),
"activate_epoch",
);
// Save a snapshot of stakes for use in consensus and stake weighted networking
let leader_schedule_epoch = epoch_schedule.get_leader_schedule_epoch(slot);
let (_, update_epoch_stakes_time) = Measure::this(
|_| new.update_epoch_stakes(leader_schedule_epoch),
(),
"update_epoch_stakes",
);
// After saving a snapshot of stakes, apply stake rewards and commission
let (_, update_rewards_with_thread_pool_time) = Measure::this(
|_| {
new.update_rewards_with_thread_pool(
parent_epoch,
reward_calc_tracer,
&thread_pool,
)
},
(),
"update_rewards_with_thread_pool",
);
datapoint_info!(
"bank-new_from_parent-new_epoch_timings",
("epoch", new.epoch(), i64),
("slot", slot, i64),
("parent_slot", parent.slot(), i64),
("thread_pool_creation_us", thread_pool_time.as_us(), i64),
(
"apply_feature_activations",
apply_feature_activations_time.as_us(),
i64
),
("activate_epoch_Us", activate_epoch_time.as_us(), i64),
(
"update_epoch_stakes_us",
update_epoch_stakes_time.as_us(),
i64
),
(
"update_rewards_with_thread_pool_us",
update_rewards_with_thread_pool_time.as_us(),
i64
),
);
} else {
// Save a snapshot of stakes for use in consensus and stake weighted networking
let leader_schedule_epoch = epoch_schedule.get_leader_schedule_epoch(slot);
new.update_epoch_stakes(leader_schedule_epoch);
}
},
(),
"update_epoch",
);
// Update sysvars before processing transactions
let (_, update_sysvars_time) = Measure::this(
|_| {
new.update_slot_hashes();
new.update_stake_history(Some(parent_epoch));
new.update_clock(Some(parent_epoch));
new.update_fees();
},
(),
"update_sysvars",
);
let (_, fill_sysvar_cache_time) = Measure::this(
|_| new.fill_missing_sysvar_cache_entries(),
(),
"fill_sysvar_cache",
);
time.stop();
datapoint_info!(
"bank-new_from_parent-heights",
("slot_height", slot, i64),
("block_height", new.block_height, i64),
("parent_slot", parent.slot(), i64),
("bank_rc_creation_us", bank_rc_time.as_us(), i64),
("total_elapsed_us", time.as_us(), i64),
("status_cache_rc_us", status_cache_rc_time.as_us(), i64),
("fee_components_us", fee_components_time.as_us(), i64),
("blockhash_queue_us", blockhash_queue_time.as_us(), i64),
("stakes_cache_us", stakes_cache_time.as_us(), i64),
("epoch_stakes_time_us", epoch_stakes_time.as_us(), i64),
("builtin_programs_us", builtin_programs_time.as_us(), i64),
(
"rewards_pool_pubkeys_us",
rewards_pool_pubkeys_time.as_us(),
i64
),
("cached_executors_us", cached_executors_time.as_us(), i64),
(
"transaction_debug_keys_us",
transaction_debug_keys_time.as_us(),
i64
),
(
"transaction_log_collector_config_us",
transaction_log_collector_config_time.as_us(),
i64
),
("feature_set_us", feature_set_time.as_us(), i64),
("ancestors_us", ancestors_time.as_us(), i64),
("update_epoch_us", update_epoch_time.as_us(), i64),
("update_sysvars_us", update_sysvars_time.as_us(), i64),
("fill_sysvar_cache_us", fill_sysvar_cache_time.as_us(), i64),
);
parent
.cached_executors
.read()
.unwrap()
.stats
.submit(parent.slot());
new
}
pub fn byte_limit_for_scans(&self) -> Option<usize> {
self.rc
.accounts
.accounts_db
.accounts_index
.scan_results_limit_bytes
}
pub fn proper_ancestors_set(&self) -> HashSet<Slot> {
HashSet::from_iter(self.proper_ancestors())
}
/// Returns all ancestors excluding self.slot.
pub(crate) fn proper_ancestors(&self) -> impl Iterator<Item = Slot> + '_ {
self.ancestors
.keys()
.into_iter()
.filter(move |slot| *slot != self.slot)
}
pub fn set_callback(&self, callback: Option<Box<dyn DropCallback + Send + Sync>>) {
*self.drop_callback.write().unwrap() = OptionalDropCallback(callback);
}
pub fn vote_only_bank(&self) -> bool {
self.vote_only_bank
}
/// Like `new_from_parent` but additionally:
/// * Doesn't assume that the parent is anywhere near `slot`, parent could be millions of slots
/// in the past
/// * Adjusts the new bank's tick height to avoid having to run PoH for millions of slots
/// * Freezes the new bank, assuming that the user will `Bank::new_from_parent` from this bank
pub fn warp_from_parent(parent: &Arc<Bank>, collector_id: &Pubkey, slot: Slot) -> Self {
let parent_timestamp = parent.clock().unix_timestamp;
let mut new = Bank::new_from_parent(parent, collector_id, slot);
new.apply_feature_activations(true, false);
new.update_epoch_stakes(new.epoch_schedule().get_epoch(slot));
new.tick_height.store(new.max_tick_height(), Relaxed);
let mut clock = new.clock();
clock.epoch_start_timestamp = parent_timestamp;
clock.unix_timestamp = parent_timestamp;
new.update_sysvar_account(&sysvar::clock::id(), |account| {
create_account(
&clock,
new.inherit_specially_retained_account_fields(account),
)
});
new.fill_missing_sysvar_cache_entries();
new.freeze();
new
}
/// Create a bank from explicit arguments and deserialized fields from snapshot
#[allow(clippy::float_cmp)]
pub(crate) fn new_from_fields(
bank_rc: BankRc,
genesis_config: &GenesisConfig,
fields: BankFieldsToDeserialize,
debug_keys: Option<Arc<HashSet<Pubkey>>>,
additional_builtins: Option<&Builtins>,
debug_do_not_add_builtins: bool,
accounts_data_len: u64,
) -> Self {
fn new<T: Default>() -> T {
T::default()
}
let mut bank = Self {
rc: bank_rc,
src: new(),
blockhash_queue: RwLock::new(fields.blockhash_queue),
ancestors: Ancestors::from(&fields.ancestors),
hash: RwLock::new(fields.hash),
parent_hash: fields.parent_hash,
parent_slot: fields.parent_slot,
hard_forks: Arc::new(RwLock::new(fields.hard_forks)),
transaction_count: AtomicU64::new(fields.transaction_count),
transaction_error_count: new(),
transaction_entries_count: new(),
transactions_per_entry_max: new(),
tick_height: AtomicU64::new(fields.tick_height),
signature_count: AtomicU64::new(fields.signature_count),
capitalization: AtomicU64::new(fields.capitalization),
max_tick_height: fields.max_tick_height,
hashes_per_tick: fields.hashes_per_tick,
ticks_per_slot: fields.ticks_per_slot,
ns_per_slot: fields.ns_per_slot,
genesis_creation_time: fields.genesis_creation_time,
slots_per_year: fields.slots_per_year,
slot: fields.slot,
bank_id: 0,
epoch: fields.epoch,
block_height: fields.block_height,
collector_id: fields.collector_id,
collector_fees: AtomicU64::new(fields.collector_fees),
fee_calculator: fields.fee_calculator,
fee_rate_governor: fields.fee_rate_governor,
collected_rent: AtomicU64::new(fields.collected_rent),
// clone()-ing is needed to consider a gated behavior in rent_collector
rent_collector: Self::get_rent_collector_from(&fields.rent_collector, fields.epoch),
epoch_schedule: fields.epoch_schedule,
inflation: Arc::new(RwLock::new(fields.inflation)),
stakes_cache: StakesCache::new(fields.stakes),
epoch_stakes: fields.epoch_stakes,
is_delta: AtomicBool::new(fields.is_delta),
builtin_programs: new(),
compute_budget: None,
builtin_feature_transitions: new(),
rewards: new(),
cluster_type: Some(genesis_config.cluster_type),
lazy_rent_collection: new(),
rewards_pool_pubkeys: new(),
cached_executors: RwLock::new(Arc::new(CachedExecutors::new(
MAX_CACHED_EXECUTORS,
fields.epoch,
))),
transaction_debug_keys: debug_keys,
transaction_log_collector_config: new(),
transaction_log_collector: new(),
feature_set: new(),
drop_callback: RwLock::new(OptionalDropCallback(None)),
freeze_started: AtomicBool::new(fields.hash != Hash::default()),
vote_only_bank: false,
cost_tracker: RwLock::new(CostTracker::default()),
sysvar_cache: RwLock::new(SysvarCache::default()),
accounts_data_len: AtomicU64::new(accounts_data_len),
fee_structure: FeeStructure::default(),
};
bank.finish_init(
genesis_config,
additional_builtins,
debug_do_not_add_builtins,
);
// Sanity assertions between bank snapshot and genesis config
// Consider removing from serializable bank state
// (BankFieldsToSerialize/BankFieldsToDeserialize) and initializing
// from the passed in genesis_config instead (as new()/new_with_paths() already do)
assert_eq!(
bank.hashes_per_tick,
genesis_config.poh_config.hashes_per_tick
);
assert_eq!(bank.ticks_per_slot, genesis_config.ticks_per_slot);
assert_eq!(
bank.ns_per_slot,
genesis_config.poh_config.target_tick_duration.as_nanos()
* genesis_config.ticks_per_slot as u128
);
assert_eq!(bank.genesis_creation_time, genesis_config.creation_time);
assert_eq!(bank.max_tick_height, (bank.slot + 1) * bank.ticks_per_slot);
assert_eq!(
bank.slots_per_year,
years_as_slots(
1.0,
&genesis_config.poh_config.target_tick_duration,
bank.ticks_per_slot,
)
);
assert_eq!(bank.epoch_schedule, genesis_config.epoch_schedule);
assert_eq!(bank.epoch, bank.epoch_schedule.get_epoch(bank.slot));
if !bank.feature_set.is_active(&disable_fee_calculator::id()) {
bank.fee_rate_governor.lamports_per_signature =
bank.fee_calculator.lamports_per_signature;
assert_eq!(
bank.fee_rate_governor.create_fee_calculator(),
bank.fee_calculator
);
}
bank
}
/// Return subset of bank fields representing serializable state
pub(crate) fn get_fields_to_serialize<'a>(
&'a self,
ancestors: &'a HashMap<Slot, usize>,
) -> BankFieldsToSerialize<'a> {
BankFieldsToSerialize {
blockhash_queue: &self.blockhash_queue,
ancestors,
hash: *self.hash.read().unwrap(),
parent_hash: self.parent_hash,
parent_slot: self.parent_slot,
hard_forks: &*self.hard_forks,
transaction_count: self.transaction_count.load(Relaxed),
tick_height: self.tick_height.load(Relaxed),
signature_count: self.signature_count.load(Relaxed),
capitalization: self.capitalization.load(Relaxed),
max_tick_height: self.max_tick_height,
hashes_per_tick: self.hashes_per_tick,
ticks_per_slot: self.ticks_per_slot,
ns_per_slot: self.ns_per_slot,
genesis_creation_time: self.genesis_creation_time,
slots_per_year: self.slots_per_year,
slot: self.slot,
epoch: self.epoch,
block_height: self.block_height,
collector_id: self.collector_id,
collector_fees: self.collector_fees.load(Relaxed),
fee_calculator: self.fee_calculator.clone(),
fee_rate_governor: self.fee_rate_governor.clone(),
collected_rent: self.collected_rent.load(Relaxed),
rent_collector: self.rent_collector.clone(),
epoch_schedule: self.epoch_schedule,
inflation: *self.inflation.read().unwrap(),
stakes: &self.stakes_cache,
epoch_stakes: &self.epoch_stakes,
is_delta: self.is_delta.load(Relaxed),
}
}
pub fn collector_id(&self) -> &Pubkey {
&self.collector_id
}
pub fn genesis_creation_time(&self) -> UnixTimestamp {
self.genesis_creation_time
}
pub fn slot(&self) -> Slot {
self.slot
}
pub fn bank_id(&self) -> BankId {
self.bank_id
}
pub fn epoch(&self) -> Epoch {
self.epoch
}
pub fn first_normal_epoch(&self) -> Epoch {
self.epoch_schedule.first_normal_epoch
}
pub fn freeze_lock(&self) -> RwLockReadGuard<Hash> {
self.hash.read().unwrap()
}
pub fn hash(&self) -> Hash {
*self.hash.read().unwrap()
}
pub fn is_frozen(&self) -> bool {
*self.hash.read().unwrap() != Hash::default()
}
pub fn freeze_started(&self) -> bool {
self.freeze_started.load(Relaxed)
}
pub fn status_cache_ancestors(&self) -> Vec<u64> {
let mut roots = self.src.status_cache.read().unwrap().roots().clone();
let min = roots.iter().min().cloned().unwrap_or(0);
for ancestor in self.ancestors.keys() {
if ancestor >= min {
roots.insert(ancestor);
}
}
let mut ancestors: Vec<_> = roots.into_iter().collect();
#[allow(clippy::stable_sort_primitive)]
ancestors.sort();
ancestors
}
/// computed unix_timestamp at this slot height
pub fn unix_timestamp_from_genesis(&self) -> i64 {
self.genesis_creation_time + ((self.slot as u128 * self.ns_per_slot) / 1_000_000_000) as i64
}
fn update_sysvar_account<F>(&self, pubkey: &Pubkey, updater: F)
where
F: Fn(&Option<AccountSharedData>) -> AccountSharedData,
{
let old_account = self.get_account_with_fixed_root(pubkey);
let mut new_account = updater(&old_account);
// When new sysvar comes into existence (with RENT_UNADJUSTED_INITIAL_BALANCE lamports),
// this code ensures that the sysvar's balance is adjusted to be rent-exempt.
//
// More generally, this code always re-calculates for possible sysvar data size change,
// although there is no such sysvars currently.
self.adjust_sysvar_balance_for_rent(&mut new_account);
self.store_account_and_update_capitalization(pubkey, &new_account);
}
fn inherit_specially_retained_account_fields(
&self,
old_account: &Option<AccountSharedData>,
) -> InheritableAccountFields {
const RENT_UNADJUSTED_INITIAL_BALANCE: u64 = 1;
(
old_account
.as_ref()
.map(|a| a.lamports())
.unwrap_or(RENT_UNADJUSTED_INITIAL_BALANCE),
old_account
.as_ref()
.map(|a| a.rent_epoch())
.unwrap_or(INITIAL_RENT_EPOCH),
)
}
pub fn clock(&self) -> sysvar::clock::Clock {
from_account(&self.get_account(&sysvar::clock::id()).unwrap_or_default())
.unwrap_or_default()
}
fn update_clock(&self, parent_epoch: Option<Epoch>) {
let mut unix_timestamp = self.clock().unix_timestamp;
let warp_timestamp_again = self
.feature_set
.activated_slot(&feature_set::warp_timestamp_again::id());
let epoch_start_timestamp = if warp_timestamp_again == Some(self.slot()) {
None
} else {
let epoch = if let Some(epoch) = parent_epoch {
epoch
} else {
self.epoch()
};
let first_slot_in_epoch = self.epoch_schedule.get_first_slot_in_epoch(epoch);
Some((first_slot_in_epoch, self.clock().epoch_start_timestamp))
};
let max_allowable_drift = if self
.feature_set
.is_active(&feature_set::warp_timestamp_again::id())
{
MaxAllowableDrift {
fast: MAX_ALLOWABLE_DRIFT_PERCENTAGE_FAST,
slow: MAX_ALLOWABLE_DRIFT_PERCENTAGE_SLOW,
}
} else {
MaxAllowableDrift {
fast: MAX_ALLOWABLE_DRIFT_PERCENTAGE,
slow: MAX_ALLOWABLE_DRIFT_PERCENTAGE,
}
};
let ancestor_timestamp = self.clock().unix_timestamp;
if let Some(timestamp_estimate) =
self.get_timestamp_estimate(max_allowable_drift, epoch_start_timestamp)
{
unix_timestamp = timestamp_estimate;
if timestamp_estimate < ancestor_timestamp {
unix_timestamp = ancestor_timestamp;
}
}
datapoint_info!(
"bank-timestamp-correction",
("slot", self.slot(), i64),
("from_genesis", self.unix_timestamp_from_genesis(), i64),
("corrected", unix_timestamp, i64),
("ancestor_timestamp", ancestor_timestamp, i64),
);
let mut epoch_start_timestamp =
// On epoch boundaries, update epoch_start_timestamp
if parent_epoch.is_some() && parent_epoch.unwrap() != self.epoch() {
unix_timestamp
} else {
self.clock().epoch_start_timestamp
};
if self.slot == 0 {
unix_timestamp = self.unix_timestamp_from_genesis();
epoch_start_timestamp = self.unix_timestamp_from_genesis();
}
let clock = sysvar::clock::Clock {
slot: self.slot,
epoch_start_timestamp,
epoch: self.epoch_schedule.get_epoch(self.slot),
leader_schedule_epoch: self.epoch_schedule.get_leader_schedule_epoch(self.slot),
unix_timestamp,
};
self.update_sysvar_account(&sysvar::clock::id(), |account| {
create_account(
&clock,
self.inherit_specially_retained_account_fields(account),
)
});
}
pub fn set_sysvar_for_tests<T>(&self, sysvar: &T)
where
T: Sysvar + SysvarId,
{
self.update_sysvar_account(&T::id(), |account| {
create_account(
sysvar,
self.inherit_specially_retained_account_fields(account),
)
});
// Simply force fill sysvar cache rather than checking which sysvar was
// actually updated since tests don't need to be optimized for performance.
self.reset_sysvar_cache();
self.fill_missing_sysvar_cache_entries();
}
fn update_slot_history(&self) {
self.update_sysvar_account(&sysvar::slot_history::id(), |account| {
let mut slot_history = account
.as_ref()
.map(|account| from_account::<SlotHistory, _>(account).unwrap())
.unwrap_or_default();
slot_history.add(self.slot());
create_account(
&slot_history,
self.inherit_specially_retained_account_fields(account),
)
});
}
fn update_slot_hashes(&self) {
self.update_sysvar_account(&sysvar::slot_hashes::id(), |account| {
let mut slot_hashes = account
.as_ref()
.map(|account| from_account::<SlotHashes, _>(account).unwrap())
.unwrap_or_default();
slot_hashes.add(self.parent_slot, self.parent_hash);
create_account(
&slot_hashes,
self.inherit_specially_retained_account_fields(account),
)
});
}
pub fn get_slot_history(&self) -> SlotHistory {
from_account(&self.get_account(&sysvar::slot_history::id()).unwrap()).unwrap()
}
fn update_epoch_stakes(&mut self, leader_schedule_epoch: Epoch) {
// update epoch_stakes cache
// if my parent didn't populate for this staker's epoch, we've
// crossed a boundary
if self.epoch_stakes.get(&leader_schedule_epoch).is_none() {
self.epoch_stakes.retain(|&epoch, _| {
epoch >= leader_schedule_epoch.saturating_sub(MAX_LEADER_SCHEDULE_STAKES)
});
let new_epoch_stakes =
EpochStakes::new(&self.stakes_cache.stakes(), leader_schedule_epoch);
{
let vote_stakes: HashMap<_, _> = self
.stakes_cache
.stakes()
.vote_accounts()
.iter()
.map(|(pubkey, (stake, _))| (*pubkey, *stake))
.collect();
info!(
"new epoch stakes, epoch: {}, stakes: {:#?}, total_stake: {}",
leader_schedule_epoch,
vote_stakes,
new_epoch_stakes.total_stake(),
);
}
self.epoch_stakes
.insert(leader_schedule_epoch, new_epoch_stakes);
}
}
#[allow(deprecated)]
fn update_fees(&self) {
if !self
.feature_set
.is_active(&feature_set::disable_fees_sysvar::id())
{
self.update_sysvar_account(&sysvar::fees::id(), |account| {
create_account(
&sysvar::fees::Fees::new(&self.fee_rate_governor.create_fee_calculator()),
self.inherit_specially_retained_account_fields(account),
)
});
}
}
fn update_rent(&self) {
self.update_sysvar_account(&sysvar::rent::id(), |account| {
create_account(
&self.rent_collector.rent,
self.inherit_specially_retained_account_fields(account),
)
});
}
fn update_epoch_schedule(&self) {
self.update_sysvar_account(&sysvar::epoch_schedule::id(), |account| {
create_account(
&self.epoch_schedule,
self.inherit_specially_retained_account_fields(account),
)
});
}
fn update_stake_history(&self, epoch: Option<Epoch>) {
if epoch == Some(self.epoch()) {
return;
}
// if I'm the first Bank in an epoch, ensure stake_history is updated
self.update_sysvar_account(&sysvar::stake_history::id(), |account| {
create_account::<sysvar::stake_history::StakeHistory>(
self.stakes_cache.stakes().history(),
self.inherit_specially_retained_account_fields(account),
)
});
}
pub fn epoch_duration_in_years(&self, prev_epoch: Epoch) -> f64 {
// period: time that has passed as a fraction of a year, basically the length of
// an epoch as a fraction of a year
// calculated as: slots_elapsed / (slots / year)
self.epoch_schedule.get_slots_in_epoch(prev_epoch) as f64 / self.slots_per_year
}
// Calculates the starting-slot for inflation from the activation slot.
// This method assumes that `pico_inflation` will be enabled before `full_inflation`, giving
// precedence to the latter. However, since `pico_inflation` is fixed-rate Inflation, should
// `pico_inflation` be enabled 2nd, the incorrect start slot provided here should have no
// effect on the inflation calculation.
fn get_inflation_start_slot(&self) -> Slot {
let mut slots = self
.feature_set
.full_inflation_features_enabled()
.iter()
.filter_map(|id| self.feature_set.activated_slot(id))
.collect::<Vec<_>>();
slots.sort_unstable();
slots.get(0).cloned().unwrap_or_else(|| {
self.feature_set
.activated_slot(&feature_set::pico_inflation::id())
.unwrap_or(0)
})
}
fn get_inflation_num_slots(&self) -> u64 {
let inflation_activation_slot = self.get_inflation_start_slot();
// Normalize inflation_start to align with the start of rewards accrual.
let inflation_start_slot = self.epoch_schedule.get_first_slot_in_epoch(
self.epoch_schedule
.get_epoch(inflation_activation_slot)
.saturating_sub(1),
);
self.epoch_schedule.get_first_slot_in_epoch(self.epoch()) - inflation_start_slot
}
pub fn slot_in_year_for_inflation(&self) -> f64 {
let num_slots = self.get_inflation_num_slots();
// calculated as: num_slots / (slots / year)
num_slots as f64 / self.slots_per_year
}
// update rewards based on the previous epoch
fn update_rewards_with_thread_pool(
&mut self,
prev_epoch: Epoch,
reward_calc_tracer: Option<impl Fn(&RewardCalculationEvent) + Send + Sync>,
thread_pool: &ThreadPool,
) {
let slot_in_year = self.slot_in_year_for_inflation();
let epoch_duration_in_years = self.epoch_duration_in_years(prev_epoch);
let (validator_rate, foundation_rate) = {
let inflation = self.inflation.read().unwrap();
(
(*inflation).validator(slot_in_year),
(*inflation).foundation(slot_in_year),
)
};
let capitalization = self.capitalization();
let validator_rewards =
(validator_rate * capitalization as f64 * epoch_duration_in_years) as u64;
let old_vote_balance_and_staked = self.stakes_cache.stakes().vote_balance_and_staked();
let validator_point_value = self.pay_validator_rewards_with_thread_pool(
prev_epoch,
validator_rewards,
reward_calc_tracer,
self.stake_program_advance_activating_credits_observed(),
thread_pool,
);
if !self
.feature_set
.is_active(&feature_set::deprecate_rewards_sysvar::id())
{
// this sysvar can be retired once `pico_inflation` is enabled on all clusters
self.update_sysvar_account(&sysvar::rewards::id(), |account| {
create_account(
&sysvar::rewards::Rewards::new(validator_point_value),
self.inherit_specially_retained_account_fields(account),
)
});
}
let new_vote_balance_and_staked = self.stakes_cache.stakes().vote_balance_and_staked();
let validator_rewards_paid = new_vote_balance_and_staked - old_vote_balance_and_staked;
assert_eq!(
validator_rewards_paid,
u64::try_from(
self.rewards
.read()
.unwrap()
.iter()
.map(|(_address, reward_info)| {
match reward_info.reward_type {
RewardType::Voting | RewardType::Staking => reward_info.lamports,
_ => 0,
}
})
.sum::<i64>()
)
.unwrap()
);
// verify that we didn't pay any more than we expected to
assert!(validator_rewards >= validator_rewards_paid);
info!(
"distributed inflation: {} (rounded from: {})",
validator_rewards_paid, validator_rewards
);
self.capitalization
.fetch_add(validator_rewards_paid, Relaxed);
let active_stake = if let Some(stake_history_entry) =
self.stakes_cache.stakes().history().get(prev_epoch)
{
stake_history_entry.effective
} else {
0
};
datapoint_warn!(
"epoch_rewards",
("slot", self.slot, i64),
("epoch", prev_epoch, i64),
("validator_rate", validator_rate, f64),
("foundation_rate", foundation_rate, f64),
("epoch_duration_in_years", epoch_duration_in_years, f64),
("validator_rewards", validator_rewards_paid, i64),
("active_stake", active_stake, i64),
("pre_capitalization", capitalization, i64),
("post_capitalization", self.capitalization(), i64)
);
}
/// map stake delegations into resolved (pubkey, account) pairs
/// returns a map (has to be copied) of loaded
/// ( Vec<(staker info)> (voter account) ) keyed by voter pubkey
///
/// Filters out invalid pairs
fn load_vote_and_stake_accounts_with_thread_pool(
&self,
thread_pool: &ThreadPool,
reward_calc_tracer: Option<impl Fn(&RewardCalculationEvent) + Send + Sync>,
) -> LoadVoteAndStakeAccountsResult {
let stakes = self.stakes_cache.stakes();
let vote_with_stake_delegations_map =
DashMap::with_capacity(stakes.vote_accounts().as_ref().len());
let invalid_stake_keys: DashMap<Pubkey, InvalidCacheEntryReason> = DashMap::new();
let invalid_vote_keys: DashMap<Pubkey, InvalidCacheEntryReason> = DashMap::new();
thread_pool.install(|| {
stakes
.stake_delegations()
.par_iter()
.for_each(|(stake_pubkey, delegation)| {
let vote_pubkey = &delegation.voter_pubkey;
if invalid_vote_keys.contains_key(vote_pubkey) {
return;
}
let stake_delegation = match self.get_account_with_fixed_root(stake_pubkey) {
Some(stake_account) => {
if stake_account.owner() != &solana_stake_program::id() {
invalid_stake_keys
.insert(*stake_pubkey, InvalidCacheEntryReason::WrongOwner);
return;
}
match stake_account.state().ok() {
Some(stake_state) => (*stake_pubkey, (stake_state, stake_account)),
None => {
invalid_stake_keys
.insert(*stake_pubkey, InvalidCacheEntryReason::BadState);
return;
}
}
}
None => {
invalid_stake_keys
.insert(*stake_pubkey, InvalidCacheEntryReason::Missing);
return;
}
};
let mut vote_delegations = if let Some(vote_delegations) =
vote_with_stake_delegations_map.get_mut(vote_pubkey)
{
vote_delegations
} else {
let vote_account = match self.get_account_with_fixed_root(vote_pubkey) {
Some(vote_account) => {
if vote_account.owner() != &solana_vote_program::id() {
invalid_vote_keys
.insert(*vote_pubkey, InvalidCacheEntryReason::WrongOwner);
return;
}
vote_account
}
None => {
invalid_vote_keys
.insert(*vote_pubkey, InvalidCacheEntryReason::Missing);
return;
}
};
let vote_state = if let Ok(vote_state) =
StateMut::<VoteStateVersions>::state(&vote_account)
{
vote_state.convert_to_current()
} else {
invalid_vote_keys
.insert(*vote_pubkey, InvalidCacheEntryReason::BadState);
return;
};
vote_with_stake_delegations_map
.entry(*vote_pubkey)
.or_insert_with(|| VoteWithStakeDelegations {
vote_state: Arc::new(vote_state),
vote_account,
delegations: vec![],
})
};
if let Some(reward_calc_tracer) = reward_calc_tracer.as_ref() {
reward_calc_tracer(&RewardCalculationEvent::Staking(
stake_pubkey,
&InflationPointCalculationEvent::Delegation(
*delegation,
solana_vote_program::id(),
),
));
}
vote_delegations.delegations.push(stake_delegation);
});
});
LoadVoteAndStakeAccountsResult {
vote_with_stake_delegations_map,
invalid_vote_keys,
invalid_stake_keys,
}
}
/// iterate over all stakes, redeem vote credits for each stake we can
/// successfully load and parse, return the lamport value of one point
fn pay_validator_rewards_with_thread_pool(
&mut self,
rewarded_epoch: Epoch,
rewards: u64,
reward_calc_tracer: Option<impl Fn(&RewardCalculationEvent) + Send + Sync>,
fix_activating_credits_observed: bool,
thread_pool: &ThreadPool,
) -> f64 {
let stake_history = self.stakes_cache.stakes().history().clone();
let vote_with_stake_delegations_map = {
let LoadVoteAndStakeAccountsResult {
vote_with_stake_delegations_map,
invalid_stake_keys,
invalid_vote_keys,
} = self.load_vote_and_stake_accounts_with_thread_pool(
thread_pool,
reward_calc_tracer.as_ref(),
);
let evict_invalid_stakes_cache_entries = self
.feature_set
.is_active(&feature_set::evict_invalid_stakes_cache_entries::id());
self.stakes_cache.handle_invalid_keys(
invalid_stake_keys,
invalid_vote_keys,
evict_invalid_stakes_cache_entries,
self.slot(),
);
vote_with_stake_delegations_map
};
let points: u128 = thread_pool.install(|| {
vote_with_stake_delegations_map
.par_iter()
.map(|entry| {
let VoteWithStakeDelegations {
vote_state,
delegations,
..
} = entry.value();
delegations
.par_iter()
.map(|(_stake_pubkey, (stake_state, _stake_account))| {
stake_state::calculate_points(
stake_state,
vote_state,
Some(&stake_history),
)
.unwrap_or(0)
})
.sum::<u128>()
})
.sum()
});
if points == 0 {
return 0.0;
}
// pay according to point value
let point_value = PointValue { rewards, points };
let vote_account_rewards: DashMap<Pubkey, (AccountSharedData, u8, u64, bool)> =
DashMap::with_capacity(vote_with_stake_delegations_map.len());
let stake_delegation_iterator = vote_with_stake_delegations_map.into_par_iter().flat_map(
|(
vote_pubkey,
VoteWithStakeDelegations {
vote_state,
vote_account,
delegations,
},
)| {
vote_account_rewards
.insert(vote_pubkey, (vote_account, vote_state.commission, 0, false));
delegations
.into_par_iter()
.map(move |delegation| (vote_pubkey, Arc::clone(&vote_state), delegation))
},
);
let mut stake_rewards = thread_pool.install(|| {
stake_delegation_iterator
.filter_map(
|(
vote_pubkey,
vote_state,
(stake_pubkey, (stake_state, mut stake_account)),
)| {
// curry closure to add the contextual stake_pubkey
let reward_calc_tracer = reward_calc_tracer.as_ref().map(|outer| {
// inner
move |inner_event: &_| {
outer(&RewardCalculationEvent::Staking(&stake_pubkey, inner_event))
}
});
let redeemed = stake_state::redeem_rewards(
rewarded_epoch,
stake_state,
&mut stake_account,
&vote_state,
&point_value,
Some(&stake_history),
reward_calc_tracer.as_ref(),
fix_activating_credits_observed,
);
if let Ok((stakers_reward, voters_reward)) = redeemed {
// track voter rewards
if let Some((
_vote_account,
_commission,
vote_rewards_sum,
vote_needs_store,
)) = vote_account_rewards.get_mut(&vote_pubkey).as_deref_mut()
{
*vote_needs_store = true;
*vote_rewards_sum = vote_rewards_sum.saturating_add(voters_reward);
}
// store stake account even if stakers_reward is 0
// because credits observed has changed
self.store_account(&stake_pubkey, &stake_account);
if stakers_reward > 0 {
return Some((
stake_pubkey,
RewardInfo {
reward_type: RewardType::Staking,
lamports: stakers_reward as i64,
post_balance: stake_account.lamports(),
commission: Some(vote_state.commission),
},
));
}
} else {
debug!(
"stake_state::redeem_rewards() failed for {}: {:?}",
stake_pubkey, redeemed
);
}
None
},
)
.collect()
});
let mut vote_rewards = vote_account_rewards
.into_iter()
.filter_map(
|(vote_pubkey, (mut vote_account, commission, vote_rewards, vote_needs_store))| {
if let Err(err) = vote_account.checked_add_lamports(vote_rewards) {
debug!("reward redemption failed for {}: {:?}", vote_pubkey, err);
return None;
}
if vote_needs_store {
self.store_account(&vote_pubkey, &vote_account);
}
if vote_rewards > 0 {
Some((
vote_pubkey,
RewardInfo {
reward_type: RewardType::Voting,
lamports: vote_rewards as i64,
post_balance: vote_account.lamports(),
commission: Some(commission),
},
))
} else {
None
}
},
)
.collect();
{
let mut rewards = self.rewards.write().unwrap();
rewards.append(&mut vote_rewards);
rewards.append(&mut stake_rewards);
}
point_value.rewards as f64 / point_value.points as f64
}
fn update_recent_blockhashes_locked(&self, locked_blockhash_queue: &BlockhashQueue) {
#[allow(deprecated)]
self.update_sysvar_account(&sysvar::recent_blockhashes::id(), |account| {
let recent_blockhash_iter = locked_blockhash_queue.get_recent_blockhashes();
recent_blockhashes_account::create_account_with_data_and_fields(
recent_blockhash_iter,
self.inherit_specially_retained_account_fields(account),
)
});
}
pub fn update_recent_blockhashes(&self) {
let blockhash_queue = self.blockhash_queue.read().unwrap();
self.update_recent_blockhashes_locked(&blockhash_queue);
}
fn get_timestamp_estimate(
&self,
max_allowable_drift: MaxAllowableDrift,
epoch_start_timestamp: Option<(Slot, UnixTimestamp)>,
) -> Option<UnixTimestamp> {
let mut get_timestamp_estimate_time = Measure::start("get_timestamp_estimate");
let slots_per_epoch = self.epoch_schedule().slots_per_epoch;
let vote_accounts = self.vote_accounts();
let recent_timestamps = vote_accounts.iter().filter_map(|(pubkey, (_, account))| {
let vote_state = account.vote_state();
let vote_state = vote_state.as_ref().ok()?;
let slot_delta = self.slot().checked_sub(vote_state.last_timestamp.slot)?;
(slot_delta <= slots_per_epoch).then(|| {
(
*pubkey,
(
vote_state.last_timestamp.slot,
vote_state.last_timestamp.timestamp,
),
)
})
});
let slot_duration = Duration::from_nanos(self.ns_per_slot as u64);
let epoch = self.epoch_schedule().get_epoch(self.slot());
let stakes = self.epoch_vote_accounts(epoch)?;
let stake_weighted_timestamp = calculate_stake_weighted_timestamp(
recent_timestamps,
stakes,
self.slot(),
slot_duration,
epoch_start_timestamp,
max_allowable_drift,
self.feature_set
.is_active(&feature_set::warp_timestamp_again::id()),
);
get_timestamp_estimate_time.stop();
datapoint_info!(
"bank-timestamp",
(
"get_timestamp_estimate_us",
get_timestamp_estimate_time.as_us(),
i64
),
);
stake_weighted_timestamp
}
// Distribute collected transaction fees for this slot to collector_id (= current leader).
//
// Each validator is incentivized to process more transactions to earn more transaction fees.
// Transaction fees are rewarded for the computing resource utilization cost, directly
// proportional to their actual processing power.
//
// collector_id is rotated according to stake-weighted leader schedule. So the opportunity of
// earning transaction fees are fairly distributed by stake. And missing the opportunity
// (not producing a block as a leader) earns nothing. So, being online is incentivized as a
// form of transaction fees as well.
//
// On the other hand, rent fees are distributed under slightly different philosophy, while
// still being stake-weighted.
// Ref: distribute_rent_to_validators
fn collect_fees(&self) {
let collector_fees = self.collector_fees.load(Relaxed) as u64;
if collector_fees != 0 {
let (deposit, mut burn) = self.fee_rate_governor.burn(collector_fees);
// burn a portion of fees
debug!(
"distributed fee: {} (rounded from: {}, burned: {})",
deposit, collector_fees, burn
);
match self.deposit(&self.collector_id, deposit) {
Ok(post_balance) => {
if deposit != 0 {
self.rewards.write().unwrap().push((
self.collector_id,
RewardInfo {
reward_type: RewardType::Fee,
lamports: deposit as i64,
post_balance,
commission: None,
},
));
}
}
Err(_) => {
error!(
"Burning {} fee instead of crediting {}",
deposit, self.collector_id
);
inc_new_counter_error!("bank-burned_fee_lamports", deposit as usize);
burn += deposit;
}
}
self.capitalization.fetch_sub(burn, Relaxed);
}
}
pub fn rehash(&self) {
let mut hash = self.hash.write().unwrap();
let new = self.hash_internal_state();
if new != *hash {
warn!("Updating bank hash to {}", new);
*hash = new;
}
}
pub fn freeze(&self) {
// This lock prevents any new commits from BankingStage
// `process_and_record_transactions_locked()` from coming
// in after the last tick is observed. This is because in
// BankingStage, any transaction successfully recorded in
// `record_transactions()` is recorded after this `hash` lock
// is grabbed. At the time of the successful record,
// this means the PoH has not yet reached the last tick,
// so this means freeze() hasn't been called yet. And because
// BankingStage doesn't release this hash lock until both
// record and commit are finished, those transactions will be
// committed before this write lock can be obtained here.
let mut hash = self.hash.write().unwrap();
if *hash == Hash::default() {
// finish up any deferred changes to account state
self.collect_rent_eagerly();
self.collect_fees();
self.distribute_rent();
self.update_slot_history();
self.run_incinerator();
// freeze is a one-way trip, idempotent
self.freeze_started.store(true, Relaxed);
*hash = self.hash_internal_state();
self.rc.accounts.accounts_db.mark_slot_frozen(self.slot());
}
}
// Should not be called outside of startup, will race with
// concurrent cleaning logic in AccountsBackgroundService
pub fn exhaustively_free_unused_resource(&self, last_full_snapshot_slot: Option<Slot>) {
const IS_STARTUP: bool = true; // this is only called at startup, and we want to use more threads
let mut flush = Measure::start("flush");
// Flush all the rooted accounts. Must be called after `squash()`,
// so that AccountsDb knows what the roots are.
self.force_flush_accounts_cache();
flush.stop();
let mut clean = Measure::start("clean");
// Don't clean the slot we're snapshotting because it may have zero-lamport
// accounts that were included in the bank delta hash when the bank was frozen,
// and if we clean them here, any newly created snapshot's hash for this bank
// may not match the frozen hash.
self.clean_accounts(true, IS_STARTUP, last_full_snapshot_slot);
clean.stop();
let mut shrink = Measure::start("shrink");
self.shrink_all_slots(IS_STARTUP, last_full_snapshot_slot);
shrink.stop();
info!(
"exhaustively_free_unused_resource() {} {} {}",
flush, clean, shrink,
);
}
pub fn epoch_schedule(&self) -> &EpochSchedule {
&self.epoch_schedule
}
/// squash the parent's state up into this Bank,
/// this Bank becomes a root
pub fn squash(&self) -> SquashTiming {
self.freeze();
//this bank and all its parents are now on the rooted path
let mut roots = vec![self.slot()];
roots.append(&mut self.parents().iter().map(|p| p.slot()).collect());
let mut total_index_us = 0;
let mut total_cache_us = 0;
let mut total_store_us = 0;
let mut squash_accounts_time = Measure::start("squash_accounts_time");
for slot in roots.iter().rev() {
// root forks cannot be purged
let add_root_timing = self.rc.accounts.add_root(*slot);
total_index_us += add_root_timing.index_us;
total_cache_us += add_root_timing.cache_us;
total_store_us += add_root_timing.store_us;
}
squash_accounts_time.stop();
*self.rc.parent.write().unwrap() = None;
let mut squash_cache_time = Measure::start("squash_cache_time");
roots
.iter()
.for_each(|slot| self.src.status_cache.write().unwrap().add_root(*slot));
squash_cache_time.stop();
SquashTiming {
squash_accounts_ms: squash_accounts_time.as_ms(),
squash_accounts_index_ms: total_index_us / 1000,
squash_accounts_cache_ms: total_cache_us / 1000,
squash_accounts_store_ms: total_store_us / 1000,
squash_cache_ms: squash_cache_time.as_ms(),
}
}
/// Return the more recent checkpoint of this bank instance.
pub fn parent(&self) -> Option<Arc<Bank>> {
self.rc.parent.read().unwrap().clone()
}
pub fn parent_slot(&self) -> Slot {
self.parent_slot
}
pub fn parent_hash(&self) -> Hash {
self.parent_hash
}
fn process_genesis_config(&mut self, genesis_config: &GenesisConfig) {
// Bootstrap validator collects fees until `new_from_parent` is called.
self.fee_rate_governor = genesis_config.fee_rate_governor.clone();
self.fee_calculator = self.fee_rate_governor.create_fee_calculator();
for (pubkey, account) in genesis_config.accounts.iter() {
assert!(
self.get_account(pubkey).is_none(),
"{} repeated in genesis config",
pubkey
);
self.store_account(pubkey, &AccountSharedData::from(account.clone()));
self.capitalization.fetch_add(account.lamports(), Relaxed);
}
// updating sysvars (the fees sysvar in this case) now depends on feature activations in
// genesis_config.accounts above
self.update_fees();
for (pubkey, account) in genesis_config.rewards_pools.iter() {
assert!(
self.get_account(pubkey).is_none(),
"{} repeated in genesis config",
pubkey
);
self.store_account(pubkey, &AccountSharedData::from(account.clone()));
}
// highest staked node is the first collector
self.collector_id = self
.stakes_cache
.stakes()
.highest_staked_node()
.unwrap_or_default();
self.blockhash_queue.write().unwrap().genesis_hash(
&genesis_config.hash(),
self.fee_rate_governor.lamports_per_signature,
);
self.hashes_per_tick = genesis_config.hashes_per_tick();
self.ticks_per_slot = genesis_config.ticks_per_slot();
self.ns_per_slot = genesis_config.ns_per_slot();
self.genesis_creation_time = genesis_config.creation_time;
self.max_tick_height = (self.slot + 1) * self.ticks_per_slot;
self.slots_per_year = genesis_config.slots_per_year();
self.epoch_schedule = genesis_config.epoch_schedule;
self.inflation = Arc::new(RwLock::new(genesis_config.inflation));
self.rent_collector = RentCollector::new(
self.epoch,
&self.epoch_schedule,
self.slots_per_year,
&genesis_config.rent,
);
// Add additional builtin programs specified in the genesis config
for (name, program_id) in &genesis_config.native_instruction_processors {
self.add_builtin_account(name, program_id, false);
}
}
fn burn_and_purge_account(&self, program_id: &Pubkey, mut account: AccountSharedData) {
self.capitalization.fetch_sub(account.lamports(), Relaxed);
// Both resetting account balance to 0 and zeroing the account data
// is needed to really purge from AccountsDb and flush the Stakes cache
account.set_lamports(0);
account.data_as_mut_slice().fill(0);
self.store_account(program_id, &account);
}
// NOTE: must hold idempotent for the same set of arguments
/// Add a builtin program account
pub fn add_builtin_account(&self, name: &str, program_id: &Pubkey, must_replace: bool) {
let existing_genuine_program =
self.get_account_with_fixed_root(program_id)
.and_then(|account| {
// it's very unlikely to be squatted at program_id as non-system account because of burden to
// find victim's pubkey/hash. So, when account.owner is indeed native_loader's, it's
// safe to assume it's a genuine program.
if native_loader::check_id(account.owner()) {
Some(account)
} else {
// malicious account is pre-occupying at program_id
self.burn_and_purge_account(program_id, account);
None
}
});
if must_replace {
// updating builtin program
match &existing_genuine_program {
None => panic!(
"There is no account to replace with builtin program ({}, {}).",
name, program_id
),
Some(account) => {
if *name == String::from_utf8_lossy(account.data()) {
// The existing account is well formed
return;
}
}
}
} else {
// introducing builtin program
if existing_genuine_program.is_some() {
// The existing account is sufficient
return;
}
}
assert!(
!self.freeze_started(),
"Can't change frozen bank by adding not-existing new builtin program ({}, {}). \
Maybe, inconsistent program activation is detected on snapshot restore?",
name,
program_id
);
// Add a bogus executable builtin account, which will be loaded and ignored.
let account = native_loader::create_loadable_account_with_fields(
name,
self.inherit_specially_retained_account_fields(&existing_genuine_program),
);
self.store_account_and_update_capitalization(program_id, &account);
}
/// Add a precompiled program account
pub fn add_precompiled_account(&self, program_id: &Pubkey) {
if let Some(account) = self.get_account_with_fixed_root(program_id) {
if account.executable() {
// The account is already executable, that's all we need
return;
} else {
// malicious account is pre-occupying at program_id
self.burn_and_purge_account(program_id, account);
}
};
assert!(
!self.freeze_started(),
"Can't change frozen bank by adding not-existing new precompiled program ({}). \
Maybe, inconsistent program activation is detected on snapshot restore?",
program_id
);
// Add a bogus executable account, which will be loaded and ignored.
let (lamports, rent_epoch) = self.inherit_specially_retained_account_fields(&None);
let account = AccountSharedData::from(Account {
lamports,
owner: native_loader::id(),
data: vec![],
executable: true,
rent_epoch,
});
self.store_account_and_update_capitalization(program_id, &account);
}
pub fn set_rent_burn_percentage(&mut self, burn_percent: u8) {
self.rent_collector.rent.burn_percent = burn_percent;
}
pub fn set_hashes_per_tick(&mut self, hashes_per_tick: Option<u64>) {
self.hashes_per_tick = hashes_per_tick;
}
/// Return the last block hash registered.
pub fn last_blockhash(&self) -> Hash {
self.blockhash_queue.read().unwrap().last_hash()
}
pub fn last_blockhash_and_lamports_per_signature(&self) -> (Hash, u64) {
let blockhash_queue = self.blockhash_queue.read().unwrap();
let last_hash = blockhash_queue.last_hash();
let last_lamports_per_signature = blockhash_queue
.get_lamports_per_signature(&last_hash)
.unwrap(); // safe so long as the BlockhashQueue is consistent
(last_hash, last_lamports_per_signature)
}
pub fn is_blockhash_valid(&self, hash: &Hash) -> bool {
let blockhash_queue = self.blockhash_queue.read().unwrap();
blockhash_queue.check_hash(hash)
}
pub fn get_minimum_balance_for_rent_exemption(&self, data_len: usize) -> u64 {
self.rent_collector.rent.minimum_balance(data_len).max(1)
}
pub fn get_lamports_per_signature(&self) -> u64 {
self.fee_rate_governor.lamports_per_signature
}
pub fn get_lamports_per_signature_for_blockhash(&self, hash: &Hash) -> Option<u64> {
let blockhash_queue = self.blockhash_queue.read().unwrap();
blockhash_queue.get_lamports_per_signature(hash)
}
#[deprecated(since = "1.9.0", note = "Please use `get_fee_for_message` instead")]
pub fn get_fee_rate_governor(&self) -> &FeeRateGovernor {
&self.fee_rate_governor
}
pub fn get_fee_for_message(&self, message: &SanitizedMessage) -> Option<u64> {
let lamports_per_signature = {
let blockhash_queue = self.blockhash_queue.read().unwrap();
blockhash_queue.get_lamports_per_signature(message.recent_blockhash())
}
.or_else(|| {
self.check_message_for_nonce(message)
.and_then(|(address, account)| {
NoncePartial::new(address, account).lamports_per_signature()
})
})?;
Some(Self::calculate_fee(
message,
lamports_per_signature,
&self.fee_structure,
self.feature_set.is_active(&tx_wide_compute_cap::id()),
))
}
pub fn get_fee_for_message_with_lamports_per_signature(
&self,
message: &SanitizedMessage,
lamports_per_signature: u64,
) -> u64 {
Self::calculate_fee(
message,
lamports_per_signature,
&self.fee_structure,
self.feature_set.is_active(&tx_wide_compute_cap::id()),
)
}
#[deprecated(
since = "1.6.11",
note = "Please use `get_blockhash_last_valid_block_height`"
)]
pub fn get_blockhash_last_valid_slot(&self, blockhash: &Hash) -> Option<Slot> {
let blockhash_queue = self.blockhash_queue.read().unwrap();
// This calculation will need to be updated to consider epoch boundaries if BlockhashQueue
// length is made variable by epoch
blockhash_queue
.get_hash_age(blockhash)
.map(|age| self.slot + blockhash_queue.len() as u64 - age)
}
pub fn get_blockhash_last_valid_block_height(&self, blockhash: &Hash) -> Option<Slot> {
let blockhash_queue = self.blockhash_queue.read().unwrap();
// This calculation will need to be updated to consider epoch boundaries if BlockhashQueue
// length is made variable by epoch
blockhash_queue
.get_hash_age(blockhash)
.map(|age| self.block_height + blockhash_queue.len() as u64 - age)
}
pub fn confirmed_last_blockhash(&self) -> Hash {
const NUM_BLOCKHASH_CONFIRMATIONS: usize = 3;
let parents = self.parents();
if parents.is_empty() {
self.last_blockhash()
} else {
let index = NUM_BLOCKHASH_CONFIRMATIONS.min(parents.len() - 1);
parents[index].last_blockhash()
}
}
/// Forget all signatures. Useful for benchmarking.
pub fn clear_signatures(&self) {
self.src.status_cache.write().unwrap().clear();
}
pub fn clear_slot_signatures(&self, slot: Slot) {
self.src
.status_cache
.write()
.unwrap()
.clear_slot_entries(slot);
}
fn update_transaction_statuses(
&self,
sanitized_txs: &[SanitizedTransaction],
execution_results: &[TransactionExecutionResult],
) {
let mut status_cache = self.src.status_cache.write().unwrap();
assert_eq!(sanitized_txs.len(), execution_results.len());
for (tx, execution_result) in sanitized_txs.iter().zip(execution_results) {
if let TransactionExecutionResult::Executed(details) = execution_result {
// Add the message hash to the status cache to ensure that this message
// won't be processed again with a different signature.
status_cache.insert(
tx.message().recent_blockhash(),
tx.message_hash(),
self.slot(),
details.status.clone(),
);
// Add the transaction signature to the status cache so that transaction status
// can be queried by transaction signature over RPC. In the future, this should
// only be added for API nodes because voting validators don't need to do this.
status_cache.insert(
tx.message().recent_blockhash(),
tx.signature(),
self.slot(),
details.status.clone(),
);
}
}
}
/// Tell the bank which Entry IDs exist on the ledger. This function assumes subsequent calls
/// correspond to later entries, and will boot the oldest ones once its internal cache is full.
/// Once boot, the bank will reject transactions using that `hash`.
///
/// This is NOT thread safe because if tick height is updated by two different threads, the
/// block boundary condition could be missed.
pub fn register_tick(&self, hash: &Hash) {
assert!(
!self.freeze_started(),
"register_tick() working on a bank that is already frozen or is undergoing freezing!"
);
inc_new_counter_debug!("bank-register_tick-registered", 1);
if self.is_block_boundary(self.tick_height.load(Relaxed) + 1) {
// Only acquire the write lock for the blockhash queue on block boundaries because
// readers can starve this write lock acquisition and ticks would be slowed down too
// much if the write lock is acquired for each tick.
let mut w_blockhash_queue = self.blockhash_queue.write().unwrap();
w_blockhash_queue.register_hash(hash, self.fee_rate_governor.lamports_per_signature);
self.update_recent_blockhashes_locked(&w_blockhash_queue);
}
// ReplayStage will start computing the accounts delta hash when it
// detects the tick height has reached the boundary, so the system
// needs to guarantee all account updates for the slot have been
// committed before this tick height is incremented (like the blockhash
// sysvar above)
self.tick_height.fetch_add(1, Relaxed);
}
pub fn is_complete(&self) -> bool {
self.tick_height() == self.max_tick_height()
}
pub fn is_block_boundary(&self, tick_height: u64) -> bool {
tick_height % self.ticks_per_slot == 0
}
/// Prepare a transaction batch from a list of legacy transactions. Used for tests only.
pub fn prepare_batch_for_tests(&self, txs: Vec<Transaction>) -> TransactionBatch {
let sanitized_txs = txs
.into_iter()
.map(SanitizedTransaction::from_transaction_for_tests)
.collect::<Vec<_>>();
let lock_results = self
.rc
.accounts
.lock_accounts(sanitized_txs.iter(), &FeatureSet::all_enabled());
TransactionBatch::new(lock_results, self, Cow::Owned(sanitized_txs))
}
/// Prepare a transaction batch from a list of versioned transactions from
/// an entry. Used for tests only.
pub fn prepare_entry_batch(&self, txs: Vec<VersionedTransaction>) -> Result<TransactionBatch> {
let sanitized_txs = txs
.into_iter()
.map(|tx| {
let message_hash = tx.message.hash();
SanitizedTransaction::try_create(tx, message_hash, None, self)
})
.collect::<Result<Vec<_>>>()?;
let lock_results = self
.rc
.accounts
.lock_accounts(sanitized_txs.iter(), &FeatureSet::all_enabled());
Ok(TransactionBatch::new(
lock_results,
self,
Cow::Owned(sanitized_txs),
))
}
/// Prepare a locked transaction batch from a list of sanitized transactions.
pub fn prepare_sanitized_batch<'a, 'b>(
&'a self,
txs: &'b [SanitizedTransaction],
) -> TransactionBatch<'a, 'b> {
let lock_results = self
.rc
.accounts
.lock_accounts(txs.iter(), &self.feature_set);
TransactionBatch::new(lock_results, self, Cow::Borrowed(txs))
}
/// Prepare a locked transaction batch from a list of sanitized transactions, and their cost
/// limited packing status
pub fn prepare_sanitized_batch_with_results<'a, 'b>(
&'a self,
transactions: &'b [SanitizedTransaction],
transaction_results: impl Iterator<Item = Result<()>>,
) -> TransactionBatch<'a, 'b> {
// this lock_results could be: Ok, AccountInUse, WouldExceedBlockMaxLimit or WouldExceedAccountMaxLimit
let lock_results = self.rc.accounts.lock_accounts_with_results(
transactions.iter(),
transaction_results,
&self.feature_set,
);
TransactionBatch::new(lock_results, self, Cow::Borrowed(transactions))
}
/// Prepare a transaction batch without locking accounts for transaction simulation.
pub(crate) fn prepare_simulation_batch<'a>(
&'a self,
transaction: SanitizedTransaction,
) -> TransactionBatch<'a, '_> {
let lock_result = transaction.get_account_locks(&self.feature_set).map(|_| ());
let mut batch =
TransactionBatch::new(vec![lock_result], self, Cow::Owned(vec![transaction]));
batch.needs_unlock = false;
batch
}
/// Run transactions against a frozen bank without committing the results
pub fn simulate_transaction(
self: &Arc<Bank>,
transaction: SanitizedTransaction,
) -> TransactionSimulationResult {
assert!(self.is_frozen(), "simulation bank must be frozen");
// Simulation detection countermeasure 1: Create a new child bank for the simulation. This
// ensures comparing the slot values between the Clock and SlotHistory sysvars does not
// reveal that the program is running in simulation.
//
// Reference: https://opcodes.fr/en/publications/2022-01/detecting-transaction-simulation/
let bank = Bank::new_from_parent_with_options(
self,
&Pubkey::default(),
self.slot().saturating_add(1),
NewBankOptions {
simulation_bank: true,
..NewBankOptions::default()
},
);
bank.simulate_transaction_unchecked(transaction)
}
/// Run transactions against a bank without committing the results; does not check if the bank
/// is frozen, enabling use in single-Bank test frameworks
pub fn simulate_transaction_unchecked(
&self,
transaction: SanitizedTransaction,
) -> TransactionSimulationResult {
let number_of_accounts = transaction.message().account_keys().len();
let batch = self.prepare_simulation_batch(transaction);
let mut timings = ExecuteTimings::default();
let LoadAndExecuteTransactionsOutput {
loaded_transactions,
mut execution_results,
..
} = self.load_and_execute_transactions(
&batch,
// After simulation, transactions will need to be forwarded to the leader
// for processing. During forwarding, the transaction could expire if the
// delay is not accounted for.
MAX_PROCESSING_AGE - MAX_TRANSACTION_FORWARDING_DELAY,
false,
true,
&mut timings,
);
let post_simulation_accounts = loaded_transactions
.into_iter()
.next()
.unwrap()
.0
.ok()
.map(|loaded_transaction| {
loaded_transaction
.accounts
.into_iter()
.take(number_of_accounts)
.collect::<Vec<_>>()
})
.unwrap_or_default();
let units_consumed = timings
.details
.per_program_timings
.iter()
.fold(0, |acc: u64, (_, program_timing)| {
acc.saturating_add(program_timing.accumulated_units)
});
debug!("simulate_transaction: {:?}", timings);
let execution_result = execution_results.pop().unwrap();
let flattened_result = execution_result.flattened_result();
let logs = match execution_result {
TransactionExecutionResult::Executed(details) => details.log_messages,
TransactionExecutionResult::NotExecuted(_) => None,
}
.unwrap_or_default();
TransactionSimulationResult {
result: flattened_result,
logs,
post_simulation_accounts,
units_consumed,
}
}
pub fn unlock_accounts(&self, batch: &mut TransactionBatch) {
if batch.needs_unlock {
batch.needs_unlock = false;
self.rc
.accounts
.unlock_accounts(batch.sanitized_transactions().iter(), batch.lock_results())
}
}
pub fn remove_unrooted_slots(&self, slots: &[(Slot, BankId)]) {
self.rc.accounts.accounts_db.remove_unrooted_slots(slots)
}
pub fn set_shrink_paths(&self, paths: Vec<PathBuf>) {
self.rc.accounts.accounts_db.set_shrink_paths(paths);
}
fn check_age<'a>(
&self,
txs: impl Iterator<Item = &'a SanitizedTransaction>,
lock_results: &[Result<()>],
max_age: usize,
error_counters: &mut ErrorCounters,
) -> Vec<TransactionCheckResult> {
let hash_queue = self.blockhash_queue.read().unwrap();
txs.zip(lock_results)
.map(|(tx, lock_res)| match lock_res {
Ok(()) => {
let recent_blockhash = tx.message().recent_blockhash();
let hash_age = hash_queue.check_hash_age(recent_blockhash, max_age);
if hash_age == Some(true) {
(Ok(()), None)
} else if let Some((address, account)) = self.check_transaction_for_nonce(tx) {
(Ok(()), Some(NoncePartial::new(address, account)))
} else if hash_age == Some(false) {
error_counters.blockhash_too_old += 1;
(Err(TransactionError::BlockhashNotFound), None)
} else {
error_counters.blockhash_not_found += 1;
(Err(TransactionError::BlockhashNotFound), None)
}
}
Err(e) => (Err(e.clone()), None),
})
.collect()
}
fn is_transaction_already_processed(
&self,
sanitized_tx: &SanitizedTransaction,
status_cache: &StatusCache<Result<()>>,
) -> bool {
let key = sanitized_tx.message_hash();
let transaction_blockhash = sanitized_tx.message().recent_blockhash();
status_cache
.get_status(key, transaction_blockhash, &self.ancestors)
.is_some()
}
fn check_status_cache(
&self,
sanitized_txs: &[SanitizedTransaction],
lock_results: Vec<TransactionCheckResult>,
error_counters: &mut ErrorCounters,
) -> Vec<TransactionCheckResult> {
let rcache = self.src.status_cache.read().unwrap();
sanitized_txs
.iter()
.zip(lock_results)
.map(|(sanitized_tx, (lock_result, nonce))| {
if lock_result.is_ok()
&& self.is_transaction_already_processed(sanitized_tx, &rcache)
{
error_counters.already_processed += 1;
return (Err(TransactionError::AlreadyProcessed), None);
}
(lock_result, nonce)
})
.collect()
}
pub fn check_hash_age(&self, hash: &Hash, max_age: usize) -> Option<bool> {
self.blockhash_queue
.read()
.unwrap()
.check_hash_age(hash, max_age)
}
fn check_message_for_nonce(&self, message: &SanitizedMessage) -> Option<TransactionAccount> {
message
.get_durable_nonce(self.feature_set.is_active(&nonce_must_be_writable::id()))
.and_then(|nonce_address| {
self.get_account_with_fixed_root(nonce_address)
.map(|nonce_account| (*nonce_address, nonce_account))
})
.filter(|(_, nonce_account)| {
nonce_account::verify_nonce_account(nonce_account, message.recent_blockhash())
})
}
pub fn check_transaction_for_nonce(
&self,
tx: &SanitizedTransaction,
) -> Option<TransactionAccount> {
self.check_message_for_nonce(tx.message())
}
pub fn check_transactions(
&self,
sanitized_txs: &[SanitizedTransaction],
lock_results: &[Result<()>],
max_age: usize,
error_counters: &mut ErrorCounters,
) -> Vec<TransactionCheckResult> {
let age_results =
self.check_age(sanitized_txs.iter(), lock_results, max_age, error_counters);
self.check_status_cache(sanitized_txs, age_results, error_counters)
}
pub fn collect_balances(&self, batch: &TransactionBatch) -> TransactionBalances {
let mut balances: TransactionBalances = vec![];
for transaction in batch.sanitized_transactions() {
let mut transaction_balances: Vec<u64> = vec![];
for account_key in transaction.message().account_keys().iter() {
transaction_balances.push(self.get_balance(account_key));
}
balances.push(transaction_balances);
}
balances
}
#[allow(clippy::cognitive_complexity)]
fn update_error_counters(error_counters: &ErrorCounters) {
if 0 != error_counters.total {
inc_new_counter_info!(
"bank-process_transactions-error_count",
error_counters.total
);
}
if 0 != error_counters.account_not_found {
inc_new_counter_info!(
"bank-process_transactions-account_not_found",
error_counters.account_not_found
);
}
if 0 != error_counters.account_in_use {
inc_new_counter_info!(
"bank-process_transactions-account_in_use",
error_counters.account_in_use
);
}
if 0 != error_counters.account_loaded_twice {
inc_new_counter_info!(
"bank-process_transactions-account_loaded_twice",
error_counters.account_loaded_twice
);
}
if 0 != error_counters.blockhash_not_found {
inc_new_counter_info!(
"bank-process_transactions-error-blockhash_not_found",
error_counters.blockhash_not_found
);
}
if 0 != error_counters.blockhash_too_old {
inc_new_counter_info!(
"bank-process_transactions-error-blockhash_too_old",
error_counters.blockhash_too_old
);
}
if 0 != error_counters.invalid_account_index {
inc_new_counter_info!(
"bank-process_transactions-error-invalid_account_index",
error_counters.invalid_account_index
);
}
if 0 != error_counters.invalid_account_for_fee {
inc_new_counter_info!(
"bank-process_transactions-error-invalid_account_for_fee",
error_counters.invalid_account_for_fee
);
}
if 0 != error_counters.insufficient_funds {
inc_new_counter_info!(
"bank-process_transactions-error-insufficient_funds",
error_counters.insufficient_funds
);
}
if 0 != error_counters.instruction_error {
inc_new_counter_info!(
"bank-process_transactions-error-instruction_error",
error_counters.instruction_error
);
}
if 0 != error_counters.already_processed {
inc_new_counter_info!(
"bank-process_transactions-error-already_processed",
error_counters.already_processed
);
}
if 0 != error_counters.not_allowed_during_cluster_maintenance {
inc_new_counter_info!(
"bank-process_transactions-error-cluster-maintenance",
error_counters.not_allowed_during_cluster_maintenance
);
}
if 0 != error_counters.invalid_writable_account {
inc_new_counter_info!(
"bank-process_transactions-error-invalid_writable_account",
error_counters.invalid_writable_account
);
}
}
/// Get any cached executors needed by the transaction
fn get_executors(&self, accounts: &[TransactionAccount]) -> Rc<RefCell<Executors>> {
let executable_keys: Vec<_> = accounts
.iter()
.filter_map(|(key, account)| {
if account.executable() && !native_loader::check_id(account.owner()) {
Some(key)
} else {
None
}
})
.collect();
if executable_keys.is_empty() {
return Rc::new(RefCell::new(Executors::default()));
}
let cache = self.cached_executors.read().unwrap();
let executors = executable_keys
.into_iter()
.filter_map(|key| {
cache
.get(key)
.map(|executor| (*key, TransactionExecutor::new_cached(executor)))
})
.collect();
Rc::new(RefCell::new(executors))
}
/// Add executors back to the bank's cache if modified
fn update_executors(&self, allow_updates: bool, executors: Rc<RefCell<Executors>>) {
let executors = executors.borrow();
let dirty_executors: Vec<_> = executors
.iter()
.filter_map(|(key, executor)| {
if executor.is_dirty(allow_updates) {
Some((key, executor.get()))
} else {
None
}
})
.collect();
if !dirty_executors.is_empty() {
let mut cache = self.cached_executors.write().unwrap();
let cache = Arc::make_mut(&mut cache);
cache.put(&dirty_executors);
}
}
/// Remove an executor from the bank's cache
fn remove_executor(&self, pubkey: &Pubkey) {
let mut cache = self.cached_executors.write().unwrap();
Arc::make_mut(&mut cache).remove(pubkey);
}
/// Execute a transaction using the provided loaded accounts and update
/// the executors cache if the transaction was successful.
fn execute_loaded_transaction(
&self,
tx: &SanitizedTransaction,
loaded_transaction: &mut LoadedTransaction,
compute_budget: ComputeBudget,
durable_nonce_fee: Option<DurableNonceFee>,
enable_cpi_recording: bool,
enable_log_recording: bool,
timings: &mut ExecuteTimings,
error_counters: &mut ErrorCounters,
) -> TransactionExecutionResult {
let mut get_executors_time = Measure::start("get_executors_time");
let executors = self.get_executors(&loaded_transaction.accounts);
get_executors_time.stop();
saturating_add_assign!(
timings.execute_accessories.get_executors_us,
get_executors_time.as_us()
);
let mut transaction_accounts = Vec::new();
std::mem::swap(&mut loaded_transaction.accounts, &mut transaction_accounts);
let mut transaction_context = TransactionContext::new(
transaction_accounts,
compute_budget.max_invoke_depth.saturating_add(1),
tx.message().instructions().len(),
);
let pre_account_state_info =
self.get_transaction_account_state_info(&transaction_context, tx.message());
let log_collector = if enable_log_recording {
Some(LogCollector::new_ref())
} else {
None
};
let (blockhash, lamports_per_signature) = self.last_blockhash_and_lamports_per_signature();
let mut process_message_time = Measure::start("process_message_time");
let process_result = MessageProcessor::process_message(
&self.builtin_programs.vec,
tx.message(),
&loaded_transaction.program_indices,
&mut transaction_context,
self.rent_collector.rent,
log_collector.clone(),
executors.clone(),
self.feature_set.clone(),
compute_budget,
timings,
&*self.sysvar_cache.read().unwrap(),
blockhash,
lamports_per_signature,
self.load_accounts_data_len(),
);
process_message_time.stop();
saturating_add_assign!(
timings.execute_accessories.process_message_us,
process_message_time.as_us()
);
let mut update_executors_time = Measure::start("update_executors_time");
self.update_executors(process_result.is_ok(), executors);
update_executors_time.stop();
saturating_add_assign!(
timings.execute_accessories.update_executors_us,
update_executors_time.as_us()
);
let status = process_result
.and_then(|info| {
let post_account_state_info =
self.get_transaction_account_state_info(&transaction_context, tx.message());
self.verify_transaction_account_state_changes(
&pre_account_state_info,
&post_account_state_info,
&transaction_context,
)
.map(|_| info)
})
.map(|info| {
self.update_accounts_data_len(info.accounts_data_len_delta);
})
.map_err(|err| {
match err {
TransactionError::InvalidRentPayingAccount => {
error_counters.invalid_rent_paying_account += 1;
}
_ => {
error_counters.instruction_error += 1;
}
}
err
});
let log_messages: Option<TransactionLogMessages> =
log_collector.and_then(|log_collector| {
Rc::try_unwrap(log_collector)
.map(|log_collector| log_collector.into_inner().into())
.ok()
});
let (accounts, instruction_trace) = transaction_context.deconstruct();
loaded_transaction.accounts = accounts;
let inner_instructions = if enable_cpi_recording {
Some(inner_instructions_list_from_instruction_trace(
&instruction_trace,
))
} else {
None
};
TransactionExecutionResult::Executed(TransactionExecutionDetails {
status,
log_messages,
inner_instructions,
durable_nonce_fee,
})
}
#[allow(clippy::type_complexity)]
pub fn load_and_execute_transactions(
&self,
batch: &TransactionBatch,
max_age: usize,
enable_cpi_recording: bool,
enable_log_recording: bool,
timings: &mut ExecuteTimings,
) -> LoadAndExecuteTransactionsOutput {
let sanitized_txs = batch.sanitized_transactions();
debug!("processing transactions: {}", sanitized_txs.len());
inc_new_counter_info!("bank-process_transactions", sanitized_txs.len());
let mut error_counters = ErrorCounters::default();
let retryable_transaction_indexes: Vec<_> = batch
.lock_results()
.iter()
.enumerate()
.filter_map(|(index, res)| match res {
Err(TransactionError::AccountInUse) => {
error_counters.account_in_use += 1;
Some(index)
}
Err(TransactionError::WouldExceedMaxBlockCostLimit)
| Err(TransactionError::WouldExceedMaxVoteCostLimit)
| Err(TransactionError::WouldExceedMaxAccountCostLimit)
| Err(TransactionError::WouldExceedMaxAccountDataCostLimit) => Some(index),
Err(_) => None,
Ok(_) => None,
})
.collect();
let mut check_time = Measure::start("check_transactions");
let check_results = self.check_transactions(
sanitized_txs,
batch.lock_results(),
max_age,
&mut error_counters,
);
check_time.stop();
let mut load_time = Measure::start("accounts_load");
let mut loaded_transactions = self.rc.accounts.load_accounts(
&self.ancestors,
sanitized_txs,
check_results,
&self.blockhash_queue.read().unwrap(),
&mut error_counters,
&self.rent_collector,
&self.feature_set,
&self.fee_structure,
);
load_time.stop();
let mut execution_time = Measure::start("execution_time");
let mut signature_count: u64 = 0;
let execution_results: Vec<TransactionExecutionResult> = loaded_transactions
.iter_mut()
.zip(sanitized_txs.iter())
.map(|(accs, tx)| match accs {
(Err(e), _nonce) => TransactionExecutionResult::NotExecuted(e.clone()),
(Ok(loaded_transaction), nonce) => {
let mut feature_set_clone_time = Measure::start("feature_set_clone");
let feature_set = self.feature_set.clone();
feature_set_clone_time.stop();
saturating_add_assign!(
timings.execute_accessories.feature_set_clone_us,
feature_set_clone_time.as_us()
);
signature_count += u64::from(tx.message().header().num_required_signatures);
let tx_wide_compute_cap = feature_set.is_active(&tx_wide_compute_cap::id());
let mut compute_budget = self
.compute_budget
.unwrap_or_else(|| ComputeBudget::new(tx_wide_compute_cap));
if tx_wide_compute_cap {
let mut compute_budget_process_transaction_time =
Measure::start("compute_budget_process_transaction_time");
let process_transaction_result = compute_budget.process_message(
tx.message(),
feature_set.is_active(&requestable_heap_size::id()),
);
compute_budget_process_transaction_time.stop();
saturating_add_assign!(
timings
.execute_accessories
.compute_budget_process_transaction_us,
compute_budget_process_transaction_time.as_us()
);
if let Err(err) = process_transaction_result {
return TransactionExecutionResult::NotExecuted(err);
}
}
let durable_nonce_fee = nonce.as_ref().map(DurableNonceFee::from);
self.execute_loaded_transaction(
tx,
loaded_transaction,
compute_budget,
durable_nonce_fee,
enable_cpi_recording,
enable_log_recording,
timings,
&mut error_counters,
)
}
})
.collect();
execution_time.stop();
debug!(
"check: {}us load: {}us execute: {}us txs_len={}",
check_time.as_us(),
load_time.as_us(),
execution_time.as_us(),
sanitized_txs.len(),
);
timings.check_us = timings.check_us.saturating_add(check_time.as_us());
timings.load_us = timings.load_us.saturating_add(load_time.as_us());
timings.execute_us = timings.execute_us.saturating_add(execution_time.as_us());
let mut executed_transactions_count: usize = 0;
let mut executed_with_successful_result_count: usize = 0;
let err_count = &mut error_counters.total;
let transaction_log_collector_config =
self.transaction_log_collector_config.read().unwrap();
for (execution_result, tx) in execution_results.iter().zip(sanitized_txs) {
if let Some(debug_keys) = &self.transaction_debug_keys {
for key in tx.message().account_keys().iter() {
if debug_keys.contains(key) {
let result = execution_result.flattened_result();
info!("slot: {} result: {:?} tx: {:?}", self.slot, result, tx);
break;
}
}
}
if execution_result.was_executed() // Skip log collection for unprocessed transactions
&& transaction_log_collector_config.filter != TransactionLogCollectorFilter::None
{
let mut filtered_mentioned_addresses = Vec::new();
if !transaction_log_collector_config
.mentioned_addresses
.is_empty()
{
for key in tx.message().account_keys().iter() {
if transaction_log_collector_config
.mentioned_addresses
.contains(key)
{
filtered_mentioned_addresses.push(*key);
}
}
}
let is_vote = vote_parser::is_simple_vote_transaction(tx);
let store = match transaction_log_collector_config.filter {
TransactionLogCollectorFilter::All => {
!is_vote || !filtered_mentioned_addresses.is_empty()
}
TransactionLogCollectorFilter::AllWithVotes => true,
TransactionLogCollectorFilter::None => false,
TransactionLogCollectorFilter::OnlyMentionedAddresses => {
!filtered_mentioned_addresses.is_empty()
}
};
if store {
if let TransactionExecutionResult::Executed(TransactionExecutionDetails {
status,
log_messages: Some(log_messages),
..
}) = execution_result
{
let mut transaction_log_collector =
self.transaction_log_collector.write().unwrap();
let transaction_log_index = transaction_log_collector.logs.len();
transaction_log_collector.logs.push(TransactionLogInfo {
signature: *tx.signature(),
result: status.clone(),
is_vote,
log_messages: log_messages.clone(),
});
for key in filtered_mentioned_addresses.into_iter() {
transaction_log_collector
.mentioned_address_map
.entry(key)
.or_default()
.push(transaction_log_index);
}
}
}
}
if execution_result.was_executed() {
executed_transactions_count += 1;
}
match execution_result.flattened_result() {
Ok(()) => {
executed_with_successful_result_count += 1;
}
Err(err) => {
if *err_count == 0 {
debug!("tx error: {:?} {:?}", err, tx);
}
*err_count += 1;
}
}
}
if *err_count > 0 {
debug!(
"{} errors of {} txs",
*err_count,
*err_count + executed_with_successful_result_count
);
}
Self::update_error_counters(&error_counters);
LoadAndExecuteTransactionsOutput {
loaded_transactions,
execution_results,
retryable_transaction_indexes,
executed_transactions_count,
executed_with_successful_result_count,
signature_count,
}
}
/// Load the accounts data len
pub(crate) fn load_accounts_data_len(&self) -> u64 {
self.accounts_data_len.load(Acquire)
}
/// Store a new value to the accounts data len
fn store_accounts_data_len(&self, accounts_data_len: u64) {
self.accounts_data_len.store(accounts_data_len, Release)
}
/// Update the accounts data len by adding `delta`. Since `delta` is signed, negative values
/// are allowed as the means to subtract from `accounts_data_len`. The arithmetic saturates.
fn update_accounts_data_len(&self, delta: i64) {
/// Mixed integer ops currently not stable, so copying the impl.
/// Copied from: https://github.com/a1phyr/rust/blob/47edde1086412b36e9efd6098b191ec15a2a760a/library/core/src/num/uint_macros.rs#L1039-L1048
fn saturating_add_signed(lhs: u64, rhs: i64) -> u64 {
let (res, overflow) = lhs.overflowing_add(rhs as u64);
if overflow == (rhs < 0) {
res
} else if overflow {
u64::MAX
} else {
u64::MIN
}
}
self.accounts_data_len
.fetch_update(AcqRel, Acquire, |x| Some(saturating_add_signed(x, delta)))
// SAFETY: unwrap() is safe here since our update fn always returns `Some`
.unwrap();
}
fn get_num_signatures_in_message(message: &SanitizedMessage) -> u64 {
let mut num_signatures = u64::from(message.header().num_required_signatures);
// This next part is really calculating the number of pre-processor
// operations being done and treating them like a signature
for (program_id, instruction) in message.program_instructions_iter() {
if secp256k1_program::check_id(program_id) || ed25519_program::check_id(program_id) {
if let Some(num_verifies) = instruction.data.get(0) {
num_signatures = num_signatures.saturating_add(u64::from(*num_verifies));
}
}
}
num_signatures
}
fn get_num_write_locks_in_message(message: &SanitizedMessage) -> u64 {
message
.account_keys()
.len()
.saturating_sub(message.num_readonly_accounts()) as u64
}
/// Calculate fee for `SanitizedMessage`
pub fn calculate_fee(
message: &SanitizedMessage,
lamports_per_signature: u64,
fee_structure: &FeeStructure,
tx_wide_compute_cap: bool,
) -> u64 {
if tx_wide_compute_cap {
// Fee based on compute units and signatures
const BASE_CONGESTION: f64 = 5_000.0;
let current_congestion = BASE_CONGESTION.max(lamports_per_signature as f64);
let congestion_multiplier = if lamports_per_signature == 0 {
0.0 // test only
} else {
BASE_CONGESTION / current_congestion
};
let mut compute_budget = ComputeBudget::default();
let additional_fee = compute_budget
.process_message(message, false)
.unwrap_or_default();
let signature_fee = Self::get_num_signatures_in_message(message)
.saturating_mul(fee_structure.lamports_per_signature);
let write_lock_fee = Self::get_num_write_locks_in_message(message)
.saturating_mul(fee_structure.lamports_per_write_lock);
let compute_fee = fee_structure
.compute_fee_bins
.iter()
.find(|bin| compute_budget.max_units <= bin.limit)
.map(|bin| bin.fee)
.unwrap_or_else(|| {
fee_structure
.compute_fee_bins
.last()
.map(|bin| bin.fee)
.unwrap_or_default()
});
((additional_fee
.saturating_add(signature_fee)
.saturating_add(write_lock_fee)
.saturating_add(compute_fee) as f64)
* congestion_multiplier)
.round() as u64
} else {
// Fee based only on signatures
lamports_per_signature.saturating_mul(Self::get_num_signatures_in_message(message))
}
}
fn filter_program_errors_and_collect_fee(
&self,
txs: &[SanitizedTransaction],
execution_results: &[TransactionExecutionResult],
) -> Vec<Result<()>> {
let hash_queue = self.blockhash_queue.read().unwrap();
let mut fees = 0;
let results = txs
.iter()
.zip(execution_results)
.map(|(tx, execution_result)| {
let (execution_status, durable_nonce_fee) = match &execution_result {
TransactionExecutionResult::Executed(details) => {
Ok((&details.status, details.durable_nonce_fee.as_ref()))
}
TransactionExecutionResult::NotExecuted(err) => Err(err.clone()),
}?;
let (lamports_per_signature, is_nonce) = durable_nonce_fee
.map(|durable_nonce_fee| durable_nonce_fee.lamports_per_signature())
.map(|maybe_lamports_per_signature| (maybe_lamports_per_signature, true))
.unwrap_or_else(|| {
(
hash_queue.get_lamports_per_signature(tx.message().recent_blockhash()),
false,
)
});
let lamports_per_signature =
lamports_per_signature.ok_or(TransactionError::BlockhashNotFound)?;
let fee = Self::calculate_fee(
tx.message(),
lamports_per_signature,
&self.fee_structure,
self.feature_set.is_active(&tx_wide_compute_cap::id()),
);
// In case of instruction error, even though no accounts
// were stored we still need to charge the payer the
// fee.
//
//...except nonce accounts, which already have their
// post-load, fee deducted, pre-execute account state
// stored
if execution_status.is_err() && !is_nonce {
self.withdraw(tx.message().fee_payer(), fee)?;
}
fees += fee;
Ok(())
})
.collect();
self.collector_fees.fetch_add(fees, Relaxed);
results
}
/// `committed_transactions_count` is the number of transactions out of `sanitized_txs`
/// that was executed. Of those, `committed_transactions_count`,
/// `committed_with_failure_result_count` is the number of executed transactions that returned
/// a failure result.
pub fn commit_transactions(
&self,
sanitized_txs: &[SanitizedTransaction],
loaded_txs: &mut [TransactionLoadResult],
execution_results: Vec<TransactionExecutionResult>,
committed_transactions_count: u64,
committed_with_failure_result_count: u64,
signature_count: u64,
timings: &mut ExecuteTimings,
) -> TransactionResults {
assert!(
!self.freeze_started(),
"commit_transactions() working on a bank that is already frozen or is undergoing freezing!"
);
let tx_count = if self.bank_tranaction_count_fix_enabled() {
committed_transactions_count
} else {
committed_transactions_count.saturating_sub(committed_with_failure_result_count)
};
self.increment_transaction_count(tx_count);
self.increment_signature_count(signature_count);
inc_new_counter_info!(
"bank-process_transactions-txs",
committed_transactions_count as usize
);
inc_new_counter_info!("bank-process_transactions-sigs", signature_count as usize);
if committed_with_failure_result_count > 0 {
self.transaction_error_count
.fetch_add(committed_with_failure_result_count, Relaxed);
}
// Should be equivalent to checking `committed_transactions_count > 0`
if execution_results.iter().any(|result| result.was_executed()) {
self.is_delta.store(true, Relaxed);
self.transaction_entries_count.fetch_add(1, Relaxed);
self.transactions_per_entry_max
.fetch_max(committed_transactions_count, Relaxed);
}
let (blockhash, lamports_per_signature) = self.last_blockhash_and_lamports_per_signature();
let mut write_time = Measure::start("write_time");
self.rc.accounts.store_cached(
self.slot(),
sanitized_txs,
&execution_results,
loaded_txs,
&self.rent_collector,
&blockhash,
lamports_per_signature,
self.leave_nonce_on_success(),
);
let rent_debits = self.collect_rent(&execution_results, loaded_txs);
let mut update_stakes_cache_time = Measure::start("update_stakes_cache_time");
self.update_stakes_cache(sanitized_txs, &execution_results, loaded_txs);
update_stakes_cache_time.stop();
// once committed there is no way to unroll
write_time.stop();
debug!(
"store: {}us txs_len={}",
write_time.as_us(),
sanitized_txs.len()
);
timings.store_us = timings.store_us.saturating_add(write_time.as_us());
timings.update_stakes_cache_us = timings
.update_stakes_cache_us
.saturating_add(update_stakes_cache_time.as_us());
self.update_transaction_statuses(sanitized_txs, &execution_results);
let fee_collection_results =
self.filter_program_errors_and_collect_fee(sanitized_txs, &execution_results);
TransactionResults {
fee_collection_results,
execution_results,
rent_debits,
}
}
// Distribute collected rent fees for this slot to staked validators (excluding stakers)
// according to stake.
//
// The nature of rent fee is the cost of doing business, every validator has to hold (or have
// access to) the same list of accounts, so we pay according to stake, which is a rough proxy for
// value to the network.
//
// Currently, rent distribution doesn't consider given validator's uptime at all (this might
// change). That's because rent should be rewarded for the storage resource utilization cost.
// It's treated differently from transaction fees, which is for the computing resource
// utilization cost.
//
// We can't use collector_id (which is rotated according to stake-weighted leader schedule)
// as an approximation to the ideal rent distribution to simplify and avoid this per-slot
// computation for the distribution (time: N log N, space: N acct. stores; N = # of
// validators).
// The reason is that rent fee doesn't need to be incentivized for throughput unlike transaction
// fees
//
// Ref: collect_fees
#[allow(clippy::needless_collect)]
fn distribute_rent_to_validators(
&self,
vote_accounts: &HashMap<Pubkey, (/*stake:*/ u64, VoteAccount)>,
rent_to_be_distributed: u64,
) {
let mut total_staked = 0;
// Collect the stake associated with each validator.
// Note that a validator may be present in this vector multiple times if it happens to have
// more than one staked vote account somehow
let mut validator_stakes = vote_accounts
.iter()
.filter_map(|(_vote_pubkey, (staked, account))| {
if *staked == 0 {
None
} else {
total_staked += *staked;
let node_pubkey = account.vote_state().as_ref().ok()?.node_pubkey;
Some((node_pubkey, *staked))
}
})
.collect::<Vec<(Pubkey, u64)>>();
#[cfg(test)]
if validator_stakes.is_empty() {
// some tests bank.freezes() with bad staking state
self.capitalization
.fetch_sub(rent_to_be_distributed, Relaxed);
return;
}
#[cfg(not(test))]
assert!(!validator_stakes.is_empty());
// Sort first by stake and then by validator identity pubkey for determinism
validator_stakes.sort_by(|(pubkey1, staked1), (pubkey2, staked2)| {
match staked2.cmp(staked1) {
std::cmp::Ordering::Equal => pubkey2.cmp(pubkey1),
other => other,
}
});
let enforce_fix = self.no_overflow_rent_distribution_enabled();
let mut rent_distributed_in_initial_round = 0;
let validator_rent_shares = validator_stakes
.into_iter()
.map(|(pubkey, staked)| {
let rent_share = if !enforce_fix {
(((staked * rent_to_be_distributed) as f64) / (total_staked as f64)) as u64
} else {
(((staked as u128) * (rent_to_be_distributed as u128)) / (total_staked as u128))
.try_into()
.unwrap()
};
rent_distributed_in_initial_round += rent_share;
(pubkey, rent_share)
})
.collect::<Vec<(Pubkey, u64)>>();
// Leftover lamports after fraction calculation, will be paid to validators starting from highest stake
// holder
let mut leftover_lamports = rent_to_be_distributed - rent_distributed_in_initial_round;
let mut rewards = vec![];
validator_rent_shares
.into_iter()
.for_each(|(pubkey, rent_share)| {
let rent_to_be_paid = if leftover_lamports > 0 {
leftover_lamports -= 1;
rent_share + 1
} else {
rent_share
};
if !enforce_fix || rent_to_be_paid > 0 {
let mut account = self
.get_account_with_fixed_root(&pubkey)
.unwrap_or_default();
if account.checked_add_lamports(rent_to_be_paid).is_err() {
// overflow adding lamports
self.capitalization.fetch_sub(rent_to_be_paid, Relaxed);
error!(
"Burned {} rent lamports instead of sending to {}",
rent_to_be_paid, pubkey
);
inc_new_counter_error!(
"bank-burned_rent_lamports",
rent_to_be_paid as usize
);
} else {
self.store_account(&pubkey, &account);
rewards.push((
pubkey,
RewardInfo {
reward_type: RewardType::Rent,
lamports: rent_to_be_paid as i64,
post_balance: account.lamports(),
commission: None,
},
));
}
}
});
self.rewards.write().unwrap().append(&mut rewards);
if enforce_fix {
assert_eq!(leftover_lamports, 0);
} else if leftover_lamports != 0 {
warn!(
"There was leftover from rent distribution: {}",
leftover_lamports
);
self.capitalization.fetch_sub(leftover_lamports, Relaxed);
}
}
fn distribute_rent(&self) {
let total_rent_collected = self.collected_rent.load(Relaxed);
let (burned_portion, rent_to_be_distributed) = self
.rent_collector
.rent
.calculate_burn(total_rent_collected);
debug!(
"distributed rent: {} (rounded from: {}, burned: {})",
rent_to_be_distributed, total_rent_collected, burned_portion
);
self.capitalization.fetch_sub(burned_portion, Relaxed);
if rent_to_be_distributed == 0 {
return;
}
self.distribute_rent_to_validators(&self.vote_accounts(), rent_to_be_distributed);
}
fn collect_rent(
&self,
execution_results: &[TransactionExecutionResult],
loaded_txs: &mut [TransactionLoadResult],
) -> Vec<RentDebits> {
let mut collected_rent: u64 = 0;
let rent_debits: Vec<_> = loaded_txs
.iter_mut()
.zip(execution_results)
.map(|((load_result, _nonce), execution_result)| {
if let (Ok(loaded_transaction), true) =
(load_result, execution_result.was_executed_successfully())
{
collected_rent += loaded_transaction.rent;
mem::take(&mut loaded_transaction.rent_debits)
} else {
RentDebits::default()
}
})
.collect();
self.collected_rent.fetch_add(collected_rent, Relaxed);
rent_debits
}
fn run_incinerator(&self) {
if let Some((account, _)) =
self.get_account_modified_since_parent_with_fixed_root(&incinerator::id())
{
self.capitalization.fetch_sub(account.lamports(), Relaxed);
self.store_account(&incinerator::id(), &AccountSharedData::default());
}
}
fn collect_rent_eagerly(&self) {
if self.lazy_rent_collection.load(Relaxed) {
return;
}
let mut measure = Measure::start("collect_rent_eagerly-ms");
let partitions = self.rent_collection_partitions();
let count = partitions.len();
let account_count: usize = partitions
.into_iter()
.map(|partition| self.collect_rent_in_partition(partition))
.sum();
measure.stop();
datapoint_info!(
"collect_rent_eagerly",
("accounts", account_count, i64),
("partitions", count, i64)
);
inc_new_counter_info!("collect_rent_eagerly-ms", measure.as_ms() as usize);
}
#[cfg(test)]
fn restore_old_behavior_for_fragile_tests(&self) {
self.lazy_rent_collection.store(true, Relaxed);
}
fn rent_collection_partitions(&self) -> Vec<Partition> {
if !self.use_fixed_collection_cycle() {
// This mode is for production/development/testing.
// In this mode, we iterate over the whole pubkey value range for each epochs
// including warm-up epochs.
// The only exception is the situation where normal epochs are relatively short
// (currently less than 2 day). In that case, we arrange a single collection
// cycle to be multiple of epochs so that a cycle could be greater than the 2 day.
self.variable_cycle_partitions()
} else {
// This mode is mainly for benchmarking only.
// In this mode, we always iterate over the whole pubkey value range with
// <slot_count_in_two_day> slots as a collection cycle, regardless warm-up or
// alignment between collection cycles and epochs.
// Thus, we can simulate stable processing load of eager rent collection,
// strictly proportional to the number of pubkeys since genesis.
self.fixed_cycle_partitions()
}
}
fn collect_rent_in_partition(&self, partition: Partition) -> usize {
let subrange = Self::pubkey_range_from_partition(partition);
let thread_pool = &self.rc.accounts.accounts_db.thread_pool;
self.rc
.accounts
.hold_range_in_memory(&subrange, true, thread_pool);
let accounts = self
.rc
.accounts
.load_to_collect_rent_eagerly(&self.ancestors, subrange.clone());
let account_count = accounts.len();
// parallelize?
let mut rent_debits = RentDebits::default();
let mut total_collected = CollectedInfo::default();
for (pubkey, mut account) in accounts {
let collected = self.rent_collector.collect_from_existing_account(
&pubkey,
&mut account,
self.rc.accounts.accounts_db.filler_account_suffix.as_ref(),
);
total_collected += collected;
// Store all of them unconditionally to purge old AppendVec,
// even if collected rent is 0 (= not updated).
// Also, there's another subtle side-effect from this: this
// ensures we verify the whole on-chain state (= all accounts)
// via the account delta hash slowly once per an epoch.
self.store_account(&pubkey, &account);
rent_debits.insert(&pubkey, collected.rent_amount, account.lamports());
}
self.collected_rent
.fetch_add(total_collected.rent_amount, Relaxed);
self.rewards
.write()
.unwrap()
.extend(rent_debits.into_unordered_rewards_iter());
if total_collected.account_data_len_reclaimed > 0 {
self.update_accounts_data_len(-(total_collected.account_data_len_reclaimed as i64));
}
self.rc
.accounts
.hold_range_in_memory(&subrange, false, thread_pool);
account_count
}
/// This is the inverse of pubkey_range_from_partition.
/// return the lowest end_index which would contain this pubkey
#[cfg(test)]
pub fn partition_from_pubkey(
pubkey: &Pubkey,
partition_count: PartitionsPerCycle,
) -> PartitionIndex {
type Prefix = u64;
const PREFIX_SIZE: usize = mem::size_of::<Prefix>();
const PREFIX_MAX: Prefix = Prefix::max_value();
if partition_count == 1 {
return 0;
}
// not-overflowing way of `(Prefix::max_value() + 1) / partition_count`
let partition_width = (PREFIX_MAX - partition_count + 1) / partition_count + 1;
let prefix = u64::from_be_bytes(pubkey.as_ref()[0..PREFIX_SIZE].try_into().unwrap());
if prefix == 0 {
return 0;
}
if prefix == PREFIX_MAX {
return partition_count - 1;
}
let mut result = (prefix + 1) / partition_width;
if (prefix + 1) % partition_width == 0 {
// adjust for integer divide
result = result.saturating_sub(1);
}
result
}
// Mostly, the pair (start_index & end_index) is equivalent to this range:
// start_index..=end_index. But it has some exceptional cases, including
// this important and valid one:
// 0..=0: the first partition in the new epoch when crossing epochs
pub fn pubkey_range_from_partition(
(start_index, end_index, partition_count): Partition,
) -> RangeInclusive<Pubkey> {
assert!(start_index <= end_index);
assert!(start_index < partition_count);
assert!(end_index < partition_count);
assert!(0 < partition_count);
type Prefix = u64;
const PREFIX_SIZE: usize = mem::size_of::<Prefix>();
const PREFIX_MAX: Prefix = Prefix::max_value();
let mut start_pubkey = [0x00u8; 32];
let mut end_pubkey = [0xffu8; 32];
if partition_count == 1 {
assert_eq!(start_index, 0);
assert_eq!(end_index, 0);
return Pubkey::new_from_array(start_pubkey)..=Pubkey::new_from_array(end_pubkey);
}
// not-overflowing way of `(Prefix::max_value() + 1) / partition_count`
let partition_width = (PREFIX_MAX - partition_count + 1) / partition_count + 1;
let mut start_key_prefix = if start_index == 0 && end_index == 0 {
0
} else if start_index + 1 == partition_count {
PREFIX_MAX
} else {
(start_index + 1) * partition_width
};
let mut end_key_prefix = if end_index + 1 == partition_count {
PREFIX_MAX
} else {
(end_index + 1) * partition_width - 1
};
if start_index != 0 && start_index == end_index {
// n..=n (n != 0): a noop pair across epochs without a gap under
// multi_epoch_cycle, just nullify it.
if end_key_prefix == PREFIX_MAX {
start_key_prefix = end_key_prefix;
start_pubkey = end_pubkey;
} else {
end_key_prefix = start_key_prefix;
end_pubkey = start_pubkey;
}
}
start_pubkey[0..PREFIX_SIZE].copy_from_slice(&start_key_prefix.to_be_bytes());
end_pubkey[0..PREFIX_SIZE].copy_from_slice(&end_key_prefix.to_be_bytes());
let start_pubkey_final = Pubkey::new_from_array(start_pubkey);
let end_pubkey_final = Pubkey::new_from_array(end_pubkey);
if start_index != 0 && start_index == end_index {
error!(
"start=end, {}, {}, start, end: {:?}, {:?}, pubkeys: {}, {}",
start_pubkey.iter().map(|x| format!("{:02x}", x)).join(""),
end_pubkey.iter().map(|x| format!("{:02x}", x)).join(""),
start_key_prefix,
end_key_prefix,
start_pubkey_final,
end_pubkey_final
);
}
trace!(
"pubkey_range_from_partition: ({}-{})/{} [{}]: {}-{}",
start_index,
end_index,
partition_count,
(end_key_prefix - start_key_prefix),
start_pubkey.iter().map(|x| format!("{:02x}", x)).join(""),
end_pubkey.iter().map(|x| format!("{:02x}", x)).join(""),
);
#[cfg(test)]
if start_index != end_index {
assert_eq!(
if start_index == 0 && end_index == 0 {
0
} else {
start_index + 1
},
Self::partition_from_pubkey(&start_pubkey_final, partition_count),
"{}, {}, start_key_prefix: {}, {}, {}",
start_index,
end_index,
start_key_prefix,
start_pubkey_final,
partition_count
);
assert_eq!(
end_index,
Self::partition_from_pubkey(&end_pubkey_final, partition_count),
"{}, {}, {}, {}",
start_index,
end_index,
end_pubkey_final,
partition_count
);
if start_index != 0 {
start_pubkey[0..PREFIX_SIZE]
.copy_from_slice(&start_key_prefix.saturating_sub(1).to_be_bytes());
let pubkey_test = Pubkey::new_from_array(start_pubkey);
assert_eq!(
start_index,
Self::partition_from_pubkey(&pubkey_test, partition_count),
"{}, {}, start_key_prefix-1: {}, {}, {}",
start_index,
end_index,
start_key_prefix.saturating_sub(1),
pubkey_test,
partition_count
);
}
if end_index != partition_count - 1 && end_index != 0 {
end_pubkey[0..PREFIX_SIZE]
.copy_from_slice(&end_key_prefix.saturating_add(1).to_be_bytes());
let pubkey_test = Pubkey::new_from_array(end_pubkey);
assert_eq!(
end_index.saturating_add(1),
Self::partition_from_pubkey(&pubkey_test, partition_count),
"start: {}, end: {}, pubkey: {}, partition_count: {}, prefix_before_addition: {}, prefix after: {}",
start_index,
end_index,
pubkey_test,
partition_count,
end_key_prefix,
end_key_prefix.saturating_add(1),
);
}
}
// should be an inclusive range (a closed interval) like this:
// [0xgg00-0xhhff], [0xii00-0xjjff], ... (where 0xii00 == 0xhhff + 1)
start_pubkey_final..=end_pubkey_final
}
pub fn get_partitions(
slot: Slot,
parent_slot: Slot,
slot_count_in_two_day: SlotCount,
) -> Vec<Partition> {
let parent_cycle = parent_slot / slot_count_in_two_day;
let current_cycle = slot / slot_count_in_two_day;
let mut parent_cycle_index = parent_slot % slot_count_in_two_day;
let current_cycle_index = slot % slot_count_in_two_day;
let mut partitions = vec![];
if parent_cycle < current_cycle {
if current_cycle_index > 0 {
// generate and push gapped partitions because some slots are skipped
let parent_last_cycle_index = slot_count_in_two_day - 1;
// ... for parent cycle
partitions.push((
parent_cycle_index,
parent_last_cycle_index,
slot_count_in_two_day,
));
// ... for current cycle
partitions.push((0, 0, slot_count_in_two_day));
}
parent_cycle_index = 0;
}
partitions.push((
parent_cycle_index,
current_cycle_index,
slot_count_in_two_day,
));
partitions
}
fn fixed_cycle_partitions(&self) -> Vec<Partition> {
let slot_count_in_two_day = self.slot_count_in_two_day();
Self::get_partitions(self.slot(), self.parent_slot(), slot_count_in_two_day)
}
/// used only by filler accounts in debug path
/// previous means slot - 1, not parent
pub fn variable_cycle_partition_from_previous_slot(
epoch_schedule: &EpochSchedule,
slot: Slot,
) -> Partition {
// similar code to Bank::variable_cycle_partitions
let (current_epoch, current_slot_index) = epoch_schedule.get_epoch_and_slot_index(slot);
let (parent_epoch, mut parent_slot_index) =
epoch_schedule.get_epoch_and_slot_index(slot.saturating_sub(1));
let cycle_params = Self::rent_single_epoch_collection_cycle_params(
current_epoch,
epoch_schedule.get_slots_in_epoch(current_epoch),
);
if parent_epoch < current_epoch {
parent_slot_index = 0;
}
let generated_for_gapped_epochs = false;
Self::get_partition_from_slot_indexes(
cycle_params,
parent_slot_index,
current_slot_index,
generated_for_gapped_epochs,
)
}
fn variable_cycle_partitions(&self) -> Vec<Partition> {
let (current_epoch, current_slot_index) = self.get_epoch_and_slot_index(self.slot());
let (parent_epoch, mut parent_slot_index) =
self.get_epoch_and_slot_index(self.parent_slot());
let mut partitions = vec![];
if parent_epoch < current_epoch {
let slot_skipped = (self.slot() - self.parent_slot()) > 1;
if slot_skipped {
// Generate special partitions because there are skipped slots
// exactly at the epoch transition.
let parent_last_slot_index = self.get_slots_in_epoch(parent_epoch) - 1;
// ... for parent epoch
partitions.push(self.partition_from_slot_indexes_with_gapped_epochs(
parent_slot_index,
parent_last_slot_index,
parent_epoch,
));
if current_slot_index > 0 {
// ... for current epoch
partitions.push(self.partition_from_slot_indexes_with_gapped_epochs(
0,
0,
current_epoch,
));
}
}
parent_slot_index = 0;
}
partitions.push(self.partition_from_normal_slot_indexes(
parent_slot_index,
current_slot_index,
current_epoch,
));
partitions
}
fn do_partition_from_slot_indexes(
&self,
start_slot_index: SlotIndex,
end_slot_index: SlotIndex,
epoch: Epoch,
generated_for_gapped_epochs: bool,
) -> Partition {
let cycle_params = self.determine_collection_cycle_params(epoch);
Self::get_partition_from_slot_indexes(
cycle_params,
start_slot_index,
end_slot_index,
generated_for_gapped_epochs,
)
}
fn get_partition_from_slot_indexes(
cycle_params: RentCollectionCycleParams,
start_slot_index: SlotIndex,
end_slot_index: SlotIndex,
generated_for_gapped_epochs: bool,
) -> Partition {
let (_, _, in_multi_epoch_cycle, _, _, partition_count) = cycle_params;
// use common codepath for both very likely and very unlikely for the sake of minimized
// risk of any miscalculation instead of negligibly faster computation per slot for the
// likely case.
let mut start_partition_index =
Self::partition_index_from_slot_index(start_slot_index, cycle_params);
let mut end_partition_index =
Self::partition_index_from_slot_index(end_slot_index, cycle_params);
// Adjust partition index for some edge cases
let is_special_new_epoch = start_slot_index == 0 && end_slot_index != 1;
let in_middle_of_cycle = start_partition_index > 0;
if in_multi_epoch_cycle && is_special_new_epoch && in_middle_of_cycle {
// Adjust slot indexes so that the final partition ranges are continuous!
// This is need because the caller gives us off-by-one indexes when
// an epoch boundary is crossed.
// Usually there is no need for this adjustment because cycles are aligned
// with epochs. But for multi-epoch cycles, adjust the indexes if it
// happens in the middle of a cycle for both gapped and not-gapped cases:
//
// epoch (slot range)|slot idx.*1|raw part. idx.|adj. part. idx.|epoch boundary
// ------------------+-----------+--------------+---------------+--------------
// 3 (20..30) | [7..8] | 7.. 8 | 7.. 8
// | [8..9] | 8.. 9 | 8.. 9
// 4 (30..40) | [0..0] |<10>..10 | <9>..10 <--- not gapped
// | [0..1] | 10..11 | 10..12
// | [1..2] | 11..12 | 11..12
// | [2..9 *2| 12..19 | 12..19 <-+
// 5 (40..50) | 0..0 *2|<20>..<20> |<19>..<19> *3 <-+- gapped
// | 0..4] |<20>..24 |<19>..24 <-+
// | [4..5] | 24..25 | 24..25
// | [5..6] | 25..26 | 25..26
//
// NOTE: <..> means the adjusted slots
//
// *1: The range of parent_bank.slot() and current_bank.slot() is firstly
// split by the epoch boundaries and then the split ones are given to us.
// The original ranges are denoted as [...]
// *2: These are marked with generated_for_gapped_epochs = true.
// *3: This becomes no-op partition
start_partition_index -= 1;
if generated_for_gapped_epochs {
assert_eq!(start_slot_index, end_slot_index);
end_partition_index -= 1;
}
}
(start_partition_index, end_partition_index, partition_count)
}
fn partition_from_normal_slot_indexes(
&self,
start_slot_index: SlotIndex,
end_slot_index: SlotIndex,
epoch: Epoch,
) -> Partition {
self.do_partition_from_slot_indexes(start_slot_index, end_slot_index, epoch, false)
}
fn partition_from_slot_indexes_with_gapped_epochs(
&self,
start_slot_index: SlotIndex,
end_slot_index: SlotIndex,
epoch: Epoch,
) -> Partition {
self.do_partition_from_slot_indexes(start_slot_index, end_slot_index, epoch, true)
}
fn rent_single_epoch_collection_cycle_params(
epoch: Epoch,
slot_count_per_epoch: SlotCount,
) -> RentCollectionCycleParams {
(
epoch,
slot_count_per_epoch,
false,
0,
1,
slot_count_per_epoch,
)
}
fn determine_collection_cycle_params(&self, epoch: Epoch) -> RentCollectionCycleParams {
let slot_count_per_epoch = self.get_slots_in_epoch(epoch);
if !self.use_multi_epoch_collection_cycle(epoch) {
// mnb should always go through this code path
Self::rent_single_epoch_collection_cycle_params(epoch, slot_count_per_epoch)
} else {
let epoch_count_in_cycle = self.slot_count_in_two_day() / slot_count_per_epoch;
let partition_count = slot_count_per_epoch * epoch_count_in_cycle;
(
epoch,
slot_count_per_epoch,
true,
self.first_normal_epoch(),
epoch_count_in_cycle,
partition_count,
)
}
}
fn partition_index_from_slot_index(
slot_index_in_epoch: SlotIndex,
(
epoch,
slot_count_per_epoch,
_,
base_epoch,
epoch_count_per_cycle,
_,
): RentCollectionCycleParams,
) -> PartitionIndex {
let epoch_offset = epoch - base_epoch;
let epoch_index_in_cycle = epoch_offset % epoch_count_per_cycle;
slot_index_in_epoch + epoch_index_in_cycle * slot_count_per_epoch
}
// Given short epochs, it's too costly to collect rent eagerly
// within an epoch, so lower the frequency of it.
// These logic isn't strictly eager anymore and should only be used
// for development/performance purpose.
// Absolutely not under ClusterType::MainnetBeta!!!!
fn use_multi_epoch_collection_cycle(&self, epoch: Epoch) -> bool {
// Force normal behavior, disabling multi epoch collection cycle for manual local testing
#[cfg(not(test))]
if self.slot_count_per_normal_epoch() == solana_sdk::epoch_schedule::MINIMUM_SLOTS_PER_EPOCH
{
return false;
}
epoch >= self.first_normal_epoch()
&& self.slot_count_per_normal_epoch() < self.slot_count_in_two_day()
}
fn use_fixed_collection_cycle(&self) -> bool {
// Force normal behavior, disabling fixed collection cycle for manual local testing
#[cfg(not(test))]
if self.slot_count_per_normal_epoch() == solana_sdk::epoch_schedule::MINIMUM_SLOTS_PER_EPOCH
{
return false;
}
self.cluster_type() != ClusterType::MainnetBeta
&& self.slot_count_per_normal_epoch() < self.slot_count_in_two_day()
}
fn slot_count_in_two_day(&self) -> SlotCount {
Self::slot_count_in_two_day_helper(self.ticks_per_slot)
}
// This value is specially chosen to align with slots per epoch in mainnet-beta and testnet
// Also, assume 500GB account data set as the extreme, then for 2 day (=48 hours) to collect
// rent eagerly, we'll consume 5.7 MB/s IO bandwidth, bidirectionally.
pub fn slot_count_in_two_day_helper(ticks_per_slot: SlotCount) -> SlotCount {
2 * DEFAULT_TICKS_PER_SECOND * SECONDS_PER_DAY / ticks_per_slot
}
fn slot_count_per_normal_epoch(&self) -> SlotCount {
self.get_slots_in_epoch(self.first_normal_epoch())
}
pub fn cluster_type(&self) -> ClusterType {
// unwrap is safe; self.cluster_type is ensured to be Some() always...
// we only using Option here for ABI compatibility...
self.cluster_type.unwrap()
}
/// Process a batch of transactions.
#[must_use]
pub fn load_execute_and_commit_transactions(
&self,
batch: &TransactionBatch,
max_age: usize,
collect_balances: bool,
enable_cpi_recording: bool,
enable_log_recording: bool,
timings: &mut ExecuteTimings,
) -> (TransactionResults, TransactionBalancesSet) {
let pre_balances = if collect_balances {
self.collect_balances(batch)
} else {
vec![]
};
let LoadAndExecuteTransactionsOutput {
mut loaded_transactions,
execution_results,
executed_transactions_count,
executed_with_successful_result_count,
signature_count,
..
} = self.load_and_execute_transactions(
batch,
max_age,
enable_cpi_recording,
enable_log_recording,
timings,
);
let results = self.commit_transactions(
batch.sanitized_transactions(),
&mut loaded_transactions,
execution_results,
executed_transactions_count as u64,
executed_transactions_count.saturating_sub(executed_with_successful_result_count)
as u64,
signature_count,
timings,
);
let post_balances = if collect_balances {
self.collect_balances(batch)
} else {
vec![]
};
(
results,
TransactionBalancesSet::new(pre_balances, post_balances),
)
}
/// Process a Transaction. This is used for unit tests and simply calls the vector
/// Bank::process_transactions method.
pub fn process_transaction(&self, tx: &Transaction) -> Result<()> {
self.try_process_transactions(std::iter::once(tx))?[0].clone()?;
tx.signatures
.get(0)
.map_or(Ok(()), |sig| self.get_signature_status(sig).unwrap())
}
/// Process multiple transaction in a single batch. This is used for benches and unit tests.
///
/// # Panics
///
/// Panics if any of the transactions do not pass sanitization checks.
#[must_use]
pub fn process_transactions<'a>(
&self,
txs: impl Iterator<Item = &'a Transaction>,
) -> Vec<Result<()>> {
self.try_process_transactions(txs).unwrap()
}
/// Process multiple transaction in a single batch. This is used for benches and unit tests.
/// Short circuits if any of the transactions do not pass sanitization checks.
pub fn try_process_transactions<'a>(
&self,
txs: impl Iterator<Item = &'a Transaction>,
) -> Result<Vec<Result<()>>> {
let txs = txs
.map(|tx| VersionedTransaction::from(tx.clone()))
.collect();
self.try_process_entry_transactions(txs)
}
/// Process entry transactions in a single batch. This is used for benches and unit tests.
///
/// # Panics
///
/// Panics if any of the transactions do not pass sanitization checks.
#[must_use]
pub fn process_entry_transactions(&self, txs: Vec<VersionedTransaction>) -> Vec<Result<()>> {
self.try_process_entry_transactions(txs).unwrap()
}
/// Process multiple transaction in a single batch. This is used for benches and unit tests.
/// Short circuits if any of the transactions do not pass sanitization checks.
pub fn try_process_entry_transactions(
&self,
txs: Vec<VersionedTransaction>,
) -> Result<Vec<Result<()>>> {
let batch = self.prepare_entry_batch(txs)?;
Ok(self.process_transaction_batch(&batch))
}
#[must_use]
fn process_transaction_batch(&self, batch: &TransactionBatch) -> Vec<Result<()>> {
self.load_execute_and_commit_transactions(
batch,
MAX_PROCESSING_AGE,
false,
false,
false,
&mut ExecuteTimings::default(),
)
.0
.fee_collection_results
}
/// Create, sign, and process a Transaction from `keypair` to `to` of
/// `n` lamports where `blockhash` is the last Entry ID observed by the client.
pub fn transfer(&self, n: u64, keypair: &Keypair, to: &Pubkey) -> Result<Signature> {
let blockhash = self.last_blockhash();
let tx = system_transaction::transfer(keypair, to, n, blockhash);
let signature = tx.signatures[0];
self.process_transaction(&tx).map(|_| signature)
}
pub fn read_balance(account: &AccountSharedData) -> u64 {
account.lamports()
}
/// Each program would need to be able to introspect its own state
/// this is hard-coded to the Budget language
pub fn get_balance(&self, pubkey: &Pubkey) -> u64 {
self.get_account(pubkey)
.map(|x| Self::read_balance(&x))
.unwrap_or(0)
}
/// Compute all the parents of the bank in order
pub fn parents(&self) -> Vec<Arc<Bank>> {
let mut parents = vec![];
let mut bank = self.parent();
while let Some(parent) = bank {
parents.push(parent.clone());
bank = parent.parent();
}
parents
}
/// Compute all the parents of the bank including this bank itself
pub fn parents_inclusive(self: Arc<Self>) -> Vec<Arc<Bank>> {
let mut parents = self.parents();
parents.insert(0, self);
parents
}
pub fn store_account(&self, pubkey: &Pubkey, account: &AccountSharedData) {
assert!(!self.freeze_started());
self.rc
.accounts
.store_slow_cached(self.slot(), pubkey, account);
self.stakes_cache.check_and_store(pubkey, account);
}
pub fn force_flush_accounts_cache(&self) {
self.rc
.accounts
.accounts_db
.flush_accounts_cache(true, Some(self.slot()))
}
pub fn flush_accounts_cache_if_needed(&self) {
self.rc
.accounts
.accounts_db
.flush_accounts_cache(false, Some(self.slot()))
}
#[cfg(test)]
pub fn flush_accounts_cache_slot(&self) {
self.rc
.accounts
.accounts_db
.flush_accounts_cache_slot(self.slot())
}
pub fn expire_old_recycle_stores(&self) {
self.rc.accounts.accounts_db.expire_old_recycle_stores()
}
/// Technically this issues (or even burns!) new lamports,
/// so be extra careful for its usage
fn store_account_and_update_capitalization(
&self,
pubkey: &Pubkey,
new_account: &AccountSharedData,
) {
if let Some(old_account) = self.get_account_with_fixed_root(pubkey) {
match new_account.lamports().cmp(&old_account.lamports()) {
std::cmp::Ordering::Greater => {
let increased = new_account.lamports() - old_account.lamports();
trace!(
"store_account_and_update_capitalization: increased: {} {}",
pubkey,
increased
);
self.capitalization.fetch_add(increased, Relaxed);
}
std::cmp::Ordering::Less => {
let decreased = old_account.lamports() - new_account.lamports();
trace!(
"store_account_and_update_capitalization: decreased: {} {}",
pubkey,
decreased
);
self.capitalization.fetch_sub(decreased, Relaxed);
}
std::cmp::Ordering::Equal => {}
}
} else {
trace!(
"store_account_and_update_capitalization: created: {} {}",
pubkey,
new_account.lamports()
);
self.capitalization
.fetch_add(new_account.lamports(), Relaxed);
}
self.store_account(pubkey, new_account);
}
fn withdraw(&self, pubkey: &Pubkey, lamports: u64) -> Result<()> {
match self.get_account_with_fixed_root(pubkey) {
Some(mut account) => {
let min_balance = match get_system_account_kind(&account) {
Some(SystemAccountKind::Nonce) => self
.rent_collector
.rent
.minimum_balance(nonce::State::size()),
_ => 0,
};
lamports
.checked_add(min_balance)
.filter(|required_balance| *required_balance <= account.lamports())
.ok_or(TransactionError::InsufficientFundsForFee)?;
account
.checked_sub_lamports(lamports)
.map_err(|_| TransactionError::InsufficientFundsForFee)?;
self.store_account(pubkey, &account);
Ok(())
}
None => Err(TransactionError::AccountNotFound),
}
}
pub fn deposit(
&self,
pubkey: &Pubkey,
lamports: u64,
) -> std::result::Result<u64, LamportsError> {
// This doesn't collect rents intentionally.
// Rents should only be applied to actual TXes
let mut account = self.get_account_with_fixed_root(pubkey).unwrap_or_default();
account.checked_add_lamports(lamports)?;
self.store_account(pubkey, &account);
Ok(account.lamports())
}
pub fn accounts(&self) -> Arc<Accounts> {
self.rc.accounts.clone()
}
fn finish_init(
&mut self,
genesis_config: &GenesisConfig,
additional_builtins: Option<&Builtins>,
debug_do_not_add_builtins: bool,
) {
self.rewards_pool_pubkeys =
Arc::new(genesis_config.rewards_pools.keys().cloned().collect());
let mut builtins = builtins::get();
if let Some(additional_builtins) = additional_builtins {
builtins
.genesis_builtins
.extend_from_slice(&additional_builtins.genesis_builtins);
builtins
.feature_transitions
.extend_from_slice(&additional_builtins.feature_transitions);
}
if !debug_do_not_add_builtins {
for builtin in builtins.genesis_builtins {
self.add_builtin(
&builtin.name,
&builtin.id,
builtin.process_instruction_with_context,
);
}
for precompile in get_precompiles() {
if precompile.feature.is_none() {
self.add_precompile(&precompile.program_id);
}
}
}
self.builtin_feature_transitions = Arc::new(builtins.feature_transitions);
self.apply_feature_activations(true, debug_do_not_add_builtins);
}
pub fn set_inflation(&self, inflation: Inflation) {
*self.inflation.write().unwrap() = inflation;
}
pub fn set_compute_budget(&mut self, compute_budget: Option<ComputeBudget>) {
self.compute_budget = compute_budget;
}
pub fn hard_forks(&self) -> Arc<RwLock<HardForks>> {
self.hard_forks.clone()
}
// Hi! leaky abstraction here....
// try to use get_account_with_fixed_root() if it's called ONLY from on-chain runtime account
// processing. That alternative fn provides more safety.
pub fn get_account(&self, pubkey: &Pubkey) -> Option<AccountSharedData> {
self.get_account_modified_slot(pubkey)
.map(|(acc, _slot)| acc)
}
// Hi! leaky abstraction here....
// use this over get_account() if it's called ONLY from on-chain runtime account
// processing (i.e. from in-band replay/banking stage; that ensures root is *fixed* while
// running).
// pro: safer assertion can be enabled inside AccountsDb
// con: panics!() if called from off-chain processing
pub fn get_account_with_fixed_root(&self, pubkey: &Pubkey) -> Option<AccountSharedData> {
self.load_slow_with_fixed_root(&self.ancestors, pubkey)
.map(|(acc, _slot)| acc)
}
pub fn get_account_modified_slot(&self, pubkey: &Pubkey) -> Option<(AccountSharedData, Slot)> {
self.load_slow(&self.ancestors, pubkey)
}
fn load_slow(
&self,
ancestors: &Ancestors,
pubkey: &Pubkey,
) -> Option<(AccountSharedData, Slot)> {
// get_account (= primary this fn caller) may be called from on-chain Bank code even if we
// try hard to use get_account_with_fixed_root for that purpose...
// so pass safer LoadHint:Unspecified here as a fallback
self.rc.accounts.load_without_fixed_root(ancestors, pubkey)
}
fn load_slow_with_fixed_root(
&self,
ancestors: &Ancestors,
pubkey: &Pubkey,
) -> Option<(AccountSharedData, Slot)> {
self.rc.accounts.load_with_fixed_root(ancestors, pubkey)
}
pub fn get_program_accounts(
&self,
program_id: &Pubkey,
config: &ScanConfig,
) -> ScanResult<Vec<TransactionAccount>> {
self.rc
.accounts
.load_by_program(&self.ancestors, self.bank_id, program_id, config)
}
pub fn get_filtered_program_accounts<F: Fn(&AccountSharedData) -> bool>(
&self,
program_id: &Pubkey,
filter: F,
config: &ScanConfig,
) -> ScanResult<Vec<TransactionAccount>> {
self.rc.accounts.load_by_program_with_filter(
&self.ancestors,
self.bank_id,
program_id,
filter,
config,
)
}
pub fn get_filtered_indexed_accounts<F: Fn(&AccountSharedData) -> bool>(
&self,
index_key: &IndexKey,
filter: F,
config: &ScanConfig,
byte_limit_for_scan: Option<usize>,
) -> ScanResult<Vec<TransactionAccount>> {
self.rc.accounts.load_by_index_key_with_filter(
&self.ancestors,
self.bank_id,
index_key,
filter,
config,
byte_limit_for_scan,
)
}
pub fn account_indexes_include_key(&self, key: &Pubkey) -> bool {
self.rc.accounts.account_indexes_include_key(key)
}
pub fn get_all_accounts_with_modified_slots(
&self,
) -> ScanResult<Vec<(Pubkey, AccountSharedData, Slot)>> {
self.rc.accounts.load_all(&self.ancestors, self.bank_id)
}
pub fn get_program_accounts_modified_since_parent(
&self,
program_id: &Pubkey,
) -> Vec<TransactionAccount> {
self.rc
.accounts
.load_by_program_slot(self.slot(), Some(program_id))
}
pub fn get_transaction_logs(
&self,
address: Option<&Pubkey>,
) -> Option<Vec<TransactionLogInfo>> {
self.transaction_log_collector
.read()
.unwrap()
.get_logs_for_address(address)
}
pub fn get_all_accounts_modified_since_parent(&self) -> Vec<TransactionAccount> {
self.rc.accounts.load_by_program_slot(self.slot(), None)
}
// if you want get_account_modified_since_parent without fixed_root, please define so...
fn get_account_modified_since_parent_with_fixed_root(
&self,
pubkey: &Pubkey,
) -> Option<(AccountSharedData, Slot)> {
let just_self: Ancestors = Ancestors::from(vec![self.slot()]);
if let Some((account, slot)) = self.load_slow_with_fixed_root(&just_self, pubkey) {
if slot == self.slot() {
return Some((account, slot));
}
}
None
}
pub fn get_largest_accounts(
&self,
num: usize,
filter_by_address: &HashSet<Pubkey>,
filter: AccountAddressFilter,
) -> ScanResult<Vec<(Pubkey, u64)>> {
self.rc.accounts.load_largest_accounts(
&self.ancestors,
self.bank_id,
num,
filter_by_address,
filter,
)
}
pub fn transaction_count(&self) -> u64 {
self.transaction_count.load(Relaxed)
}
pub fn transaction_error_count(&self) -> u64 {
self.transaction_error_count.load(Relaxed)
}
pub fn transaction_entries_count(&self) -> u64 {
self.transaction_entries_count.load(Relaxed)
}
pub fn transactions_per_entry_max(&self) -> u64 {
self.transactions_per_entry_max.load(Relaxed)
}
fn increment_transaction_count(&self, tx_count: u64) {
self.transaction_count.fetch_add(tx_count, Relaxed);
}
pub fn signature_count(&self) -> u64 {
self.signature_count.load(Relaxed)
}
fn increment_signature_count(&self, signature_count: u64) {
self.signature_count.fetch_add(signature_count, Relaxed);
}
pub fn get_signature_status_processed_since_parent(
&self,
signature: &Signature,
) -> Option<Result<()>> {
if let Some((slot, status)) = self.get_signature_status_slot(signature) {
if slot <= self.slot() {
return Some(status);
}
}
None
}
pub fn get_signature_status_with_blockhash(
&self,
signature: &Signature,
blockhash: &Hash,
) -> Option<Result<()>> {
let rcache = self.src.status_cache.read().unwrap();
rcache
.get_status(signature, blockhash, &self.ancestors)
.map(|v| v.1)
}
pub fn get_signature_status_slot(&self, signature: &Signature) -> Option<(Slot, Result<()>)> {
let rcache = self.src.status_cache.read().unwrap();
rcache.get_status_any_blockhash(signature, &self.ancestors)
}
pub fn get_signature_status(&self, signature: &Signature) -> Option<Result<()>> {
self.get_signature_status_slot(signature).map(|v| v.1)
}
pub fn has_signature(&self, signature: &Signature) -> bool {
self.get_signature_status_slot(signature).is_some()
}
/// Hash the `accounts` HashMap. This represents a validator's interpretation
/// of the delta of the ledger since the last vote and up to now
fn hash_internal_state(&self) -> Hash {
// If there are no accounts, return the hash of the previous state and the latest blockhash
let accounts_delta_hash = self.rc.accounts.bank_hash_info_at(self.slot());
let mut signature_count_buf = [0u8; 8];
LittleEndian::write_u64(&mut signature_count_buf[..], self.signature_count() as u64);
let mut hash = hashv(&[
self.parent_hash.as_ref(),
accounts_delta_hash.hash.as_ref(),
&signature_count_buf,
self.last_blockhash().as_ref(),
]);
if let Some(buf) = self
.hard_forks
.read()
.unwrap()
.get_hash_data(self.slot(), self.parent_slot())
{
info!("hard fork at bank {}", self.slot());
hash = extend_and_hash(&hash, &buf)
}
info!(
"bank frozen: {} hash: {} accounts_delta: {} signature_count: {} last_blockhash: {} capitalization: {}",
self.slot(),
hash,
accounts_delta_hash.hash,
self.signature_count(),
self.last_blockhash(),
self.capitalization(),
);
info!(
"accounts hash slot: {} stats: {:?}",
self.slot(),
accounts_delta_hash.stats,
);
hash
}
/// Recalculate the hash_internal_state from the account stores. Would be used to verify a
/// snapshot.
/// Only called from startup or test code.
#[must_use]
fn verify_bank_hash(&self, test_hash_calculation: bool) -> bool {
self.rc.accounts.verify_bank_hash_and_lamports(
self.slot(),
&self.ancestors,
self.capitalization(),
test_hash_calculation,
)
}
pub fn get_snapshot_storages(&self, base_slot: Option<Slot>) -> SnapshotStorages {
self.rc
.accounts
.accounts_db
.get_snapshot_storages(self.slot(), base_slot, None)
.0
}
#[must_use]
fn verify_hash(&self) -> bool {
assert!(self.is_frozen());
let calculated_hash = self.hash_internal_state();
let expected_hash = self.hash();
if calculated_hash == expected_hash {
true
} else {
warn!(
"verify failed: slot: {}, {} (calculated) != {} (expected)",
self.slot(),
calculated_hash,
expected_hash
);
false
}
}
pub fn verify_transaction(
&self,
tx: VersionedTransaction,
verification_mode: TransactionVerificationMode,
) -> Result<SanitizedTransaction> {
let sanitized_tx = {
let size =
bincode::serialized_size(&tx).map_err(|_| TransactionError::SanitizeFailure)?;
if size > PACKET_DATA_SIZE as u64 {
return Err(TransactionError::SanitizeFailure);
}
let message_hash = if verification_mode == TransactionVerificationMode::FullVerification
{
tx.verify_and_hash_message()?
} else {
tx.message.hash()
};
SanitizedTransaction::try_create(tx, message_hash, None, self)
}?;
if verification_mode == TransactionVerificationMode::HashAndVerifyPrecompiles
|| verification_mode == TransactionVerificationMode::FullVerification
{
sanitized_tx.verify_precompiles(&self.feature_set)?;
}
Ok(sanitized_tx)
}
pub fn calculate_capitalization(&self, debug_verify: bool) -> u64 {
let can_cached_slot_be_unflushed = true; // implied yes
self.rc.accounts.calculate_capitalization(
&self.ancestors,
self.slot(),
can_cached_slot_be_unflushed,
debug_verify,
)
}
pub fn calculate_and_verify_capitalization(&self, debug_verify: bool) -> bool {
let calculated = self.calculate_capitalization(debug_verify);
let expected = self.capitalization();
if calculated == expected {
true
} else {
warn!(
"Capitalization mismatch: calculated: {} != expected: {}",
calculated, expected
);
false
}
}
/// Forcibly overwrites current capitalization by actually recalculating accounts' balances.
/// This should only be used for developing purposes.
pub fn set_capitalization(&self) -> u64 {
let old = self.capitalization();
let debug_verify = true;
self.capitalization
.store(self.calculate_capitalization(debug_verify), Relaxed);
old
}
pub fn get_accounts_hash(&self) -> Hash {
self.rc.accounts.accounts_db.get_accounts_hash(self.slot)
}
pub fn get_thread_pool(&self) -> &ThreadPool {
&self.rc.accounts.accounts_db.thread_pool_clean
}
pub fn update_accounts_hash_with_index_option(
&self,
use_index: bool,
mut debug_verify: bool,
is_startup: bool,
) -> Hash {
let slots_per_epoch = Some(self.epoch_schedule().slots_per_epoch);
let (hash, total_lamports) = self
.rc
.accounts
.accounts_db
.update_accounts_hash_with_index_option(
use_index,
debug_verify,
self.slot(),
&self.ancestors,
Some(self.capitalization()),
false,
slots_per_epoch,
is_startup,
);
if total_lamports != self.capitalization() {
datapoint_info!(
"capitalization_mismatch",
("slot", self.slot(), i64),
("calculated_lamports", total_lamports, i64),
("capitalization", self.capitalization(), i64),
);
if !debug_verify {
// cap mismatch detected. It has been logged to metrics above.
// Run both versions of the calculation to attempt to get more info.
debug_verify = true;
self.rc
.accounts
.accounts_db
.update_accounts_hash_with_index_option(
use_index,
debug_verify,
self.slot(),
&self.ancestors,
Some(self.capitalization()),
false,
slots_per_epoch,
is_startup,
);
}
panic!(
"capitalization_mismatch. slot: {}, calculated_lamports: {}, capitalization: {}",
self.slot(),
total_lamports,
self.capitalization()
);
}
hash
}
pub fn update_accounts_hash(&self) -> Hash {
self.update_accounts_hash_with_index_option(true, false, false)
}
/// A snapshot bank should be purged of 0 lamport accounts which are not part of the hash
/// calculation and could shield other real accounts.
pub fn verify_snapshot_bank(
&self,
test_hash_calculation: bool,
accounts_db_skip_shrink: bool,
last_full_snapshot_slot: Option<Slot>,
) -> bool {
let mut clean_time = Measure::start("clean");
if !accounts_db_skip_shrink && self.slot() > 0 {
info!("cleaning..");
self.clean_accounts(true, true, last_full_snapshot_slot);
}
clean_time.stop();
self.rc
.accounts
.accounts_db
.accounts_index
.set_startup(true);
let mut shrink_all_slots_time = Measure::start("shrink_all_slots");
if !accounts_db_skip_shrink && self.slot() > 0 {
info!("shrinking..");
self.shrink_all_slots(true, last_full_snapshot_slot);
}
shrink_all_slots_time.stop();
info!("verify_bank_hash..");
let mut verify_time = Measure::start("verify_bank_hash");
let mut verify = self.verify_bank_hash(test_hash_calculation);
verify_time.stop();
self.rc
.accounts
.accounts_db
.accounts_index
.set_startup(false);
info!("verify_hash..");
let mut verify2_time = Measure::start("verify_hash");
// Order and short-circuiting is significant; verify_hash requires a valid bank hash
verify = verify && self.verify_hash();
verify2_time.stop();
datapoint_info!(
"verify_snapshot_bank",
("clean_us", clean_time.as_us(), i64),
("shrink_all_slots_us", shrink_all_slots_time.as_us(), i64),
("verify_bank_hash_us", verify_time.as_us(), i64),
("verify_hash_us", verify2_time.as_us(), i64),
);
verify
}
/// Return the number of hashes per tick
pub fn hashes_per_tick(&self) -> &Option<u64> {
&self.hashes_per_tick
}
/// Return the number of ticks per slot
pub fn ticks_per_slot(&self) -> u64 {
self.ticks_per_slot
}
/// Return the number of slots per year
pub fn slots_per_year(&self) -> f64 {
self.slots_per_year
}
/// Return the number of ticks since genesis.
pub fn tick_height(&self) -> u64 {
self.tick_height.load(Relaxed)
}
/// Return the inflation parameters of the Bank
pub fn inflation(&self) -> Inflation {
*self.inflation.read().unwrap()
}
pub fn rent_collector(&self) -> RentCollector {
self.rent_collector.clone()
}
/// Return the total capitalization of the Bank
pub fn capitalization(&self) -> u64 {
self.capitalization.load(Relaxed)
}
/// Return this bank's max_tick_height
pub fn max_tick_height(&self) -> u64 {
self.max_tick_height
}
/// Return the block_height of this bank
pub fn block_height(&self) -> u64 {
self.block_height
}
/// Return the number of slots per epoch for the given epoch
pub fn get_slots_in_epoch(&self, epoch: Epoch) -> u64 {
self.epoch_schedule.get_slots_in_epoch(epoch)
}
/// returns the epoch for which this bank's leader_schedule_slot_offset and slot would
/// need to cache leader_schedule
pub fn get_leader_schedule_epoch(&self, slot: Slot) -> Epoch {
self.epoch_schedule.get_leader_schedule_epoch(slot)
}
/// a bank-level cache of vote accounts and stake delegation info
fn update_stakes_cache(
&self,
txs: &[SanitizedTransaction],
execution_results: &[TransactionExecutionResult],
loaded_txs: &[TransactionLoadResult],
) {
for (i, ((load_result, _load_nonce), tx)) in loaded_txs.iter().zip(txs).enumerate() {
if let (Ok(loaded_transaction), true) = (
load_result,
execution_results[i].was_executed_successfully(),
) {
let message = tx.message();
for (_i, (pubkey, account)) in
(0..message.account_keys().len()).zip(loaded_transaction.accounts.iter())
{
self.stakes_cache.check_and_store(pubkey, account);
}
}
}
}
pub fn staked_nodes(&self) -> Arc<HashMap<Pubkey, u64>> {
self.stakes_cache.stakes().staked_nodes()
}
/// current vote accounts for this bank along with the stake
/// attributed to each account
pub fn vote_accounts(&self) -> Arc<HashMap<Pubkey, (/*stake:*/ u64, VoteAccount)>> {
let stakes = self.stakes_cache.stakes();
Arc::from(stakes.vote_accounts())
}
/// Vote account for the given vote account pubkey along with the stake.
pub fn get_vote_account(&self, vote_account: &Pubkey) -> Option<(/*stake:*/ u64, VoteAccount)> {
let stakes = self.stakes_cache.stakes();
stakes.vote_accounts().get(vote_account).cloned()
}
/// Get the EpochStakes for a given epoch
pub fn epoch_stakes(&self, epoch: Epoch) -> Option<&EpochStakes> {
self.epoch_stakes.get(&epoch)
}
pub fn epoch_stakes_map(&self) -> &HashMap<Epoch, EpochStakes> {
&self.epoch_stakes
}
pub fn epoch_staked_nodes(&self, epoch: Epoch) -> Option<Arc<HashMap<Pubkey, u64>>> {
Some(self.epoch_stakes.get(&epoch)?.stakes().staked_nodes())
}
/// vote accounts for the specific epoch along with the stake
/// attributed to each account
pub fn epoch_vote_accounts(
&self,
epoch: Epoch,
) -> Option<&HashMap<Pubkey, (u64, VoteAccount)>> {
let epoch_stakes = self.epoch_stakes.get(&epoch)?.stakes();
Some(epoch_stakes.vote_accounts().as_ref())
}
/// Get the fixed authorized voter for the given vote account for the
/// current epoch
pub fn epoch_authorized_voter(&self, vote_account: &Pubkey) -> Option<&Pubkey> {
self.epoch_stakes
.get(&self.epoch)
.expect("Epoch stakes for bank's own epoch must exist")
.epoch_authorized_voters()
.get(vote_account)
}
/// Get the fixed set of vote accounts for the given node id for the
/// current epoch
pub fn epoch_vote_accounts_for_node_id(&self, node_id: &Pubkey) -> Option<&NodeVoteAccounts> {
self.epoch_stakes
.get(&self.epoch)
.expect("Epoch stakes for bank's own epoch must exist")
.node_id_to_vote_accounts()
.get(node_id)
}
/// Get the fixed total stake of all vote accounts for current epoch
pub fn total_epoch_stake(&self) -> u64 {
self.epoch_stakes
.get(&self.epoch)
.expect("Epoch stakes for bank's own epoch must exist")
.total_stake()
}
/// Get the fixed stake of the given vote account for the current epoch
pub fn epoch_vote_account_stake(&self, vote_account: &Pubkey) -> u64 {
*self
.epoch_vote_accounts(self.epoch())
.expect("Bank epoch vote accounts must contain entry for the bank's own epoch")
.get(vote_account)
.map(|(stake, _)| stake)
.unwrap_or(&0)
}
/// given a slot, return the epoch and offset into the epoch this slot falls
/// e.g. with a fixed number for slots_per_epoch, the calculation is simply:
///
/// ( slot/slots_per_epoch, slot % slots_per_epoch )
///
pub fn get_epoch_and_slot_index(&self, slot: Slot) -> (Epoch, SlotIndex) {
self.epoch_schedule.get_epoch_and_slot_index(slot)
}
pub fn get_epoch_info(&self) -> EpochInfo {
let absolute_slot = self.slot();
let block_height = self.block_height();
let (epoch, slot_index) = self.get_epoch_and_slot_index(absolute_slot);
let slots_in_epoch = self.get_slots_in_epoch(epoch);
let transaction_count = Some(self.transaction_count());
EpochInfo {
epoch,
slot_index,
slots_in_epoch,
absolute_slot,
block_height,
transaction_count,
}
}
pub fn is_empty(&self) -> bool {
!self.is_delta.load(Relaxed)
}
/// Add an instruction processor to intercept instructions before the dynamic loader.
pub fn add_builtin(
&mut self,
name: &str,
program_id: &Pubkey,
process_instruction: ProcessInstructionWithContext,
) {
debug!("Adding program {} under {:?}", name, program_id);
self.add_builtin_account(name, program_id, false);
if let Some(entry) = self
.builtin_programs
.vec
.iter_mut()
.find(|entry| entry.program_id == *program_id)
{
entry.process_instruction = process_instruction;
} else {
self.builtin_programs.vec.push(BuiltinProgram {
program_id: *program_id,
process_instruction,
});
}
debug!("Added program {} under {:?}", name, program_id);
}
/// Remove a builtin instruction processor if it already exists
pub fn remove_builtin(&mut self, program_id: &Pubkey) {
debug!("Removing program {}", program_id);
// Don't remove the account since the bank expects the account state to
// be idempotent
if let Some(position) = self
.builtin_programs
.vec
.iter()
.position(|entry| entry.program_id == *program_id)
{
self.builtin_programs.vec.remove(position);
}
debug!("Removed program {}", program_id);
}
pub fn add_precompile(&mut self, program_id: &Pubkey) {
debug!("Adding precompiled program {}", program_id);
self.add_precompiled_account(program_id);
debug!("Added precompiled program {:?}", program_id);
}
pub fn clean_accounts(
&self,
skip_last: bool,
is_startup: bool,
last_full_snapshot_slot: Option<Slot>,
) {
// Don't clean the slot we're snapshotting because it may have zero-lamport
// accounts that were included in the bank delta hash when the bank was frozen,
// and if we clean them here, any newly created snapshot's hash for this bank
// may not match the frozen hash.
//
// So when we're snapshotting, set `skip_last` to true so the highest slot to clean is
// lowered by one.
let highest_slot_to_clean = skip_last.then(|| self.slot().saturating_sub(1));
self.rc.accounts.accounts_db.clean_accounts(
highest_slot_to_clean,
is_startup,
last_full_snapshot_slot,
);
}
pub fn shrink_all_slots(&self, is_startup: bool, last_full_snapshot_slot: Option<Slot>) {
self.rc
.accounts
.accounts_db
.shrink_all_slots(is_startup, last_full_snapshot_slot);
}
pub fn print_accounts_stats(&self) {
self.rc.accounts.accounts_db.print_accounts_stats("");
}
pub fn process_stale_slot_with_budget(
&self,
mut consumed_budget: usize,
budget_recovery_delta: usize,
) -> usize {
if consumed_budget == 0 {
let shrunken_account_count = self.rc.accounts.accounts_db.process_stale_slot_v1();
if shrunken_account_count > 0 {
datapoint_info!(
"stale_slot_shrink",
("accounts", shrunken_account_count, i64)
);
consumed_budget += shrunken_account_count;
}
}
consumed_budget.saturating_sub(budget_recovery_delta)
}
pub fn bank_tranaction_count_fix_enabled(&self) -> bool {
self.feature_set
.is_active(&feature_set::bank_tranaction_count_fix::id())
}
pub fn shrink_candidate_slots(&self) -> usize {
self.rc.accounts.accounts_db.shrink_candidate_slots()
}
pub fn no_overflow_rent_distribution_enabled(&self) -> bool {
self.feature_set
.is_active(&feature_set::no_overflow_rent_distribution::id())
}
pub fn versioned_tx_message_enabled(&self) -> bool {
self.feature_set
.is_active(&feature_set::versioned_tx_message_enabled::id())
}
pub fn stake_program_advance_activating_credits_observed(&self) -> bool {
self.feature_set
.is_active(&feature_set::stake_program_advance_activating_credits_observed::id())
}
pub fn leave_nonce_on_success(&self) -> bool {
self.feature_set
.is_active(&feature_set::leave_nonce_on_success::id())
}
pub fn send_to_tpu_vote_port_enabled(&self) -> bool {
self.feature_set
.is_active(&feature_set::send_to_tpu_vote_port::id())
}
pub fn read_cost_tracker(&self) -> LockResult<RwLockReadGuard<CostTracker>> {
self.cost_tracker.read()
}
pub fn write_cost_tracker(&self) -> LockResult<RwLockWriteGuard<CostTracker>> {
self.cost_tracker.write()
}
// Check if the wallclock time from bank creation to now has exceeded the allotted
// time for transaction processing
pub fn should_bank_still_be_processing_txs(
bank_creation_time: &Instant,
max_tx_ingestion_nanos: u128,
) -> bool {
// Do this check outside of the poh lock, hence not a method on PohRecorder
bank_creation_time.elapsed().as_nanos() <= max_tx_ingestion_nanos
}
pub fn deactivate_feature(&mut self, id: &Pubkey) {
let mut feature_set = Arc::make_mut(&mut self.feature_set).clone();
feature_set.active.remove(id);
feature_set.inactive.insert(*id);
self.feature_set = Arc::new(feature_set);
}
pub fn activate_feature(&mut self, id: &Pubkey) {
let mut feature_set = Arc::make_mut(&mut self.feature_set).clone();
feature_set.inactive.remove(id);
feature_set.active.insert(*id, 0);
self.feature_set = Arc::new(feature_set);
}
pub fn fill_bank_with_ticks(&self) {
let parent_distance = if self.slot() == 0 {
1
} else {
self.slot() - self.parent_slot()
};
for _ in 0..parent_distance {
let last_blockhash = self.last_blockhash();
while self.last_blockhash() == last_blockhash {
self.register_tick(&Hash::new_unique())
}
}
}
// This is called from snapshot restore AND for each epoch boundary
// The entire code path herein must be idempotent
fn apply_feature_activations(
&mut self,
init_finish_or_warp: bool,
debug_do_not_add_builtins: bool,
) {
let new_feature_activations = self.compute_active_feature_set(!init_finish_or_warp);
if new_feature_activations.contains(&feature_set::pico_inflation::id()) {
*self.inflation.write().unwrap() = Inflation::pico();
self.fee_rate_governor.burn_percent = 50; // 50% fee burn
self.rent_collector.rent.burn_percent = 50; // 50% rent burn
}
if !new_feature_activations.is_disjoint(&self.feature_set.full_inflation_features_enabled())
{
*self.inflation.write().unwrap() = Inflation::full();
self.fee_rate_governor.burn_percent = 50; // 50% fee burn
self.rent_collector.rent.burn_percent = 50; // 50% rent burn
}
if new_feature_activations.contains(&feature_set::spl_token_v3_3_0_release::id()) {
self.replace_program_account(
&inline_spl_token::id(),
&inline_spl_token::new_token_program::id(),
"bank-apply_spl_token_v3_3_0_release",
);
}
if new_feature_activations.contains(&feature_set::spl_associated_token_account_v1_0_4::id())
{
self.replace_program_account(
&inline_spl_associated_token_account::id(),
&inline_spl_associated_token_account::program_v1_0_4::id(),
"bank-apply_spl_associated_token_account_v1_4_0",
);
}
if !debug_do_not_add_builtins {
let apply_transitions_for_new_features = !init_finish_or_warp;
self.apply_builtin_program_feature_transitions(
apply_transitions_for_new_features,
&new_feature_activations,
);
self.reconfigure_token2_native_mint();
}
self.ensure_no_storage_rewards_pool();
}
fn adjust_sysvar_balance_for_rent(&self, account: &mut AccountSharedData) {
account.set_lamports(
self.get_minimum_balance_for_rent_exemption(account.data().len())
.max(account.lamports()),
);
}
// Compute the active feature set based on the current bank state, and return the set of newly activated features
fn compute_active_feature_set(&mut self, allow_new_activations: bool) -> HashSet<Pubkey> {
let mut active = self.feature_set.active.clone();
let mut inactive = HashSet::new();
let mut newly_activated = HashSet::new();
let slot = self.slot();
for feature_id in &self.feature_set.inactive {
let mut activated = None;
if let Some(mut account) = self.get_account_with_fixed_root(feature_id) {
if let Some(mut feature) = feature::from_account(&account) {
match feature.activated_at {
None => {
if allow_new_activations {
// Feature has been requested, activate it now
feature.activated_at = Some(slot);
if feature::to_account(&feature, &mut account).is_some() {
self.store_account(feature_id, &account);
}
newly_activated.insert(*feature_id);
activated = Some(slot);
info!("Feature {} activated at slot {}", feature_id, slot);
}
}
Some(activation_slot) => {
if slot >= activation_slot {
// Feature is already active
activated = Some(activation_slot);
}
}
}
}
}
if let Some(slot) = activated {
active.insert(*feature_id, slot);
} else {
inactive.insert(*feature_id);
}
}
self.feature_set = Arc::new(FeatureSet { active, inactive });
newly_activated
}
fn apply_builtin_program_feature_transitions(
&mut self,
apply_transitions_for_new_features: bool,
new_feature_activations: &HashSet<Pubkey>,
) {
let feature_set = self.feature_set.clone();
let should_apply_action_for_feature = |feature_id: &Pubkey| -> bool {
if apply_transitions_for_new_features {
new_feature_activations.contains(feature_id)
} else {
feature_set.is_active(feature_id)
}
};
let builtin_feature_transitions = self.builtin_feature_transitions.clone();
for transition in builtin_feature_transitions.iter() {
if let Some(builtin_action) = transition.to_action(&should_apply_action_for_feature) {
match builtin_action {
BuiltinAction::Add(builtin) => self.add_builtin(
&builtin.name,
&builtin.id,
builtin.process_instruction_with_context,
),
BuiltinAction::Remove(program_id) => self.remove_builtin(&program_id),
}
}
}
for precompile in get_precompiles() {
#[allow(clippy::blocks_in_if_conditions)]
if precompile.feature.map_or(false, |ref feature_id| {
self.feature_set.is_active(feature_id)
}) {
self.add_precompile(&precompile.program_id);
}
}
}
fn replace_program_account(
&mut self,
old_address: &Pubkey,
new_address: &Pubkey,
datapoint_name: &'static str,
) {
if let Some(old_account) = self.get_account_with_fixed_root(old_address) {
if let Some(new_account) = self.get_account_with_fixed_root(new_address) {
datapoint_info!(datapoint_name, ("slot", self.slot, i64));
// Burn lamports in the old account
self.capitalization
.fetch_sub(old_account.lamports(), Relaxed);
// Transfer new account to old account
self.store_account(old_address, &new_account);
// Clear new account
self.store_account(new_address, &AccountSharedData::default());
self.remove_executor(old_address);
}
}
}
fn reconfigure_token2_native_mint(&mut self) {
let reconfigure_token2_native_mint = match self.cluster_type() {
ClusterType::Development => true,
ClusterType::Devnet => true,
ClusterType::Testnet => self.epoch() == 93,
ClusterType::MainnetBeta => self.epoch() == 75,
};
if reconfigure_token2_native_mint {
let mut native_mint_account = solana_sdk::account::AccountSharedData::from(Account {
owner: inline_spl_token::id(),
data: inline_spl_token::native_mint::ACCOUNT_DATA.to_vec(),
lamports: sol_to_lamports(1.),
executable: false,
rent_epoch: self.epoch() + 1,
});
// As a workaround for
// https://github.com/solana-labs/solana-program-library/issues/374, ensure that the
// spl-token 2 native mint account is owned by the spl-token 2 program.
let store = if let Some(existing_native_mint_account) =
self.get_account_with_fixed_root(&inline_spl_token::native_mint::id())
{
if existing_native_mint_account.owner() == &solana_sdk::system_program::id() {
native_mint_account.set_lamports(existing_native_mint_account.lamports());
true
} else {
false
}
} else {
self.capitalization
.fetch_add(native_mint_account.lamports(), Relaxed);
true
};
if store {
self.store_account(&inline_spl_token::native_mint::id(), &native_mint_account);
}
}
}
fn ensure_no_storage_rewards_pool(&mut self) {
let purge_window_epoch = match self.cluster_type() {
ClusterType::Development => false,
// never do this for devnet; we're pristine here. :)
ClusterType::Devnet => false,
// schedule to remove at testnet/tds
ClusterType::Testnet => self.epoch() == 93,
// never do this for stable; we're pristine here. :)
ClusterType::MainnetBeta => false,
};
if purge_window_epoch {
for reward_pubkey in self.rewards_pool_pubkeys.iter() {
if let Some(mut reward_account) = self.get_account_with_fixed_root(reward_pubkey) {
if reward_account.lamports() == u64::MAX {
reward_account.set_lamports(0);
self.store_account(reward_pubkey, &reward_account);
// Adjust capitalization.... it has been wrapping, reducing the real capitalization by 1-lamport
self.capitalization.fetch_add(1, Relaxed);
info!(
"purged rewards pool account: {}, new capitalization: {}",
reward_pubkey,
self.capitalization()
);
}
};
}
}
}
/// Get all the accounts for this bank and calculate stats
pub fn get_total_accounts_stats(&self) -> ScanResult<TotalAccountsStats> {
let accounts = self.get_all_accounts_with_modified_slots()?;
Ok(self.calculate_total_accounts_stats(
accounts
.iter()
.map(|(pubkey, account, _slot)| (pubkey, account)),
))
}
/// Given all the accounts for a bank, calculate stats
pub fn calculate_total_accounts_stats<'a>(
&self,
accounts: impl Iterator<Item = (&'a Pubkey, &'a AccountSharedData)>,
) -> TotalAccountsStats {
let rent_collector = self.rent_collector();
let mut total_accounts_stats = TotalAccountsStats::default();
accounts.for_each(|(pubkey, account)| {
let data_len = account.data().len();
total_accounts_stats.num_accounts += 1;
total_accounts_stats.data_len += data_len;
if account.executable() {
total_accounts_stats.num_executable_accounts += 1;
total_accounts_stats.executable_data_len += data_len;
}
if !rent_collector.should_collect_rent(pubkey, account)
|| rent_collector.get_rent_due(account).is_exempt()
{
total_accounts_stats.num_rent_exempt_accounts += 1;
} else {
total_accounts_stats.num_rent_paying_accounts += 1;
total_accounts_stats.lamports_in_rent_paying_accounts += account.lamports();
if data_len == 0 {
total_accounts_stats.num_rent_paying_accounts_without_data += 1;
}
}
});
total_accounts_stats
}
}
/// Struct to collect stats when scanning all accounts in `get_total_accounts_stats()`
#[derive(Debug, Default, Copy, Clone)]
pub struct TotalAccountsStats {
/// Total number of accounts
pub num_accounts: usize,
/// Total data size of all accounts
pub data_len: usize,
/// Total number of executable accounts
pub num_executable_accounts: usize,
/// Total data size of executable accounts
pub executable_data_len: usize,
/// Total number of rent exempt accounts
pub num_rent_exempt_accounts: usize,
/// Total number of rent paying accounts
pub num_rent_paying_accounts: usize,
/// Total number of rent paying accounts without data
pub num_rent_paying_accounts_without_data: usize,
/// Total amount of lamports in rent paying accounts
pub lamports_in_rent_paying_accounts: u64,
}
impl Drop for Bank {
fn drop(&mut self) {
if let Some(drop_callback) = self.drop_callback.read().unwrap().0.as_ref() {
drop_callback.callback(self);
} else {
// Default case
// 1. Tests
// 2. At startup when replaying blockstore and there's no
// AccountsBackgroundService to perform cleanups yet.
self.rc
.accounts
.purge_slot(self.slot(), self.bank_id(), false);
}
}
}
pub fn goto_end_of_slot(bank: &mut Bank) {
let mut tick_hash = bank.last_blockhash();
loop {
tick_hash = hashv(&[tick_hash.as_ref(), &[42]]);
bank.register_tick(&tick_hash);
if tick_hash == bank.last_blockhash() {
bank.freeze();
return;
}
}
}
#[cfg(test)]
pub(crate) mod tests {
#[allow(deprecated)]
use solana_sdk::sysvar::fees::Fees;
use {
super::*,
crate::{
accounts_background_service::{AbsRequestHandler, SendDroppedBankCallback},
accounts_db::DEFAULT_ACCOUNTS_SHRINK_RATIO,
accounts_index::{AccountIndex, AccountSecondaryIndexes, ScanError, ITER_BATCH_SIZE},
ancestors::Ancestors,
genesis_utils::{
activate_all_features, bootstrap_validator_stake_lamports,
create_genesis_config_with_leader, create_genesis_config_with_vote_accounts,
genesis_sysvar_and_builtin_program_lamports, GenesisConfigInfo,
ValidatorVoteKeypairs,
},
stake_delegations::StakeDelegations,
status_cache::MAX_CACHE_ENTRIES,
},
crossbeam_channel::{bounded, unbounded},
solana_program_runtime::invoke_context::InvokeContext,
solana_sdk::{
account::Account,
bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable,
clock::{DEFAULT_SLOTS_PER_EPOCH, DEFAULT_TICKS_PER_SLOT},
compute_budget::ComputeBudgetInstruction,
epoch_schedule::MINIMUM_SLOTS_PER_EPOCH,
feature::Feature,
feature_set::reject_empty_instruction_without_program,
genesis_config::create_genesis_config,
hash,
instruction::{AccountMeta, CompiledInstruction, Instruction, InstructionError},
message::{Message, MessageHeader},
nonce,
poh_config::PohConfig,
rent::Rent,
signature::{keypair_from_seed, Keypair, Signer},
stake::{
instruction as stake_instruction,
state::{Authorized, Delegation, Lockup, Stake},
},
system_instruction::{self, SystemError},
system_program,
sysvar::rewards::Rewards,
timing::duration_as_s,
transaction::MAX_TX_ACCOUNT_LOCKS,
transaction_context::InstructionContext,
},
solana_vote_program::{
vote_instruction,
vote_state::{
self, BlockTimestamp, Vote, VoteInit, VoteState, VoteStateVersions,
MAX_LOCKOUT_HISTORY,
},
},
std::{result, thread::Builder, time::Duration},
};
impl Bank {
fn cloned_stake_delegations(&self) -> StakeDelegations {
self.stakes_cache.stakes().stake_delegations().clone()
}
}
fn new_sanitized_message(
instructions: &[Instruction],
payer: Option<&Pubkey>,
) -> SanitizedMessage {
Message::new(instructions, payer).try_into().unwrap()
}
fn new_execution_result(
status: Result<()>,
nonce: Option<&NonceFull>,
) -> TransactionExecutionResult {
TransactionExecutionResult::Executed(TransactionExecutionDetails {
status,
log_messages: None,
inner_instructions: None,
durable_nonce_fee: nonce.map(DurableNonceFee::from),
})
}
#[test]
fn test_nonce_info() {
let lamports_per_signature = 42;
let nonce_authority = keypair_from_seed(&[0; 32]).unwrap();
let nonce_address = nonce_authority.pubkey();
let from = keypair_from_seed(&[1; 32]).unwrap();
let from_address = from.pubkey();
let to_address = Pubkey::new_unique();
let nonce_account = AccountSharedData::new_data(
43,
&nonce::state::Versions::new_current(nonce::State::Initialized(
nonce::state::Data::new(
Pubkey::default(),
Hash::new_unique(),
lamports_per_signature,
),
)),
&system_program::id(),
)
.unwrap();
let from_account = AccountSharedData::new(44, 0, &Pubkey::default());
let to_account = AccountSharedData::new(45, 0, &Pubkey::default());
let recent_blockhashes_sysvar_account = AccountSharedData::new(4, 0, &Pubkey::default());
const TEST_RENT_DEBIT: u64 = 1;
let rent_collected_nonce_account = {
let mut account = nonce_account.clone();
account.set_lamports(nonce_account.lamports() - TEST_RENT_DEBIT);
account
};
let rent_collected_from_account = {
let mut account = from_account.clone();
account.set_lamports(from_account.lamports() - TEST_RENT_DEBIT);
account
};
let instructions = vec![
system_instruction::advance_nonce_account(&nonce_address, &nonce_authority.pubkey()),
system_instruction::transfer(&from_address, &to_address, 42),
];
// NoncePartial create + NonceInfo impl
let partial = NoncePartial::new(nonce_address, rent_collected_nonce_account.clone());
assert_eq!(*partial.address(), nonce_address);
assert_eq!(*partial.account(), rent_collected_nonce_account);
assert_eq!(
partial.lamports_per_signature(),
Some(lamports_per_signature)
);
assert_eq!(partial.fee_payer_account(), None);
// Add rent debits to ensure the rollback captures accounts without rent fees
let mut rent_debits = RentDebits::default();
rent_debits.insert(
&from_address,
TEST_RENT_DEBIT,
rent_collected_from_account.lamports(),
);
rent_debits.insert(
&nonce_address,
TEST_RENT_DEBIT,
rent_collected_nonce_account.lamports(),
);
// NonceFull create + NonceInfo impl
{
let message = new_sanitized_message(&instructions, Some(&from_address));
let accounts = [
(
*message.account_keys().get(0).unwrap(),
rent_collected_from_account.clone(),
),
(
*message.account_keys().get(1).unwrap(),
rent_collected_nonce_account.clone(),
),
(*message.account_keys().get(2).unwrap(), to_account.clone()),
(
*message.account_keys().get(3).unwrap(),
recent_blockhashes_sysvar_account.clone(),
),
];
let full = NonceFull::from_partial(partial.clone(), &message, &accounts, &rent_debits)
.unwrap();
assert_eq!(*full.address(), nonce_address);
assert_eq!(*full.account(), rent_collected_nonce_account);
assert_eq!(full.lamports_per_signature(), Some(lamports_per_signature));
assert_eq!(
full.fee_payer_account(),
Some(&from_account),
"rent debit should be refunded in captured fee account"
);
}
// Nonce account is fee-payer
{
let message = new_sanitized_message(&instructions, Some(&nonce_address));
let accounts = [
(
*message.account_keys().get(0).unwrap(),
rent_collected_nonce_account,
),
(
*message.account_keys().get(1).unwrap(),
rent_collected_from_account,
),
(*message.account_keys().get(2).unwrap(), to_account),
(
*message.account_keys().get(3).unwrap(),
recent_blockhashes_sysvar_account,
),
];
let full = NonceFull::from_partial(partial.clone(), &message, &accounts, &rent_debits)
.unwrap();
assert_eq!(*full.address(), nonce_address);
assert_eq!(*full.account(), nonce_account);
assert_eq!(full.lamports_per_signature(), Some(lamports_per_signature));
assert_eq!(full.fee_payer_account(), None);
}
// NonceFull create, fee-payer not in account_keys fails
{
let message = new_sanitized_message(&instructions, Some(&nonce_address));
assert_eq!(
NonceFull::from_partial(partial, &message, &[], &RentDebits::default())
.unwrap_err(),
TransactionError::AccountNotFound,
);
}
}
#[test]
fn test_bank_unix_timestamp_from_genesis() {
let (genesis_config, _mint_keypair) = create_genesis_config(1);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(
genesis_config.creation_time,
bank.unix_timestamp_from_genesis()
);
let slots_per_sec = 1.0
/ (duration_as_s(&genesis_config.poh_config.target_tick_duration)
* genesis_config.ticks_per_slot as f32);
for _i in 0..slots_per_sec as usize + 1 {
bank = Arc::new(new_from_parent(&bank));
}
assert!(bank.unix_timestamp_from_genesis() - genesis_config.creation_time >= 1);
}
#[test]
#[allow(clippy::float_cmp)]
fn test_bank_new() {
let dummy_leader_pubkey = solana_sdk::pubkey::new_rand();
let dummy_leader_stake_lamports = bootstrap_validator_stake_lamports();
let mint_lamports = 10_000;
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
voting_keypair,
..
} = create_genesis_config_with_leader(
mint_lamports,
&dummy_leader_pubkey,
dummy_leader_stake_lamports,
);
genesis_config.rent = Rent {
lamports_per_byte_year: 5,
exemption_threshold: 1.2,
burn_percent: 5,
};
let bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), mint_lamports);
assert_eq!(
bank.get_balance(&voting_keypair.pubkey()),
dummy_leader_stake_lamports /* 1 token goes to the vote account associated with dummy_leader_lamports */
);
let rent_account = bank.get_account(&sysvar::rent::id()).unwrap();
let rent = from_account::<sysvar::rent::Rent, _>(&rent_account).unwrap();
assert_eq!(rent.burn_percent, 5);
assert_eq!(rent.exemption_threshold, 1.2);
assert_eq!(rent.lamports_per_byte_year, 5);
}
#[test]
fn test_bank_block_height() {
let (genesis_config, _mint_keypair) = create_genesis_config(1);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank0.block_height(), 0);
let bank1 = Arc::new(new_from_parent(&bank0));
assert_eq!(bank1.block_height(), 1);
}
#[test]
fn test_bank_update_epoch_stakes() {
impl Bank {
fn epoch_stake_keys(&self) -> Vec<Epoch> {
let mut keys: Vec<Epoch> = self.epoch_stakes.keys().copied().collect();
keys.sort_unstable();
keys
}
fn epoch_stake_key_info(&self) -> (Epoch, Epoch, usize) {
let mut keys: Vec<Epoch> = self.epoch_stakes.keys().copied().collect();
keys.sort_unstable();
(*keys.first().unwrap(), *keys.last().unwrap(), keys.len())
}
}
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let mut bank = Bank::new_for_tests(&genesis_config);
let initial_epochs = bank.epoch_stake_keys();
assert_eq!(initial_epochs, vec![0, 1]);
for existing_epoch in &initial_epochs {
bank.update_epoch_stakes(*existing_epoch);
assert_eq!(bank.epoch_stake_keys(), initial_epochs);
}
for epoch in (initial_epochs.len() as Epoch)..MAX_LEADER_SCHEDULE_STAKES {
bank.update_epoch_stakes(epoch);
assert_eq!(bank.epoch_stakes.len() as Epoch, epoch + 1);
}
assert_eq!(
bank.epoch_stake_key_info(),
(
0,
MAX_LEADER_SCHEDULE_STAKES - 1,
MAX_LEADER_SCHEDULE_STAKES as usize
)
);
bank.update_epoch_stakes(MAX_LEADER_SCHEDULE_STAKES);
assert_eq!(
bank.epoch_stake_key_info(),
(
0,
MAX_LEADER_SCHEDULE_STAKES,
MAX_LEADER_SCHEDULE_STAKES as usize + 1
)
);
bank.update_epoch_stakes(MAX_LEADER_SCHEDULE_STAKES + 1);
assert_eq!(
bank.epoch_stake_key_info(),
(
1,
MAX_LEADER_SCHEDULE_STAKES + 1,
MAX_LEADER_SCHEDULE_STAKES as usize + 1
)
);
}
fn bank0_sysvar_delta() -> u64 {
const SLOT_HISTORY_SYSVAR_MIN_BALANCE: u64 = 913_326_000;
SLOT_HISTORY_SYSVAR_MIN_BALANCE
}
fn bank1_sysvar_delta() -> u64 {
const SLOT_HASHES_SYSVAR_MIN_BALANCE: u64 = 143_487_360;
SLOT_HASHES_SYSVAR_MIN_BALANCE
}
fn new_epoch_sysvar_delta() -> u64 {
const REWARDS_SYSVAR_MIN_BALANCE: u64 = 1_002_240;
REWARDS_SYSVAR_MIN_BALANCE
}
#[test]
fn test_bank_capitalization() {
let bank0 = Arc::new(Bank::new_for_tests(&GenesisConfig {
accounts: (0..42)
.map(|_| {
(
solana_sdk::pubkey::new_rand(),
Account::new(42, 0, &Pubkey::default()),
)
})
.collect(),
cluster_type: ClusterType::MainnetBeta,
..GenesisConfig::default()
}));
assert_eq!(
bank0.capitalization(),
42 * 42 + genesis_sysvar_and_builtin_program_lamports(),
);
bank0.freeze();
assert_eq!(
bank0.capitalization(),
42 * 42 + genesis_sysvar_and_builtin_program_lamports() + bank0_sysvar_delta(),
);
let bank1 = Bank::new_from_parent(&bank0, &Pubkey::default(), 1);
assert_eq!(
bank1.capitalization(),
42 * 42
+ genesis_sysvar_and_builtin_program_lamports()
+ bank0_sysvar_delta()
+ bank1_sysvar_delta(),
);
}
fn rent_with_exemption_threshold(exemption_threshold: f64) -> Rent {
Rent {
lamports_per_byte_year: 1,
exemption_threshold,
burn_percent: 10,
}
}
#[test]
fn test_credit_debit_rent_no_side_effect_on_hash() {
solana_logger::setup();
let (mut genesis_config, _mint_keypair) = create_genesis_config(10);
let keypair1: Keypair = Keypair::new();
let keypair2: Keypair = Keypair::new();
let keypair3: Keypair = Keypair::new();
let keypair4: Keypair = Keypair::new();
// Transaction between these two keypairs will fail
let keypair5: Keypair = Keypair::new();
let keypair6: Keypair = Keypair::new();
genesis_config.rent = rent_with_exemption_threshold(21.0);
let root_bank = Arc::new(Bank::new_for_tests(&genesis_config));
let bank = Bank::new_from_parent(
&root_bank,
&Pubkey::default(),
years_as_slots(
2.0,
&genesis_config.poh_config.target_tick_duration,
genesis_config.ticks_per_slot,
) as u64,
);
let root_bank_2 = Arc::new(Bank::new_for_tests(&genesis_config));
let bank_with_success_txs = Bank::new_from_parent(
&root_bank_2,
&Pubkey::default(),
years_as_slots(
2.0,
&genesis_config.poh_config.target_tick_duration,
genesis_config.ticks_per_slot,
) as u64,
);
assert_eq!(bank.last_blockhash(), genesis_config.hash());
// Initialize credit-debit and credit only accounts
let account1 = AccountSharedData::new(264, 0, &Pubkey::default());
let account2 = AccountSharedData::new(264, 1, &Pubkey::default());
let account3 = AccountSharedData::new(264, 0, &Pubkey::default());
let account4 = AccountSharedData::new(264, 1, &Pubkey::default());
let account5 = AccountSharedData::new(10, 0, &Pubkey::default());
let account6 = AccountSharedData::new(10, 1, &Pubkey::default());
bank.store_account(&keypair1.pubkey(), &account1);
bank.store_account(&keypair2.pubkey(), &account2);
bank.store_account(&keypair3.pubkey(), &account3);
bank.store_account(&keypair4.pubkey(), &account4);
bank.store_account(&keypair5.pubkey(), &account5);
bank.store_account(&keypair6.pubkey(), &account6);
bank_with_success_txs.store_account(&keypair1.pubkey(), &account1);
bank_with_success_txs.store_account(&keypair2.pubkey(), &account2);
bank_with_success_txs.store_account(&keypair3.pubkey(), &account3);
bank_with_success_txs.store_account(&keypair4.pubkey(), &account4);
bank_with_success_txs.store_account(&keypair5.pubkey(), &account5);
bank_with_success_txs.store_account(&keypair6.pubkey(), &account6);
// Make builtin instruction loader rent exempt
let system_program_id = system_program::id();
let mut system_program_account = bank.get_account(&system_program_id).unwrap();
system_program_account.set_lamports(
bank.get_minimum_balance_for_rent_exemption(system_program_account.data().len()),
);
bank.store_account(&system_program_id, &system_program_account);
bank_with_success_txs.store_account(&system_program_id, &system_program_account);
let t1 =
system_transaction::transfer(&keypair1, &keypair2.pubkey(), 1, genesis_config.hash());
let t2 =
system_transaction::transfer(&keypair3, &keypair4.pubkey(), 1, genesis_config.hash());
let t3 =
system_transaction::transfer(&keypair5, &keypair6.pubkey(), 1, genesis_config.hash());
let txs = vec![t1.clone(), t2.clone(), t3];
let res = bank.process_transactions(txs.iter());
assert_eq!(res.len(), 3);
assert_eq!(res[0], Ok(()));
assert_eq!(res[1], Ok(()));
assert_eq!(res[2], Err(TransactionError::AccountNotFound));
bank.freeze();
let rwlockguard_bank_hash = bank.hash.read().unwrap();
let bank_hash = rwlockguard_bank_hash.as_ref();
let txs = vec![t2, t1];
let res = bank_with_success_txs.process_transactions(txs.iter());
assert_eq!(res.len(), 2);
assert_eq!(res[0], Ok(()));
assert_eq!(res[1], Ok(()));
bank_with_success_txs.freeze();
let rwlockguard_bank_with_success_txs_hash = bank_with_success_txs.hash.read().unwrap();
let bank_with_success_txs_hash = rwlockguard_bank_with_success_txs_hash.as_ref();
assert_eq!(bank_with_success_txs_hash, bank_hash);
}
fn store_accounts_for_rent_test(
bank: &Bank,
keypairs: &mut Vec<Keypair>,
mock_program_id: Pubkey,
generic_rent_due_for_system_account: u64,
) {
let mut account_pairs: Vec<TransactionAccount> = Vec::with_capacity(keypairs.len() - 1);
account_pairs.push((
keypairs[0].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 2,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[1].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 2,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[2].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 2,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[3].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 2,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[4].pubkey(),
AccountSharedData::new(10, 0, &Pubkey::default()),
));
account_pairs.push((
keypairs[5].pubkey(),
AccountSharedData::new(10, 0, &Pubkey::default()),
));
account_pairs.push((
keypairs[6].pubkey(),
AccountSharedData::new(
(2 * generic_rent_due_for_system_account) + 24,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[8].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 2 + 929,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[9].pubkey(),
AccountSharedData::new(10, 0, &Pubkey::default()),
));
// Feeding to MockProgram to test read only rent behaviour
account_pairs.push((
keypairs[10].pubkey(),
AccountSharedData::new(
generic_rent_due_for_system_account + 3,
0,
&Pubkey::default(),
),
));
account_pairs.push((
keypairs[11].pubkey(),
AccountSharedData::new(generic_rent_due_for_system_account + 3, 0, &mock_program_id),
));
account_pairs.push((
keypairs[12].pubkey(),
AccountSharedData::new(generic_rent_due_for_system_account + 3, 0, &mock_program_id),
));
account_pairs.push((
keypairs[13].pubkey(),
AccountSharedData::new(14, 22, &mock_program_id),
));
for account_pair in account_pairs.iter() {
bank.store_account(&account_pair.0, &account_pair.1);
}
}
fn create_child_bank_for_rent_test(
root_bank: &Arc<Bank>,
genesis_config: &GenesisConfig,
) -> Bank {
let mut bank = Bank::new_from_parent(
root_bank,
&Pubkey::default(),
years_as_slots(
2.0,
&genesis_config.poh_config.target_tick_duration,
genesis_config.ticks_per_slot,
) as u64,
);
bank.rent_collector.slots_per_year = 421_812.0;
bank
}
fn assert_capitalization_diff(bank: &Bank, updater: impl Fn(), asserter: impl Fn(u64, u64)) {
let old = bank.capitalization();
updater();
let new = bank.capitalization();
asserter(old, new);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
}
#[test]
fn test_store_account_and_update_capitalization_missing() {
let (genesis_config, _mint_keypair) = create_genesis_config(0);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = solana_sdk::pubkey::new_rand();
let some_lamports = 400;
let account = AccountSharedData::new(some_lamports, 0, &system_program::id());
assert_capitalization_diff(
&bank,
|| bank.store_account_and_update_capitalization(&pubkey, &account),
|old, new| assert_eq!(old + some_lamports, new),
);
assert_eq!(account, bank.get_account(&pubkey).unwrap());
}
#[test]
fn test_store_account_and_update_capitalization_increased() {
let old_lamports = 400;
let (genesis_config, mint_keypair) = create_genesis_config(old_lamports);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = mint_keypair.pubkey();
let new_lamports = 500;
let account = AccountSharedData::new(new_lamports, 0, &system_program::id());
assert_capitalization_diff(
&bank,
|| bank.store_account_and_update_capitalization(&pubkey, &account),
|old, new| assert_eq!(old + 100, new),
);
assert_eq!(account, bank.get_account(&pubkey).unwrap());
}
#[test]
fn test_store_account_and_update_capitalization_decreased() {
let old_lamports = 400;
let (genesis_config, mint_keypair) = create_genesis_config(old_lamports);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = mint_keypair.pubkey();
let new_lamports = 100;
let account = AccountSharedData::new(new_lamports, 0, &system_program::id());
assert_capitalization_diff(
&bank,
|| bank.store_account_and_update_capitalization(&pubkey, &account),
|old, new| assert_eq!(old - 300, new),
);
assert_eq!(account, bank.get_account(&pubkey).unwrap());
}
#[test]
fn test_store_account_and_update_capitalization_unchanged() {
let lamports = 400;
let (genesis_config, mint_keypair) = create_genesis_config(lamports);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = mint_keypair.pubkey();
let account = AccountSharedData::new(lamports, 1, &system_program::id());
assert_capitalization_diff(
&bank,
|| bank.store_account_and_update_capitalization(&pubkey, &account),
|old, new| assert_eq!(old, new),
);
assert_eq!(account, bank.get_account(&pubkey).unwrap());
}
#[test]
fn test_rent_distribution() {
solana_logger::setup();
let bootstrap_validator_pubkey = solana_sdk::pubkey::new_rand();
let bootstrap_validator_stake_lamports = 30;
let mut genesis_config = create_genesis_config_with_leader(
10,
&bootstrap_validator_pubkey,
bootstrap_validator_stake_lamports,
)
.genesis_config;
// While we are preventing new accounts left in a rent-paying state, not quite ready to rip
// out all the rent assessment tests. Just deactivate the feature for now.
genesis_config
.accounts
.remove(&feature_set::require_rent_exempt_accounts::id())
.unwrap();
genesis_config.epoch_schedule = EpochSchedule::custom(
MINIMUM_SLOTS_PER_EPOCH,
genesis_config.epoch_schedule.leader_schedule_slot_offset,
false,
);
genesis_config.rent = rent_with_exemption_threshold(2.0);
let rent = Rent::free();
let validator_1_pubkey = solana_sdk::pubkey::new_rand();
let validator_1_stake_lamports = 20;
let validator_1_staking_keypair = Keypair::new();
let validator_1_voting_keypair = Keypair::new();
let validator_1_vote_account = vote_state::create_account(
&validator_1_voting_keypair.pubkey(),
&validator_1_pubkey,
0,
validator_1_stake_lamports,
);
let validator_1_stake_account = stake_state::create_account(
&validator_1_staking_keypair.pubkey(),
&validator_1_voting_keypair.pubkey(),
&validator_1_vote_account,
&rent,
validator_1_stake_lamports,
);
genesis_config.accounts.insert(
validator_1_pubkey,
Account::new(42, 0, &system_program::id()),
);
genesis_config.accounts.insert(
validator_1_staking_keypair.pubkey(),
Account::from(validator_1_stake_account),
);
genesis_config.accounts.insert(
validator_1_voting_keypair.pubkey(),
Account::from(validator_1_vote_account),
);
let validator_2_pubkey = solana_sdk::pubkey::new_rand();
let validator_2_stake_lamports = 20;
let validator_2_staking_keypair = Keypair::new();
let validator_2_voting_keypair = Keypair::new();
let validator_2_vote_account = vote_state::create_account(
&validator_2_voting_keypair.pubkey(),
&validator_2_pubkey,
0,
validator_2_stake_lamports,
);
let validator_2_stake_account = stake_state::create_account(
&validator_2_staking_keypair.pubkey(),
&validator_2_voting_keypair.pubkey(),
&validator_2_vote_account,
&rent,
validator_2_stake_lamports,
);
genesis_config.accounts.insert(
validator_2_pubkey,
Account::new(42, 0, &system_program::id()),
);
genesis_config.accounts.insert(
validator_2_staking_keypair.pubkey(),
Account::from(validator_2_stake_account),
);
genesis_config.accounts.insert(
validator_2_voting_keypair.pubkey(),
Account::from(validator_2_vote_account),
);
let validator_3_pubkey = solana_sdk::pubkey::new_rand();
let validator_3_stake_lamports = 30;
let validator_3_staking_keypair = Keypair::new();
let validator_3_voting_keypair = Keypair::new();
let validator_3_vote_account = vote_state::create_account(
&validator_3_voting_keypair.pubkey(),
&validator_3_pubkey,
0,
validator_3_stake_lamports,
);
let validator_3_stake_account = stake_state::create_account(
&validator_3_staking_keypair.pubkey(),
&validator_3_voting_keypair.pubkey(),
&validator_3_vote_account,
&rent,
validator_3_stake_lamports,
);
genesis_config.accounts.insert(
validator_3_pubkey,
Account::new(42, 0, &system_program::id()),
);
genesis_config.accounts.insert(
validator_3_staking_keypair.pubkey(),
Account::from(validator_3_stake_account),
);
genesis_config.accounts.insert(
validator_3_voting_keypair.pubkey(),
Account::from(validator_3_vote_account),
);
genesis_config.rent = rent_with_exemption_threshold(10.0);
let mut bank = Bank::new_for_tests(&genesis_config);
// Enable rent collection
bank.rent_collector.epoch = 5;
bank.rent_collector.slots_per_year = 192.0;
let payer = Keypair::new();
let payer_account = AccountSharedData::new(400, 0, &system_program::id());
bank.store_account_and_update_capitalization(&payer.pubkey(), &payer_account);
let payee = Keypair::new();
let payee_account = AccountSharedData::new(70, 1, &system_program::id());
bank.store_account_and_update_capitalization(&payee.pubkey(), &payee_account);
let bootstrap_validator_initial_balance = bank.get_balance(&bootstrap_validator_pubkey);
let tx = system_transaction::transfer(&payer, &payee.pubkey(), 180, genesis_config.hash());
let result = bank.process_transaction(&tx);
assert_eq!(result, Ok(()));
let mut total_rent_deducted = 0;
// 400 - 128(Rent) - 180(Transfer)
assert_eq!(bank.get_balance(&payer.pubkey()), 92);
total_rent_deducted += 128;
// 70 - 70(Rent) + 180(Transfer) - 21(Rent)
assert_eq!(bank.get_balance(&payee.pubkey()), 159);
total_rent_deducted += 70 + 21;
let previous_capitalization = bank.capitalization.load(Relaxed);
bank.freeze();
assert_eq!(bank.collected_rent.load(Relaxed), total_rent_deducted);
let burned_portion =
total_rent_deducted * u64::from(bank.rent_collector.rent.burn_percent) / 100;
let rent_to_be_distributed = total_rent_deducted - burned_portion;
let bootstrap_validator_portion =
((bootstrap_validator_stake_lamports * rent_to_be_distributed) as f64 / 100.0) as u64
+ 1; // Leftover lamport
assert_eq!(
bank.get_balance(&bootstrap_validator_pubkey),
bootstrap_validator_portion + bootstrap_validator_initial_balance
);
// Since, validator 1 and validator 2 has equal smallest stake, it comes down to comparison
// between their pubkey.
let tweak_1 = if validator_1_pubkey > validator_2_pubkey {
1
} else {
0
};
let validator_1_portion =
((validator_1_stake_lamports * rent_to_be_distributed) as f64 / 100.0) as u64 + tweak_1;
assert_eq!(
bank.get_balance(&validator_1_pubkey),
validator_1_portion + 42 - tweak_1,
);
// Since, validator 1 and validator 2 has equal smallest stake, it comes down to comparison
// between their pubkey.
let tweak_2 = if validator_2_pubkey > validator_1_pubkey {
1
} else {
0
};
let validator_2_portion =
((validator_2_stake_lamports * rent_to_be_distributed) as f64 / 100.0) as u64 + tweak_2;
assert_eq!(
bank.get_balance(&validator_2_pubkey),
validator_2_portion + 42 - tweak_2,
);
let validator_3_portion =
((validator_3_stake_lamports * rent_to_be_distributed) as f64 / 100.0) as u64 + 1;
assert_eq!(
bank.get_balance(&validator_3_pubkey),
validator_3_portion + 42
);
let current_capitalization = bank.capitalization.load(Relaxed);
// only slot history is newly created
let sysvar_and_builtin_program_delta =
min_rent_excempt_balance_for_sysvars(&bank, &[sysvar::slot_history::id()]);
assert_eq!(
previous_capitalization - (current_capitalization - sysvar_and_builtin_program_delta),
burned_portion
);
assert!(bank.calculate_and_verify_capitalization(true));
assert_eq!(
rent_to_be_distributed,
bank.rewards
.read()
.unwrap()
.iter()
.map(|(address, reward)| {
if reward.lamports > 0 {
assert_eq!(reward.reward_type, RewardType::Rent);
if *address == validator_2_pubkey {
assert_eq!(reward.post_balance, validator_2_portion + 42 - tweak_2);
} else if *address == validator_3_pubkey {
assert_eq!(reward.post_balance, validator_3_portion + 42);
}
reward.lamports as u64
} else {
0
}
})
.sum::<u64>()
);
}
#[test]
fn test_distribute_rent_to_validators_overflow() {
solana_logger::setup();
// These values are taken from the real cluster (testnet)
const RENT_TO_BE_DISTRIBUTED: u64 = 120_525;
const VALIDATOR_STAKE: u64 = 374_999_998_287_840;
let validator_pubkey = solana_sdk::pubkey::new_rand();
let mut genesis_config =
create_genesis_config_with_leader(10, &validator_pubkey, VALIDATOR_STAKE)
.genesis_config;
let bank = Bank::new_for_tests(&genesis_config);
let old_validator_lamports = bank.get_balance(&validator_pubkey);
bank.distribute_rent_to_validators(&bank.vote_accounts(), RENT_TO_BE_DISTRIBUTED);
let new_validator_lamports = bank.get_balance(&validator_pubkey);
assert_eq!(
new_validator_lamports,
old_validator_lamports + RENT_TO_BE_DISTRIBUTED
);
genesis_config
.accounts
.remove(&feature_set::no_overflow_rent_distribution::id())
.unwrap();
let bank = std::panic::AssertUnwindSafe(Bank::new_for_tests(&genesis_config));
let old_validator_lamports = bank.get_balance(&validator_pubkey);
let new_validator_lamports = std::panic::catch_unwind(|| {
bank.distribute_rent_to_validators(&bank.vote_accounts(), RENT_TO_BE_DISTRIBUTED);
bank.get_balance(&validator_pubkey)
});
if let Ok(new_validator_lamports) = new_validator_lamports {
info!("asserting overflowing incorrect rent distribution");
assert_ne!(
new_validator_lamports,
old_validator_lamports + RENT_TO_BE_DISTRIBUTED
);
} else {
info!("NOT-asserting overflowing incorrect rent distribution");
}
}
#[test]
fn test_rent_exempt_executable_account() {
let (mut genesis_config, mint_keypair) = create_genesis_config(100_000);
genesis_config.rent = rent_with_exemption_threshold(1000.0);
let root_bank = Arc::new(Bank::new_for_tests(&genesis_config));
let bank = create_child_bank_for_rent_test(&root_bank, &genesis_config);
let account_pubkey = solana_sdk::pubkey::new_rand();
let account_balance = 1;
let data_len = 12345; // use non-zero data len to also test accounts_data_len
let mut account =
AccountSharedData::new(account_balance, data_len, &solana_sdk::pubkey::new_rand());
account.set_executable(true);
bank.store_account(&account_pubkey, &account);
bank.store_accounts_data_len(data_len as u64);
let transfer_lamports = 1;
let tx = system_transaction::transfer(
&mint_keypair,
&account_pubkey,
transfer_lamports,
genesis_config.hash(),
);
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InvalidWritableAccount)
);
assert_eq!(bank.get_balance(&account_pubkey), account_balance);
assert_eq!(bank.load_accounts_data_len(), data_len as u64);
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_rent_complex() {
solana_logger::setup();
let mock_program_id = Pubkey::new(&[2u8; 32]);
#[derive(Serialize, Deserialize)]
enum MockInstruction {
Deduction,
}
fn mock_process_instruction(
_first_instruction_account: usize,
data: &[u8],
invoke_context: &mut InvokeContext,
) -> result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
if let Ok(instruction) = bincode::deserialize(data) {
match instruction {
MockInstruction::Deduction => {
instruction_context
.try_borrow_instruction_account(transaction_context, 1)?
.checked_add_lamports(1)?;
instruction_context
.try_borrow_instruction_account(transaction_context, 2)?
.checked_sub_lamports(1)?;
Ok(())
}
}
} else {
Err(InstructionError::InvalidInstructionData)
}
}
let (mut genesis_config, _mint_keypair) = create_genesis_config(10);
let mut keypairs: Vec<Keypair> = Vec::with_capacity(14);
for _i in 0..14 {
keypairs.push(Keypair::new());
}
genesis_config.rent = rent_with_exemption_threshold(1000.0);
let root_bank = Bank::new_for_tests(&genesis_config);
// until we completely transition to the eager rent collection,
// we must ensure lazy rent collection doens't get broken!
root_bank.restore_old_behavior_for_fragile_tests();
let root_bank = Arc::new(root_bank);
let mut bank = create_child_bank_for_rent_test(&root_bank, &genesis_config);
bank.add_builtin("mock_program", &mock_program_id, mock_process_instruction);
assert_eq!(bank.last_blockhash(), genesis_config.hash());
let slots_elapsed: u64 = (0..=bank.epoch)
.map(|epoch| {
bank.rent_collector
.epoch_schedule
.get_slots_in_epoch(epoch + 1)
})
.sum();
let generic_rent_due_for_system_account = bank
.rent_collector
.rent
.due(
bank.get_minimum_balance_for_rent_exemption(0) - 1,
0,
slots_elapsed as f64 / bank.rent_collector.slots_per_year,
)
.lamports();
store_accounts_for_rent_test(
&bank,
&mut keypairs,
mock_program_id,
generic_rent_due_for_system_account,
);
let magic_rent_number = 131; // yuck, derive this value programmatically one day
let t1 = system_transaction::transfer(
&keypairs[0],
&keypairs[1].pubkey(),
1,
genesis_config.hash(),
);
let t2 = system_transaction::transfer(
&keypairs[2],
&keypairs[3].pubkey(),
1,
genesis_config.hash(),
);
let t3 = system_transaction::transfer(
&keypairs[4],
&keypairs[5].pubkey(),
1,
genesis_config.hash(),
);
let t4 = system_transaction::transfer(
&keypairs[6],
&keypairs[7].pubkey(),
generic_rent_due_for_system_account + 1,
genesis_config.hash(),
);
let t5 = system_transaction::transfer(
&keypairs[8],
&keypairs[9].pubkey(),
929,
genesis_config.hash(),
);
let account_metas = vec![
AccountMeta::new(keypairs[10].pubkey(), true),
AccountMeta::new(keypairs[11].pubkey(), true),
AccountMeta::new(keypairs[12].pubkey(), true),
AccountMeta::new_readonly(keypairs[13].pubkey(), false),
];
let deduct_instruction = Instruction::new_with_bincode(
mock_program_id,
&MockInstruction::Deduction,
account_metas,
);
let t6 = Transaction::new_signed_with_payer(
&[deduct_instruction],
Some(&keypairs[10].pubkey()),
&[&keypairs[10], &keypairs[11], &keypairs[12]],
genesis_config.hash(),
);
let txs = vec![t6, t5, t1, t2, t3, t4];
let res = bank.process_transactions(txs.iter());
assert_eq!(res.len(), 6);
assert_eq!(res[0], Ok(()));
assert_eq!(res[1], Ok(()));
assert_eq!(res[2], Ok(()));
assert_eq!(res[3], Ok(()));
assert_eq!(res[4], Err(TransactionError::AccountNotFound));
assert_eq!(res[5], Ok(()));
bank.freeze();
let mut rent_collected = 0;
// 48992 - generic_rent_due_for_system_account(Rent) - 1(transfer)
assert_eq!(bank.get_balance(&keypairs[0].pubkey()), 1);
rent_collected += generic_rent_due_for_system_account;
// 48992 - generic_rent_due_for_system_account(Rent) + 1(transfer)
assert_eq!(bank.get_balance(&keypairs[1].pubkey()), 3);
rent_collected += generic_rent_due_for_system_account;
// 48992 - generic_rent_due_for_system_account(Rent) - 1(transfer)
assert_eq!(bank.get_balance(&keypairs[2].pubkey()), 1);
rent_collected += generic_rent_due_for_system_account;
// 48992 - generic_rent_due_for_system_account(Rent) + 1(transfer)
assert_eq!(bank.get_balance(&keypairs[3].pubkey()), 3);
rent_collected += generic_rent_due_for_system_account;
// No rent deducted
assert_eq!(bank.get_balance(&keypairs[4].pubkey()), 10);
assert_eq!(bank.get_balance(&keypairs[5].pubkey()), 10);
// 98004 - generic_rent_due_for_system_account(Rent) - 48991(transfer)
assert_eq!(bank.get_balance(&keypairs[6].pubkey()), 23);
rent_collected += generic_rent_due_for_system_account;
// 0 + 48990(transfer) - magic_rent_number(Rent)
assert_eq!(
bank.get_balance(&keypairs[7].pubkey()),
generic_rent_due_for_system_account + 1 - magic_rent_number
);
// Epoch should be updated
// Rent deducted on store side
let account8 = bank.get_account(&keypairs[7].pubkey()).unwrap();
// Epoch should be set correctly.
assert_eq!(account8.rent_epoch(), bank.epoch + 1);
rent_collected += magic_rent_number;
// 49921 - generic_rent_due_for_system_account(Rent) - 929(Transfer)
assert_eq!(bank.get_balance(&keypairs[8].pubkey()), 2);
rent_collected += generic_rent_due_for_system_account;
let account10 = bank.get_account(&keypairs[9].pubkey()).unwrap();
// Account was overwritten at load time, since it didn't have sufficient balance to pay rent
// Then, at store time we deducted `magic_rent_number` rent for the current epoch, once it has balance
assert_eq!(account10.rent_epoch(), bank.epoch + 1);
// account data is blank now
assert_eq!(account10.data().len(), 0);
// 10 - 10(Rent) + 929(Transfer) - magic_rent_number(Rent)
assert_eq!(account10.lamports(), 929 - magic_rent_number);
rent_collected += magic_rent_number + 10;
// 48993 - generic_rent_due_for_system_account(Rent)
assert_eq!(bank.get_balance(&keypairs[10].pubkey()), 3);
rent_collected += generic_rent_due_for_system_account;
// 48993 - generic_rent_due_for_system_account(Rent) + 1(Addition by program)
assert_eq!(bank.get_balance(&keypairs[11].pubkey()), 4);
rent_collected += generic_rent_due_for_system_account;
// 48993 - generic_rent_due_for_system_account(Rent) - 1(Deduction by program)
assert_eq!(bank.get_balance(&keypairs[12].pubkey()), 2);
rent_collected += generic_rent_due_for_system_account;
// No rent for read-only account
assert_eq!(bank.get_balance(&keypairs[13].pubkey()), 14);
// Bank's collected rent should be sum of rent collected from all accounts
assert_eq!(bank.collected_rent.load(Relaxed), rent_collected);
}
fn test_rent_collection_partitions(bank: &Bank) -> Vec<Partition> {
let partitions = bank.rent_collection_partitions();
let slot = bank.slot();
if slot.saturating_sub(1) == bank.parent_slot() {
let partition = Bank::variable_cycle_partition_from_previous_slot(
bank.epoch_schedule(),
bank.slot(),
);
assert_eq!(
partitions.last().unwrap(),
&partition,
"slot: {}, slots per epoch: {}, partitions: {:?}",
bank.slot(),
bank.epoch_schedule().slots_per_epoch,
partitions
);
}
partitions
}
#[test]
fn test_rent_eager_across_epoch_without_gap() {
let (genesis_config, _mint_keypair) = create_genesis_config(1);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 32)]);
for _ in 2..32 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(bank.rent_collection_partitions(), vec![(30, 31, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 64)]);
}
#[test]
fn test_rent_eager_across_epoch_without_gap_mnb() {
solana_logger::setup();
let (mut genesis_config, _mint_keypair) = create_genesis_config(1);
genesis_config.cluster_type = ClusterType::MainnetBeta;
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(test_rent_collection_partitions(&bank), vec![(0, 0, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(test_rent_collection_partitions(&bank), vec![(0, 1, 32)]);
for _ in 2..32 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(test_rent_collection_partitions(&bank), vec![(30, 31, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(test_rent_collection_partitions(&bank), vec![(0, 0, 64)]);
}
#[test]
fn test_rent_eager_across_epoch_with_full_gap() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(1);
activate_all_features(&mut genesis_config);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 32)]);
for _ in 2..15 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(bank.rent_collection_partitions(), vec![(13, 14, 32)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 49));
assert_eq!(
bank.rent_collection_partitions(),
vec![(14, 31, 32), (0, 0, 64), (0, 17, 64)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(17, 18, 64)]);
}
#[test]
fn test_rent_eager_across_epoch_with_half_gap() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(1);
activate_all_features(&mut genesis_config);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 32)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 32)]);
for _ in 2..15 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(bank.rent_collection_partitions(), vec![(13, 14, 32)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 32));
assert_eq!(
bank.rent_collection_partitions(),
vec![(14, 31, 32), (0, 0, 64)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 64)]);
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_rent_eager_across_epoch_without_gap_under_multi_epoch_cycle() {
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let mut genesis_config =
create_genesis_config_with_leader(5, &leader_pubkey, leader_lamports).genesis_config;
genesis_config.cluster_type = ClusterType::MainnetBeta;
const SLOTS_PER_EPOCH: u64 = MINIMUM_SLOTS_PER_EPOCH as u64;
const LEADER_SCHEDULE_SLOT_OFFSET: u64 = SLOTS_PER_EPOCH * 3 - 3;
genesis_config.epoch_schedule =
EpochSchedule::custom(SLOTS_PER_EPOCH, LEADER_SCHEDULE_SLOT_OFFSET, false);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(DEFAULT_SLOTS_PER_EPOCH, 432_000);
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 432_000)]);
for _ in 2..32 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 31));
assert_eq!(bank.rent_collection_partitions(), vec![(30, 31, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(31, 32, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(32, 33, 432_000)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 1000));
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 1001));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (31, 9));
assert_eq!(
bank.rent_collection_partitions(),
vec![(1000, 1001, 432_000)]
);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 431_998));
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 431_999));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (13499, 31));
assert_eq!(
bank.rent_collection_partitions(),
vec![(431_998, 431_999, 432_000)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (13500, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (13500, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 432_000)]);
}
#[test]
fn test_rent_eager_across_epoch_with_gap_under_multi_epoch_cycle() {
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let mut genesis_config =
create_genesis_config_with_leader(5, &leader_pubkey, leader_lamports).genesis_config;
genesis_config.cluster_type = ClusterType::MainnetBeta;
const SLOTS_PER_EPOCH: u64 = MINIMUM_SLOTS_PER_EPOCH as u64;
const LEADER_SCHEDULE_SLOT_OFFSET: u64 = SLOTS_PER_EPOCH * 3 - 3;
genesis_config.epoch_schedule =
EpochSchedule::custom(SLOTS_PER_EPOCH, LEADER_SCHEDULE_SLOT_OFFSET, false);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(DEFAULT_SLOTS_PER_EPOCH, 432_000);
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 432_000)]);
for _ in 2..19 {
bank = Arc::new(new_from_parent(&bank));
}
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 18));
assert_eq!(bank.rent_collection_partitions(), vec![(17, 18, 432_000)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 44));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1, 12));
assert_eq!(
bank.rent_collection_partitions(),
vec![(18, 31, 432_000), (31, 31, 432_000), (31, 44, 432_000)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1, 13));
assert_eq!(bank.rent_collection_partitions(), vec![(44, 45, 432_000)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 431_993));
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 432_011));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (13500, 11));
assert_eq!(
bank.rent_collection_partitions(),
vec![
(431_993, 431_999, 432_000),
(0, 0, 432_000),
(0, 11, 432_000)
]
);
}
#[test]
fn test_rent_eager_with_warmup_epochs_under_multi_epoch_cycle() {
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let mut genesis_config =
create_genesis_config_with_leader(5, &leader_pubkey, leader_lamports).genesis_config;
genesis_config.cluster_type = ClusterType::MainnetBeta;
const SLOTS_PER_EPOCH: u64 = MINIMUM_SLOTS_PER_EPOCH as u64 * 8;
const LEADER_SCHEDULE_SLOT_OFFSET: u64 = SLOTS_PER_EPOCH * 3 - 3;
genesis_config.epoch_schedule =
EpochSchedule::custom(SLOTS_PER_EPOCH, LEADER_SCHEDULE_SLOT_OFFSET, true);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(DEFAULT_SLOTS_PER_EPOCH, 432_000);
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.first_normal_epoch(), 3);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 32)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 222));
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 128);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (2, 127));
assert_eq!(bank.rent_collection_partitions(), vec![(126, 127, 128)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (3, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 431_872)]);
assert_eq!(431_872 % bank.get_slots_in_epoch(bank.epoch()), 0);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (3, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 431_872)]);
bank = Arc::new(Bank::new_from_parent(
&bank,
&Pubkey::default(),
431_872 + 223 - 1,
));
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1689, 255));
assert_eq!(
bank.rent_collection_partitions(),
vec![(431_870, 431_871, 431_872)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (1690, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 431_872)]);
}
#[test]
fn test_rent_eager_under_fixed_cycle_for_development() {
solana_logger::setup();
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let mut genesis_config =
create_genesis_config_with_leader(5, &leader_pubkey, leader_lamports).genesis_config;
const SLOTS_PER_EPOCH: u64 = MINIMUM_SLOTS_PER_EPOCH as u64 * 8;
const LEADER_SCHEDULE_SLOT_OFFSET: u64 = SLOTS_PER_EPOCH * 3 - 3;
genesis_config.epoch_schedule =
EpochSchedule::custom(SLOTS_PER_EPOCH, LEADER_SCHEDULE_SLOT_OFFSET, true);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 32);
assert_eq!(bank.first_normal_epoch(), 3);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (0, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 432_000)]);
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), 222));
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 128);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (2, 127));
assert_eq!(bank.rent_collection_partitions(), vec![(222, 223, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (3, 0));
assert_eq!(bank.rent_collection_partitions(), vec![(223, 224, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_slots_in_epoch(bank.epoch()), 256);
assert_eq!(bank.get_epoch_and_slot_index(bank.slot()), (3, 1));
assert_eq!(bank.rent_collection_partitions(), vec![(224, 225, 432_000)]);
bank = Arc::new(Bank::new_from_parent(
&bank,
&Pubkey::default(),
432_000 - 2,
));
bank = Arc::new(new_from_parent(&bank));
assert_eq!(
bank.rent_collection_partitions(),
vec![(431_998, 431_999, 432_000)]
);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 0, 432_000)]);
bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.rent_collection_partitions(), vec![(0, 1, 432_000)]);
bank = Arc::new(Bank::new_from_parent(
&bank,
&Pubkey::default(),
864_000 - 20,
));
bank = Arc::new(Bank::new_from_parent(
&bank,
&Pubkey::default(),
864_000 + 39,
));
assert_eq!(
bank.rent_collection_partitions(),
vec![
(431_980, 431_999, 432_000),
(0, 0, 432_000),
(0, 39, 432_000)
]
);
}
#[test]
fn test_rent_eager_pubkey_range_minimal() {
let range = Bank::pubkey_range_from_partition((0, 0, 1));
assert_eq!(
range,
Pubkey::new_from_array([0x00; 32])..=Pubkey::new_from_array([0xff; 32])
);
}
#[test]
fn test_rent_eager_pubkey_range_maximum() {
let max = !0;
let range = Bank::pubkey_range_from_partition((0, 0, max));
assert_eq!(
range,
Pubkey::new_from_array([0x00; 32])
..=Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let range = Bank::pubkey_range_from_partition((0, 1, max));
assert_eq!(
range,
Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
..=Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let range = Bank::pubkey_range_from_partition((max - 3, max - 2, max));
assert_eq!(
range,
Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let range = Bank::pubkey_range_from_partition((max - 2, max - 1, max));
assert_eq!(
range,
Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
fn should_cause_overflow(partition_count: u64) -> bool {
// Check `partition_width = (u64::max_value() + 1) / partition_count` is exact and
// does not have a remainder.
// This way, `partition_width * partition_count == (u64::max_value() + 1)`,
// so the test actually tests for overflow
(u64::max_value() - partition_count + 1) % partition_count == 0
}
let max_exact = 64;
// Make sure `max_exact` divides evenly when calculating `calculate_partition_width`
assert!(should_cause_overflow(max_exact));
// Make sure `max_inexact` doesn't divide evenly when calculating `calculate_partition_width`
let max_inexact = 10;
assert!(!should_cause_overflow(max_inexact));
for max in &[max_exact, max_inexact] {
let range = Bank::pubkey_range_from_partition((max - 1, max - 1, *max));
assert_eq!(
range,
Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
}
}
fn map_to_test_bad_range() -> std::collections::BTreeMap<Pubkey, i8> {
let mut map = std::collections::BTreeMap::new();
// when empty, std::collections::BTreeMap doesn't sanitize given range...
map.insert(solana_sdk::pubkey::new_rand(), 1);
map
}
#[test]
#[should_panic(expected = "range start is greater than range end in BTreeMap")]
fn test_rent_eager_bad_range() {
let test_map = map_to_test_bad_range();
let _ = test_map.range(
Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01,
])
..=Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
]),
);
}
#[test]
fn test_rent_eager_pubkey_range_noop_range() {
let test_map = map_to_test_bad_range();
let range = Bank::pubkey_range_from_partition((0, 0, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x54, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
let range = Bank::pubkey_range_from_partition((1, 1, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
])
);
let _ = test_map.range(range);
let range = Bank::pubkey_range_from_partition((2, 2, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
}
#[test]
fn test_rent_eager_pubkey_range_dividable() {
let test_map = map_to_test_bad_range();
let range = Bank::pubkey_range_from_partition((0, 0, 2));
assert_eq!(
range,
Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
let range = Bank::pubkey_range_from_partition((0, 1, 2));
assert_eq!(
range,
Pubkey::new_from_array([
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
}
#[test]
fn test_rent_eager_pubkey_range_not_dividable() {
solana_logger::setup();
let test_map = map_to_test_bad_range();
let range = Bank::pubkey_range_from_partition((0, 0, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x54, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
let range = Bank::pubkey_range_from_partition((0, 1, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xa9, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
let range = Bank::pubkey_range_from_partition((1, 2, 3));
assert_eq!(
range,
Pubkey::new_from_array([
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
}
#[test]
fn test_rent_eager_pubkey_range_gap() {
solana_logger::setup();
let test_map = map_to_test_bad_range();
let range = Bank::pubkey_range_from_partition((120, 1023, 12345));
assert_eq!(
range,
Pubkey::new_from_array([
0x02, 0x82, 0x5a, 0x89, 0xd1, 0xac, 0x58, 0x9c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
])
..=Pubkey::new_from_array([
0x15, 0x3c, 0x1d, 0xf1, 0xc6, 0x39, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
])
);
let _ = test_map.range(range);
}
impl Bank {
fn slots_by_pubkey(&self, pubkey: &Pubkey, ancestors: &Ancestors) -> Vec<Slot> {
let (locked_entry, _) = self
.rc
.accounts
.accounts_db
.accounts_index
.get(pubkey, Some(ancestors), None)
.unwrap();
locked_entry
.slot_list()
.iter()
.map(|(slot, _)| *slot)
.collect::<Vec<Slot>>()
}
}
#[test]
fn test_rent_eager_collect_rent_in_partition() {
solana_logger::setup();
let (mut genesis_config, _mint_keypair) = create_genesis_config(1_000_000);
activate_all_features(&mut genesis_config);
let zero_lamport_pubkey = solana_sdk::pubkey::new_rand();
let rent_due_pubkey = solana_sdk::pubkey::new_rand();
let rent_exempt_pubkey = solana_sdk::pubkey::new_rand();
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
let zero_lamports = 0;
let little_lamports = 1234;
let large_lamports = 123_456_789;
let rent_collected = 22;
bank.store_account(
&zero_lamport_pubkey,
&AccountSharedData::new(zero_lamports, 0, &Pubkey::default()),
);
bank.store_account(
&rent_due_pubkey,
&AccountSharedData::new(little_lamports, 0, &Pubkey::default()),
);
bank.store_account(
&rent_exempt_pubkey,
&AccountSharedData::new(large_lamports, 0, &Pubkey::default()),
);
let genesis_slot = 0;
let some_slot = 1000;
let ancestors = vec![(some_slot, 0), (0, 1)].into_iter().collect();
bank = Arc::new(Bank::new_from_parent(&bank, &Pubkey::default(), some_slot));
assert_eq!(bank.collected_rent.load(Relaxed), 0);
assert_eq!(
bank.get_account(&rent_due_pubkey).unwrap().lamports(),
little_lamports
);
assert_eq!(bank.get_account(&rent_due_pubkey).unwrap().rent_epoch(), 0);
assert_eq!(
bank.slots_by_pubkey(&rent_due_pubkey, &ancestors),
vec![genesis_slot]
);
assert_eq!(
bank.slots_by_pubkey(&rent_exempt_pubkey, &ancestors),
vec![genesis_slot]
);
assert_eq!(
bank.slots_by_pubkey(&zero_lamport_pubkey, &ancestors),
vec![genesis_slot]
);
bank.collect_rent_in_partition((0, 0, 1)); // all range
assert_eq!(bank.collected_rent.load(Relaxed), rent_collected);
assert_eq!(
bank.get_account(&rent_due_pubkey).unwrap().lamports(),
little_lamports - rent_collected
);
assert_eq!(bank.get_account(&rent_due_pubkey).unwrap().rent_epoch(), 6);
assert_eq!(
bank.get_account(&rent_exempt_pubkey).unwrap().lamports(),
large_lamports
);
assert_eq!(
bank.get_account(&rent_exempt_pubkey).unwrap().rent_epoch(),
5
);
assert_eq!(
bank.slots_by_pubkey(&rent_due_pubkey, &ancestors),
vec![genesis_slot, some_slot]
);
assert_eq!(
bank.slots_by_pubkey(&rent_exempt_pubkey, &ancestors),
vec![genesis_slot, some_slot]
);
assert_eq!(
bank.slots_by_pubkey(&zero_lamport_pubkey, &ancestors),
vec![genesis_slot]
);
}
#[test]
fn test_rent_eager_collect_rent_zero_lamport_deterministic() {
solana_logger::setup();
let (genesis_config, _mint_keypair) = create_genesis_config(1);
let zero_lamport_pubkey = solana_sdk::pubkey::new_rand();
let genesis_bank1 = Arc::new(Bank::new_for_tests(&genesis_config));
let genesis_bank2 = Arc::new(Bank::new_for_tests(&genesis_config));
let bank1_with_zero = Arc::new(new_from_parent(&genesis_bank1));
let bank1_without_zero = Arc::new(new_from_parent(&genesis_bank2));
let zero_lamports = 0;
let data_len = 12345; // use non-zero data len to also test accounts_data_len
let account = AccountSharedData::new(zero_lamports, data_len, &Pubkey::default());
bank1_with_zero.store_account(&zero_lamport_pubkey, &account);
bank1_without_zero.store_account(&zero_lamport_pubkey, &account);
bank1_without_zero
.rc
.accounts
.accounts_db
.accounts_index
.add_root(genesis_bank1.slot() + 1, false);
bank1_without_zero
.rc
.accounts
.accounts_db
.accounts_index
.purge_roots(&zero_lamport_pubkey);
let some_slot = 1000;
let bank2_with_zero = Arc::new(Bank::new_from_parent(
&bank1_with_zero,
&Pubkey::default(),
some_slot,
));
let bank2_without_zero = Arc::new(Bank::new_from_parent(
&bank1_without_zero,
&Pubkey::default(),
some_slot,
));
let hash1_with_zero = bank1_with_zero.hash();
let hash1_without_zero = bank1_without_zero.hash();
assert_eq!(hash1_with_zero, hash1_without_zero);
assert_ne!(hash1_with_zero, Hash::default());
bank2_with_zero.collect_rent_in_partition((0, 0, 1)); // all
bank2_without_zero.collect_rent_in_partition((0, 0, 1)); // all
bank2_with_zero.freeze();
let hash2_with_zero = bank2_with_zero.hash();
bank2_without_zero.freeze();
let hash2_without_zero = bank2_without_zero.hash();
assert_eq!(hash2_with_zero, hash2_without_zero);
assert_ne!(hash2_with_zero, Hash::default());
}
#[test]
fn test_bank_update_vote_stake_rewards() {
solana_logger::setup();
// create a bank that ticks really slowly...
let bank0 = Arc::new(Bank::new_for_tests(&GenesisConfig {
accounts: (0..42)
.map(|_| {
(
solana_sdk::pubkey::new_rand(),
Account::new(1_000_000_000, 0, &Pubkey::default()),
)
})
.collect(),
// set it up so the first epoch is a full year long
poh_config: PohConfig {
target_tick_duration: Duration::from_secs(
SECONDS_PER_YEAR as u64
/ MINIMUM_SLOTS_PER_EPOCH as u64
/ DEFAULT_TICKS_PER_SLOT,
),
hashes_per_tick: None,
target_tick_count: None,
},
cluster_type: ClusterType::MainnetBeta,
..GenesisConfig::default()
}));
// enable lazy rent collection because this test depends on rent-due accounts
// not being eagerly-collected for exact rewards calculation
bank0.restore_old_behavior_for_fragile_tests();
assert_eq!(
bank0.capitalization(),
42 * 1_000_000_000 + genesis_sysvar_and_builtin_program_lamports(),
);
let ((vote_id, mut vote_account), (stake_id, stake_account)) =
crate::stakes::tests::create_staked_node_accounts(10_000);
let starting_vote_and_stake_balance = 10_000 + 1;
// set up accounts
bank0.store_account_and_update_capitalization(&stake_id, &stake_account);
// generate some rewards
let mut vote_state = Some(VoteState::from(&vote_account).unwrap());
for i in 0..MAX_LOCKOUT_HISTORY + 42 {
if let Some(v) = vote_state.as_mut() {
v.process_slot_vote_unchecked(i as u64)
}
let versioned = VoteStateVersions::Current(Box::new(vote_state.take().unwrap()));
VoteState::to(&versioned, &mut vote_account).unwrap();
bank0.store_account_and_update_capitalization(&vote_id, &vote_account);
match versioned {
VoteStateVersions::Current(v) => {
vote_state = Some(*v);
}
_ => panic!("Has to be of type Current"),
};
}
bank0.store_account_and_update_capitalization(&vote_id, &vote_account);
bank0.freeze();
assert_eq!(
bank0.capitalization(),
42 * 1_000_000_000
+ genesis_sysvar_and_builtin_program_lamports()
+ starting_vote_and_stake_balance
+ bank0_sysvar_delta(),
);
assert!(bank0.rewards.read().unwrap().is_empty());
let thread_pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
let validator_points: u128 = bank0
.load_vote_and_stake_accounts_with_thread_pool(&thread_pool, null_tracer())
.vote_with_stake_delegations_map
.into_iter()
.map(
|(
_vote_pubkey,
VoteWithStakeDelegations {
vote_state,
delegations,
..
},
)| {
delegations
.iter()
.map(move |(_stake_pubkey, (stake_state, _stake_account))| {
stake_state::calculate_points(stake_state, &vote_state, None)
.unwrap_or(0)
})
.sum::<u128>()
},
)
.sum();
// put a child bank in epoch 1, which calls update_rewards()...
let bank1 = Bank::new_from_parent(
&bank0,
&Pubkey::default(),
bank0.get_slots_in_epoch(bank0.epoch()) + 1,
);
// verify that there's inflation
assert_ne!(bank1.capitalization(), bank0.capitalization());
// verify the inflation is represented in validator_points *
let paid_rewards = bank1.capitalization()
- bank0.capitalization()
- bank1_sysvar_delta()
- new_epoch_sysvar_delta();
let rewards = bank1
.get_account(&sysvar::rewards::id())
.map(|account| from_account::<Rewards, _>(&account).unwrap())
.unwrap();
// verify the stake and vote accounts are the right size
assert!(
((bank1.get_balance(&stake_id) - stake_account.lamports() + bank1.get_balance(&vote_id)
- vote_account.lamports()) as f64
- rewards.validator_point_value * validator_points as f64)
.abs()
< 1.0
);
// verify the rewards are the right size
let allocated_rewards = rewards.validator_point_value * validator_points as f64;
assert!((allocated_rewards - paid_rewards as f64).abs() < 1.0); // rounding, truncating
// verify validator rewards show up in bank1.rewards vector
assert_eq!(
*bank1.rewards.read().unwrap(),
vec![(
stake_id,
RewardInfo {
reward_type: RewardType::Staking,
lamports: (rewards.validator_point_value * validator_points as f64) as i64,
post_balance: bank1.get_balance(&stake_id),
commission: Some(0),
}
)]
);
bank1.freeze();
assert!(bank1.calculate_and_verify_capitalization(true));
}
fn do_test_bank_update_rewards_determinism() -> u64 {
// create a bank that ticks really slowly...
let bank = Arc::new(Bank::new_for_tests(&GenesisConfig {
accounts: (0..42)
.map(|_| {
(
solana_sdk::pubkey::new_rand(),
Account::new(1_000_000_000, 0, &Pubkey::default()),
)
})
.collect(),
// set it up so the first epoch is a full year long
poh_config: PohConfig {
target_tick_duration: Duration::from_secs(
SECONDS_PER_YEAR as u64
/ MINIMUM_SLOTS_PER_EPOCH as u64
/ DEFAULT_TICKS_PER_SLOT,
),
hashes_per_tick: None,
target_tick_count: None,
},
cluster_type: ClusterType::MainnetBeta,
..GenesisConfig::default()
}));
// enable lazy rent collection because this test depends on rent-due accounts
// not being eagerly-collected for exact rewards calculation
bank.restore_old_behavior_for_fragile_tests();
assert_eq!(
bank.capitalization(),
42 * 1_000_000_000 + genesis_sysvar_and_builtin_program_lamports()
);
let vote_id = solana_sdk::pubkey::new_rand();
let mut vote_account =
vote_state::create_account(&vote_id, &solana_sdk::pubkey::new_rand(), 50, 100);
let (stake_id1, stake_account1) = crate::stakes::tests::create_stake_account(123, &vote_id);
let (stake_id2, stake_account2) = crate::stakes::tests::create_stake_account(456, &vote_id);
// set up accounts
bank.store_account_and_update_capitalization(&stake_id1, &stake_account1);
bank.store_account_and_update_capitalization(&stake_id2, &stake_account2);
// generate some rewards
let mut vote_state = Some(VoteState::from(&vote_account).unwrap());
for i in 0..MAX_LOCKOUT_HISTORY + 42 {
if let Some(v) = vote_state.as_mut() {
v.process_slot_vote_unchecked(i as u64)
}
let versioned = VoteStateVersions::Current(Box::new(vote_state.take().unwrap()));
VoteState::to(&versioned, &mut vote_account).unwrap();
bank.store_account_and_update_capitalization(&vote_id, &vote_account);
match versioned {
VoteStateVersions::Current(v) => {
vote_state = Some(*v);
}
_ => panic!("Has to be of type Current"),
};
}
bank.store_account_and_update_capitalization(&vote_id, &vote_account);
// put a child bank in epoch 1, which calls update_rewards()...
let bank1 = Bank::new_from_parent(
&bank,
&Pubkey::default(),
bank.get_slots_in_epoch(bank.epoch()) + 1,
);
// verify that there's inflation
assert_ne!(bank1.capitalization(), bank.capitalization());
bank1.freeze();
assert!(bank1.calculate_and_verify_capitalization(true));
// verify voting and staking rewards are recorded
let rewards = bank1.rewards.read().unwrap();
rewards
.iter()
.find(|(_address, reward)| reward.reward_type == RewardType::Voting)
.unwrap();
rewards
.iter()
.find(|(_address, reward)| reward.reward_type == RewardType::Staking)
.unwrap();
bank1.capitalization()
}
#[test]
fn test_bank_update_rewards_determinism() {
solana_logger::setup();
// The same reward should be distributed given same credits
let expected_capitalization = do_test_bank_update_rewards_determinism();
// Repeat somewhat large number of iterations to expose possible different behavior
// depending on the randomly-seeded HashMap ordering
for _ in 0..30 {
let actual_capitalization = do_test_bank_update_rewards_determinism();
assert_eq!(actual_capitalization, expected_capitalization);
}
}
// Test that purging 0 lamports accounts works.
#[test]
fn test_purge_empty_accounts() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500_000);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let mut bank = parent;
for _ in 0..10 {
let blockhash = bank.last_blockhash();
let pubkey = solana_sdk::pubkey::new_rand();
let tx = system_transaction::transfer(&mint_keypair, &pubkey, 0, blockhash);
bank.process_transaction(&tx).unwrap();
bank.freeze();
bank.squash();
bank = Arc::new(new_from_parent(&bank));
}
bank.freeze();
bank.squash();
bank.force_flush_accounts_cache();
let hash = bank.update_accounts_hash();
bank.clean_accounts(false, false, None);
assert_eq!(bank.update_accounts_hash(), hash);
let bank0 = Arc::new(new_from_parent(&bank));
let blockhash = bank.last_blockhash();
let keypair = Keypair::new();
let tx = system_transaction::transfer(&mint_keypair, &keypair.pubkey(), 10, blockhash);
bank0.process_transaction(&tx).unwrap();
let bank1 = Arc::new(new_from_parent(&bank0));
let pubkey = solana_sdk::pubkey::new_rand();
let blockhash = bank.last_blockhash();
let tx = system_transaction::transfer(&keypair, &pubkey, 10, blockhash);
bank1.process_transaction(&tx).unwrap();
assert_eq!(bank0.get_account(&keypair.pubkey()).unwrap().lamports(), 10);
assert_eq!(bank1.get_account(&keypair.pubkey()), None);
info!("bank0 purge");
let hash = bank0.update_accounts_hash();
bank0.clean_accounts(false, false, None);
assert_eq!(bank0.update_accounts_hash(), hash);
assert_eq!(bank0.get_account(&keypair.pubkey()).unwrap().lamports(), 10);
assert_eq!(bank1.get_account(&keypair.pubkey()), None);
info!("bank1 purge");
bank1.clean_accounts(false, false, None);
assert_eq!(bank0.get_account(&keypair.pubkey()).unwrap().lamports(), 10);
assert_eq!(bank1.get_account(&keypair.pubkey()), None);
assert!(bank0.verify_bank_hash(true));
// Squash and then verify hash_internal value
bank0.freeze();
bank0.squash();
assert!(bank0.verify_bank_hash(true));
bank1.freeze();
bank1.squash();
bank1.update_accounts_hash();
assert!(bank1.verify_bank_hash(true));
// keypair should have 0 tokens on both forks
assert_eq!(bank0.get_account(&keypair.pubkey()), None);
assert_eq!(bank1.get_account(&keypair.pubkey()), None);
bank1.force_flush_accounts_cache();
bank1.clean_accounts(false, false, None);
assert!(bank1.verify_bank_hash(true));
}
#[test]
fn test_two_payments_to_one_party() {
let (genesis_config, mint_keypair) = create_genesis_config(10_000);
let pubkey = solana_sdk::pubkey::new_rand();
let bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.last_blockhash(), genesis_config.hash());
bank.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank.get_balance(&pubkey), 1_000);
bank.transfer(500, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank.get_balance(&pubkey), 1_500);
assert_eq!(bank.transaction_count(), 2);
}
#[test]
fn test_one_source_two_tx_one_batch() {
let (genesis_config, mint_keypair) = create_genesis_config(1);
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.last_blockhash(), genesis_config.hash());
let t1 = system_transaction::transfer(&mint_keypair, &key1, 1, genesis_config.hash());
let t2 = system_transaction::transfer(&mint_keypair, &key2, 1, genesis_config.hash());
let txs = vec![t1.clone(), t2.clone()];
let res = bank.process_transactions(txs.iter());
assert_eq!(res.len(), 2);
assert_eq!(res[0], Ok(()));
assert_eq!(res[1], Err(TransactionError::AccountInUse));
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0);
assert_eq!(bank.get_balance(&key1), 1);
assert_eq!(bank.get_balance(&key2), 0);
assert_eq!(bank.get_signature_status(&t1.signatures[0]), Some(Ok(())));
// TODO: Transactions that fail to pay a fee could be dropped silently.
// Non-instruction errors don't get logged in the signature cache
assert_eq!(bank.get_signature_status(&t2.signatures[0]), None);
}
#[test]
fn test_one_tx_two_out_atomic_fail() {
let (genesis_config, mint_keypair) = create_genesis_config(1);
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let bank = Bank::new_for_tests(&genesis_config);
let instructions =
system_instruction::transfer_many(&mint_keypair.pubkey(), &[(key1, 1), (key2, 1)]);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let tx = Transaction::new(&[&mint_keypair], message, genesis_config.hash());
assert_eq!(
bank.process_transaction(&tx).unwrap_err(),
TransactionError::InstructionError(1, SystemError::ResultWithNegativeLamports.into())
);
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 1);
assert_eq!(bank.get_balance(&key1), 0);
assert_eq!(bank.get_balance(&key2), 0);
}
#[test]
fn test_one_tx_two_out_atomic_pass() {
let (genesis_config, mint_keypair) = create_genesis_config(2);
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let bank = Bank::new_for_tests(&genesis_config);
let instructions =
system_instruction::transfer_many(&mint_keypair.pubkey(), &[(key1, 1), (key2, 1)]);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let tx = Transaction::new(&[&mint_keypair], message, genesis_config.hash());
bank.process_transaction(&tx).unwrap();
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 0);
assert_eq!(bank.get_balance(&key1), 1);
assert_eq!(bank.get_balance(&key2), 1);
}
// This test demonstrates that fees are paid even when a program fails.
#[test]
fn test_detect_failed_duplicate_transactions() {
let (mut genesis_config, mint_keypair) = create_genesis_config(2);
genesis_config.fee_rate_governor = FeeRateGovernor::new(1, 0);
let bank = Bank::new_for_tests(&genesis_config);
let dest = Keypair::new();
// source with 0 program context
let tx =
system_transaction::transfer(&mint_keypair, &dest.pubkey(), 2, genesis_config.hash());
let signature = tx.signatures[0];
assert!(!bank.has_signature(&signature));
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InstructionError(
0,
SystemError::ResultWithNegativeLamports.into(),
))
);
// The lamports didn't move, but the from address paid the transaction fee.
assert_eq!(bank.get_balance(&dest.pubkey()), 0);
// This should be the original balance minus the transaction fee.
assert_eq!(bank.get_balance(&mint_keypair.pubkey()), 1);
}
#[test]
fn test_account_not_found() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(0);
let bank = Bank::new_for_tests(&genesis_config);
let keypair = Keypair::new();
assert_eq!(
bank.transfer(1, &keypair, &mint_keypair.pubkey()),
Err(TransactionError::AccountNotFound)
);
assert_eq!(bank.transaction_count(), 0);
}
#[test]
fn test_insufficient_funds() {
let (genesis_config, mint_keypair) = create_genesis_config(11_000);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = solana_sdk::pubkey::new_rand();
bank.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank.transaction_count(), 1);
assert_eq!(bank.get_balance(&pubkey), 1_000);
assert_eq!(
bank.transfer(10_001, &mint_keypair, &pubkey),
Err(TransactionError::InstructionError(
0,
SystemError::ResultWithNegativeLamports.into(),
))
);
assert_eq!(bank.transaction_count(), 1);
let mint_pubkey = mint_keypair.pubkey();
assert_eq!(bank.get_balance(&mint_pubkey), 10_000);
assert_eq!(bank.get_balance(&pubkey), 1_000);
}
#[test]
fn test_transfer_to_newb() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(10_000);
let bank = Bank::new_for_tests(&genesis_config);
let pubkey = solana_sdk::pubkey::new_rand();
bank.transfer(500, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank.get_balance(&pubkey), 500);
}
#[test]
fn test_transfer_to_sysvar() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(10_000);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let normal_pubkey = solana_sdk::pubkey::new_rand();
let sysvar_pubkey = sysvar::clock::id();
assert_eq!(bank.get_balance(&normal_pubkey), 0);
assert_eq!(bank.get_balance(&sysvar_pubkey), 1_169_280);
bank.transfer(500, &mint_keypair, &normal_pubkey).unwrap();
bank.transfer(500, &mint_keypair, &sysvar_pubkey)
.unwrap_err();
assert_eq!(bank.get_balance(&normal_pubkey), 500);
assert_eq!(bank.get_balance(&sysvar_pubkey), 1_169_280);
let bank = Arc::new(new_from_parent(&bank));
assert_eq!(bank.get_balance(&normal_pubkey), 500);
assert_eq!(bank.get_balance(&sysvar_pubkey), 1_169_280);
}
#[test]
fn test_bank_deposit() {
let (genesis_config, _mint_keypair) = create_genesis_config(100);
let bank = Bank::new_for_tests(&genesis_config);
// Test new account
let key = Keypair::new();
let new_balance = bank.deposit(&key.pubkey(), 10).unwrap();
assert_eq!(new_balance, 10);
assert_eq!(bank.get_balance(&key.pubkey()), 10);
// Existing account
let new_balance = bank.deposit(&key.pubkey(), 3).unwrap();
assert_eq!(new_balance, 13);
assert_eq!(bank.get_balance(&key.pubkey()), 13);
}
#[test]
fn test_bank_withdraw() {
let (genesis_config, _mint_keypair) = create_genesis_config(100);
let bank = Bank::new_for_tests(&genesis_config);
// Test no account
let key = Keypair::new();
assert_eq!(
bank.withdraw(&key.pubkey(), 10),
Err(TransactionError::AccountNotFound)
);
bank.deposit(&key.pubkey(), 3).unwrap();
assert_eq!(bank.get_balance(&key.pubkey()), 3);
// Low balance
assert_eq!(
bank.withdraw(&key.pubkey(), 10),
Err(TransactionError::InsufficientFundsForFee)
);
// Enough balance
assert_eq!(bank.withdraw(&key.pubkey(), 2), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), 1);
}
#[test]
fn test_bank_withdraw_from_nonce_account() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(100_000);
genesis_config.rent.lamports_per_byte_year = 42;
let bank = Bank::new_for_tests(&genesis_config);
let min_balance = bank.get_minimum_balance_for_rent_exemption(nonce::State::size());
let nonce = Keypair::new();
let nonce_account = AccountSharedData::new_data(
min_balance + 42,
&nonce::state::Versions::new_current(nonce::State::Initialized(
nonce::state::Data::default(),
)),
&system_program::id(),
)
.unwrap();
bank.store_account(&nonce.pubkey(), &nonce_account);
assert_eq!(bank.get_balance(&nonce.pubkey()), min_balance + 42);
// Resulting in non-zero, but sub-min_balance balance fails
assert_eq!(
bank.withdraw(&nonce.pubkey(), min_balance / 2),
Err(TransactionError::InsufficientFundsForFee)
);
assert_eq!(bank.get_balance(&nonce.pubkey()), min_balance + 42);
// Resulting in exactly rent-exempt balance succeeds
bank.withdraw(&nonce.pubkey(), 42).unwrap();
assert_eq!(bank.get_balance(&nonce.pubkey()), min_balance);
// Account closure fails
assert_eq!(
bank.withdraw(&nonce.pubkey(), min_balance),
Err(TransactionError::InsufficientFundsForFee),
);
}
#[test]
fn test_bank_tx_fee() {
solana_logger::setup();
let arbitrary_transfer_amount = 42;
let mint = arbitrary_transfer_amount * 100;
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(mint, &leader, 3);
genesis_config.fee_rate_governor = FeeRateGovernor::new(4, 0); // something divisible by 2
let expected_fee_paid = genesis_config
.fee_rate_governor
.create_fee_calculator()
.lamports_per_signature;
let (expected_fee_collected, expected_fee_burned) =
genesis_config.fee_rate_governor.burn(expected_fee_paid);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.deactivate_feature(&tx_wide_compute_cap::id());
let capitalization = bank.capitalization();
let key = Keypair::new();
let tx = system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
arbitrary_transfer_amount,
bank.last_blockhash(),
);
let initial_balance = bank.get_balance(&leader);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), arbitrary_transfer_amount);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
mint - arbitrary_transfer_amount - expected_fee_paid
);
assert_eq!(bank.get_balance(&leader), initial_balance);
goto_end_of_slot(&mut bank);
assert_eq!(bank.signature_count(), 1);
assert_eq!(
bank.get_balance(&leader),
initial_balance + expected_fee_collected
); // Leader collects fee after the bank is frozen
// verify capitalization
let sysvar_and_builtin_program_delta = 1;
assert_eq!(
capitalization - expected_fee_burned + sysvar_and_builtin_program_delta,
bank.capitalization()
);
assert_eq!(
*bank.rewards.read().unwrap(),
vec![(
leader,
RewardInfo {
reward_type: RewardType::Fee,
lamports: expected_fee_collected as i64,
post_balance: initial_balance + expected_fee_collected,
commission: None,
}
)]
);
// Verify that an InstructionError collects fees, too
let mut bank = Bank::new_from_parent(&Arc::new(bank), &leader, 1);
let mut tx =
system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, bank.last_blockhash());
// Create a bogus instruction to system_program to cause an instruction error
tx.message.instructions[0].data[0] = 40;
bank.process_transaction(&tx)
.expect_err("instruction error");
assert_eq!(bank.get_balance(&key.pubkey()), arbitrary_transfer_amount); // no change
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
mint - arbitrary_transfer_amount - 2 * expected_fee_paid
); // mint_keypair still pays a fee
goto_end_of_slot(&mut bank);
assert_eq!(bank.signature_count(), 1);
// Profit! 2 transaction signatures processed at 3 lamports each
assert_eq!(
bank.get_balance(&leader),
initial_balance + 2 * expected_fee_collected
);
assert_eq!(
*bank.rewards.read().unwrap(),
vec![(
leader,
RewardInfo {
reward_type: RewardType::Fee,
lamports: expected_fee_collected as i64,
post_balance: initial_balance + 2 * expected_fee_collected,
commission: None,
}
)]
);
}
#[test]
fn test_bank_tx_compute_unit_fee() {
solana_logger::setup();
let key = Keypair::new();
let arbitrary_transfer_amount = 42;
let mint = arbitrary_transfer_amount * 10_000_000;
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(mint, &leader, 3);
genesis_config.fee_rate_governor = FeeRateGovernor::new(4, 0); // something divisible by 2
let expected_fee_paid = Bank::calculate_fee(
&SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap(),
genesis_config
.fee_rate_governor
.create_fee_calculator()
.lamports_per_signature,
&FeeStructure::default(),
true,
);
let (expected_fee_collected, expected_fee_burned) =
genesis_config.fee_rate_governor.burn(expected_fee_paid);
let mut bank = Bank::new_for_tests(&genesis_config);
let capitalization = bank.capitalization();
let tx = system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
arbitrary_transfer_amount,
bank.last_blockhash(),
);
let initial_balance = bank.get_balance(&leader);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), arbitrary_transfer_amount);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
mint - arbitrary_transfer_amount - expected_fee_paid
);
assert_eq!(bank.get_balance(&leader), initial_balance);
goto_end_of_slot(&mut bank);
assert_eq!(bank.signature_count(), 1);
assert_eq!(
bank.get_balance(&leader),
initial_balance + expected_fee_collected
); // Leader collects fee after the bank is frozen
// verify capitalization
let sysvar_and_builtin_program_delta = 1;
assert_eq!(
capitalization - expected_fee_burned + sysvar_and_builtin_program_delta,
bank.capitalization()
);
assert_eq!(
*bank.rewards.read().unwrap(),
vec![(
leader,
RewardInfo {
reward_type: RewardType::Fee,
lamports: expected_fee_collected as i64,
post_balance: initial_balance + expected_fee_collected,
commission: None,
}
)]
);
// Verify that an InstructionError collects fees, too
let mut bank = Bank::new_from_parent(&Arc::new(bank), &leader, 1);
let mut tx =
system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, bank.last_blockhash());
// Create a bogus instruction to system_program to cause an instruction error
tx.message.instructions[0].data[0] = 40;
bank.process_transaction(&tx)
.expect_err("instruction error");
assert_eq!(bank.get_balance(&key.pubkey()), arbitrary_transfer_amount); // no change
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
mint - arbitrary_transfer_amount - 2 * expected_fee_paid
); // mint_keypair still pays a fee
goto_end_of_slot(&mut bank);
assert_eq!(bank.signature_count(), 1);
// Profit! 2 transaction signatures processed at 3 lamports each
assert_eq!(
bank.get_balance(&leader),
initial_balance + 2 * expected_fee_collected
);
assert_eq!(
*bank.rewards.read().unwrap(),
vec![(
leader,
RewardInfo {
reward_type: RewardType::Fee,
lamports: expected_fee_collected as i64,
post_balance: initial_balance + 2 * expected_fee_collected,
commission: None,
}
)]
);
}
#[test]
fn test_bank_blockhash_fee_structure() {
//solana_logger::setup();
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(1_000_000, &leader, 3);
genesis_config
.fee_rate_governor
.target_lamports_per_signature = 1000;
genesis_config.fee_rate_governor.target_signatures_per_slot = 1;
let mut bank = Bank::new_for_tests(&genesis_config);
goto_end_of_slot(&mut bank);
let cheap_blockhash = bank.last_blockhash();
let cheap_lamports_per_signature = bank.get_lamports_per_signature();
assert_eq!(cheap_lamports_per_signature, 0);
let mut bank = Bank::new_from_parent(&Arc::new(bank), &leader, 1);
bank.deactivate_feature(&tx_wide_compute_cap::id());
goto_end_of_slot(&mut bank);
let expensive_blockhash = bank.last_blockhash();
let expensive_lamports_per_signature = bank.get_lamports_per_signature();
assert!(cheap_lamports_per_signature < expensive_lamports_per_signature);
let bank = Bank::new_from_parent(&Arc::new(bank), &leader, 2);
// Send a transfer using cheap_blockhash
let key = Keypair::new();
let initial_mint_balance = bank.get_balance(&mint_keypair.pubkey());
let tx = system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, cheap_blockhash);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), 1);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
initial_mint_balance - 1 - cheap_lamports_per_signature
);
// Send a transfer using expensive_blockhash
let key = Keypair::new();
let initial_mint_balance = bank.get_balance(&mint_keypair.pubkey());
let tx = system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, expensive_blockhash);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), 1);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
initial_mint_balance - 1 - expensive_lamports_per_signature
);
}
#[test]
fn test_bank_blockhash_compute_unit_fee_structure() {
//solana_logger::setup();
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(1_000_000_000, &leader, 3);
genesis_config
.fee_rate_governor
.target_lamports_per_signature = 1000;
genesis_config.fee_rate_governor.target_signatures_per_slot = 1;
let mut bank = Bank::new_for_tests(&genesis_config);
goto_end_of_slot(&mut bank);
let cheap_blockhash = bank.last_blockhash();
let cheap_lamports_per_signature = bank.get_lamports_per_signature();
assert_eq!(cheap_lamports_per_signature, 0);
let mut bank = Bank::new_from_parent(&Arc::new(bank), &leader, 1);
goto_end_of_slot(&mut bank);
let expensive_blockhash = bank.last_blockhash();
let expensive_lamports_per_signature = bank.get_lamports_per_signature();
assert!(cheap_lamports_per_signature < expensive_lamports_per_signature);
let bank = Bank::new_from_parent(&Arc::new(bank), &leader, 2);
// Send a transfer using cheap_blockhash
let key = Keypair::new();
let initial_mint_balance = bank.get_balance(&mint_keypair.pubkey());
let tx = system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, cheap_blockhash);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), 1);
let cheap_fee = Bank::calculate_fee(
&SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap(),
cheap_lamports_per_signature,
&FeeStructure::default(),
true,
);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
initial_mint_balance - 1 - cheap_fee
);
// Send a transfer using expensive_blockhash
let key = Keypair::new();
let initial_mint_balance = bank.get_balance(&mint_keypair.pubkey());
let tx = system_transaction::transfer(&mint_keypair, &key.pubkey(), 1, expensive_blockhash);
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(bank.get_balance(&key.pubkey()), 1);
let expensive_fee = Bank::calculate_fee(
&SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap(),
expensive_lamports_per_signature,
&FeeStructure::default(),
true,
);
assert_eq!(
bank.get_balance(&mint_keypair.pubkey()),
initial_mint_balance - 1 - expensive_fee
);
}
#[test]
fn test_filter_program_errors_and_collect_fee() {
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(100, &leader, 3);
genesis_config.fee_rate_governor = FeeRateGovernor::new(2, 0);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.deactivate_feature(&tx_wide_compute_cap::id());
let key = Keypair::new();
let tx1 = SanitizedTransaction::from_transaction_for_tests(system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
2,
genesis_config.hash(),
));
let tx2 = SanitizedTransaction::from_transaction_for_tests(system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
5,
genesis_config.hash(),
));
let results = vec![
new_execution_result(Ok(()), None),
new_execution_result(
Err(TransactionError::InstructionError(
1,
SystemError::ResultWithNegativeLamports.into(),
)),
None,
),
];
let initial_balance = bank.get_balance(&leader);
let results = bank.filter_program_errors_and_collect_fee(&[tx1, tx2], &results);
bank.freeze();
assert_eq!(
bank.get_balance(&leader),
initial_balance
+ bank
.fee_rate_governor
.burn(bank.fee_rate_governor.lamports_per_signature * 2)
.0
);
assert_eq!(results[0], Ok(()));
assert_eq!(results[1], Ok(()));
}
#[test]
fn test_filter_program_errors_and_collect_compute_unit_fee() {
let leader = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(1000000, &leader, 3);
genesis_config.fee_rate_governor = FeeRateGovernor::new(2, 0);
let bank = Bank::new_for_tests(&genesis_config);
let key = Keypair::new();
let tx1 = SanitizedTransaction::from_transaction_for_tests(system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
2,
genesis_config.hash(),
));
let tx2 = SanitizedTransaction::from_transaction_for_tests(system_transaction::transfer(
&mint_keypair,
&key.pubkey(),
5,
genesis_config.hash(),
));
let results = vec![
new_execution_result(Ok(()), None),
new_execution_result(
Err(TransactionError::InstructionError(
1,
SystemError::ResultWithNegativeLamports.into(),
)),
None,
),
];
let initial_balance = bank.get_balance(&leader);
let results = bank.filter_program_errors_and_collect_fee(&[tx1, tx2], &results);
bank.freeze();
assert_eq!(
bank.get_balance(&leader),
initial_balance
+ bank
.fee_rate_governor
.burn(
Bank::calculate_fee(
&SanitizedMessage::try_from(Message::new(
&[],
Some(&Pubkey::new_unique())
))
.unwrap(),
genesis_config
.fee_rate_governor
.create_fee_calculator()
.lamports_per_signature,
&FeeStructure::default(),
true,
) * 2
)
.0
);
assert_eq!(results[0], Ok(()));
assert_eq!(results[1], Ok(()));
}
#[test]
fn test_debits_before_credits() {
let (genesis_config, mint_keypair) = create_genesis_config(2);
let bank = Bank::new_for_tests(&genesis_config);
let keypair = Keypair::new();
let tx0 = system_transaction::transfer(
&mint_keypair,
&keypair.pubkey(),
2,
genesis_config.hash(),
);
let tx1 = system_transaction::transfer(
&keypair,
&mint_keypair.pubkey(),
1,
genesis_config.hash(),
);
let txs = vec![tx0, tx1];
let results = bank.process_transactions(txs.iter());
assert!(results[1].is_err());
// Assert bad transactions aren't counted.
assert_eq!(bank.transaction_count(), 1);
}
#[test]
fn test_readonly_accounts() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(500, &solana_sdk::pubkey::new_rand(), 0);
let bank = Bank::new_for_tests(&genesis_config);
let vote_pubkey0 = solana_sdk::pubkey::new_rand();
let vote_pubkey1 = solana_sdk::pubkey::new_rand();
let vote_pubkey2 = solana_sdk::pubkey::new_rand();
let authorized_voter = Keypair::new();
let payer0 = Keypair::new();
let payer1 = Keypair::new();
// Create vote accounts
let vote_account0 =
vote_state::create_account(&vote_pubkey0, &authorized_voter.pubkey(), 0, 100);
let vote_account1 =
vote_state::create_account(&vote_pubkey1, &authorized_voter.pubkey(), 0, 100);
let vote_account2 =
vote_state::create_account(&vote_pubkey2, &authorized_voter.pubkey(), 0, 100);
bank.store_account(&vote_pubkey0, &vote_account0);
bank.store_account(&vote_pubkey1, &vote_account1);
bank.store_account(&vote_pubkey2, &vote_account2);
// Fund payers
bank.transfer(10, &mint_keypair, &payer0.pubkey()).unwrap();
bank.transfer(10, &mint_keypair, &payer1.pubkey()).unwrap();
bank.transfer(1, &mint_keypair, &authorized_voter.pubkey())
.unwrap();
let vote = Vote::new(vec![1], Hash::default());
let ix0 = vote_instruction::vote(&vote_pubkey0, &authorized_voter.pubkey(), vote.clone());
let tx0 = Transaction::new_signed_with_payer(
&[ix0],
Some(&payer0.pubkey()),
&[&payer0, &authorized_voter],
bank.last_blockhash(),
);
let ix1 = vote_instruction::vote(&vote_pubkey1, &authorized_voter.pubkey(), vote.clone());
let tx1 = Transaction::new_signed_with_payer(
&[ix1],
Some(&payer1.pubkey()),
&[&payer1, &authorized_voter],
bank.last_blockhash(),
);
let txs = vec![tx0, tx1];
let results = bank.process_transactions(txs.iter());
// If multiple transactions attempt to read the same account, they should succeed.
// Vote authorized_voter and sysvar accounts are given read-only handling
assert_eq!(results[0], Ok(()));
assert_eq!(results[1], Ok(()));
let ix0 = vote_instruction::vote(&vote_pubkey2, &authorized_voter.pubkey(), vote);
let tx0 = Transaction::new_signed_with_payer(
&[ix0],
Some(&payer0.pubkey()),
&[&payer0, &authorized_voter],
bank.last_blockhash(),
);
let tx1 = system_transaction::transfer(
&authorized_voter,
&solana_sdk::pubkey::new_rand(),
1,
bank.last_blockhash(),
);
let txs = vec![tx0, tx1];
let results = bank.process_transactions(txs.iter());
// However, an account may not be locked as read-only and writable at the same time.
assert_eq!(results[0], Ok(()));
assert_eq!(results[1], Err(TransactionError::AccountInUse));
}
#[test]
fn test_interleaving_locks() {
let (genesis_config, mint_keypair) = create_genesis_config(3);
let bank = Bank::new_for_tests(&genesis_config);
let alice = Keypair::new();
let bob = Keypair::new();
let tx1 =
system_transaction::transfer(&mint_keypair, &alice.pubkey(), 1, genesis_config.hash());
let pay_alice = vec![tx1];
let lock_result = bank.prepare_batch_for_tests(pay_alice);
let results_alice = bank
.load_execute_and_commit_transactions(
&lock_result,
MAX_PROCESSING_AGE,
false,
false,
false,
&mut ExecuteTimings::default(),
)
.0
.fee_collection_results;
assert_eq!(results_alice[0], Ok(()));
// try executing an interleaved transfer twice
assert_eq!(
bank.transfer(1, &mint_keypair, &bob.pubkey()),
Err(TransactionError::AccountInUse)
);
// the second time should fail as well
// this verifies that `unlock_accounts` doesn't unlock `AccountInUse` accounts
assert_eq!(
bank.transfer(1, &mint_keypair, &bob.pubkey()),
Err(TransactionError::AccountInUse)
);
drop(lock_result);
assert!(bank.transfer(2, &mint_keypair, &bob.pubkey()).is_ok());
}
#[test]
fn test_readonly_relaxed_locks() {
let (genesis_config, _) = create_genesis_config(3);
let bank = Bank::new_for_tests(&genesis_config);
let key0 = Keypair::new();
let key1 = Keypair::new();
let key2 = Keypair::new();
let key3 = solana_sdk::pubkey::new_rand();
let message = Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key0.pubkey(), key3],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let tx = Transaction::new(&[&key0], message, genesis_config.hash());
let txs = vec![tx];
let batch0 = bank.prepare_batch_for_tests(txs);
assert!(batch0.lock_results()[0].is_ok());
// Try locking accounts, locking a previously read-only account as writable
// should fail
let message = Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 0,
},
account_keys: vec![key1.pubkey(), key3],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let tx = Transaction::new(&[&key1], message, genesis_config.hash());
let txs = vec![tx];
let batch1 = bank.prepare_batch_for_tests(txs);
assert!(batch1.lock_results()[0].is_err());
// Try locking a previously read-only account a 2nd time; should succeed
let message = Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 0,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![key2.pubkey(), key3],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let tx = Transaction::new(&[&key2], message, genesis_config.hash());
let txs = vec![tx];
let batch2 = bank.prepare_batch_for_tests(txs);
assert!(batch2.lock_results()[0].is_ok());
}
#[test]
fn test_bank_invalid_account_index() {
let (genesis_config, mint_keypair) = create_genesis_config(1);
let keypair = Keypair::new();
let bank = Bank::new_for_tests(&genesis_config);
let tx = system_transaction::transfer(
&mint_keypair,
&keypair.pubkey(),
1,
genesis_config.hash(),
);
let mut tx_invalid_program_index = tx.clone();
tx_invalid_program_index.message.instructions[0].program_id_index = 42;
assert_eq!(
bank.process_transaction(&tx_invalid_program_index),
Err(TransactionError::SanitizeFailure)
);
let mut tx_invalid_account_index = tx;
tx_invalid_account_index.message.instructions[0].accounts[0] = 42;
assert_eq!(
bank.process_transaction(&tx_invalid_account_index),
Err(TransactionError::SanitizeFailure)
);
}
#[test]
fn test_bank_pay_to_self() {
let (genesis_config, mint_keypair) = create_genesis_config(1);
let key1 = Keypair::new();
let bank = Bank::new_for_tests(&genesis_config);
bank.transfer(1, &mint_keypair, &key1.pubkey()).unwrap();
assert_eq!(bank.get_balance(&key1.pubkey()), 1);
let tx = system_transaction::transfer(&key1, &key1.pubkey(), 1, genesis_config.hash());
let _res = bank.process_transaction(&tx);
assert_eq!(bank.get_balance(&key1.pubkey()), 1);
bank.get_signature_status(&tx.signatures[0])
.unwrap()
.unwrap();
}
fn new_from_parent(parent: &Arc<Bank>) -> Bank {
Bank::new_from_parent(parent, &Pubkey::default(), parent.slot() + 1)
}
/// Verify that the parent's vector is computed correctly
#[test]
fn test_bank_parents() {
let (genesis_config, _) = create_genesis_config(1);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let bank = new_from_parent(&parent);
assert!(Arc::ptr_eq(&bank.parents()[0], &parent));
}
/// Verifies that transactions are dropped if they have already been processed
#[test]
fn test_tx_already_processed() {
let (genesis_config, mint_keypair) = create_genesis_config(2);
let bank = Bank::new_for_tests(&genesis_config);
let key1 = Keypair::new();
let mut tx =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
// First process `tx` so that the status cache is updated
assert_eq!(bank.process_transaction(&tx), Ok(()));
// Ensure that signature check works
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::AlreadyProcessed)
);
// Change transaction signature to simulate processing a transaction with a different signature
// for the same message.
tx.signatures[0] = Signature::default();
// Ensure that message hash check works
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::AlreadyProcessed)
);
}
/// Verifies that last ids and status cache are correctly referenced from parent
#[test]
fn test_bank_parent_already_processed() {
let (genesis_config, mint_keypair) = create_genesis_config(2);
let key1 = Keypair::new();
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let tx =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
assert_eq!(parent.process_transaction(&tx), Ok(()));
let bank = new_from_parent(&parent);
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::AlreadyProcessed)
);
}
/// Verifies that last ids and accounts are correctly referenced from parent
#[test]
fn test_bank_parent_account_spend() {
let (genesis_config, mint_keypair) = create_genesis_config(2);
let key1 = Keypair::new();
let key2 = Keypair::new();
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let tx =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
assert_eq!(parent.process_transaction(&tx), Ok(()));
let bank = new_from_parent(&parent);
let tx = system_transaction::transfer(&key1, &key2.pubkey(), 1, genesis_config.hash());
assert_eq!(bank.process_transaction(&tx), Ok(()));
assert_eq!(parent.get_signature_status(&tx.signatures[0]), None);
}
#[test]
fn test_bank_hash_internal_state() {
let (genesis_config, mint_keypair) = create_genesis_config(2_000);
let bank0 = Bank::new_for_tests(&genesis_config);
let bank1 = Bank::new_for_tests(&genesis_config);
let initial_state = bank0.hash_internal_state();
assert_eq!(bank1.hash_internal_state(), initial_state);
let pubkey = solana_sdk::pubkey::new_rand();
bank0.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_ne!(bank0.hash_internal_state(), initial_state);
bank1.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_eq!(bank0.hash_internal_state(), bank1.hash_internal_state());
// Checkpointing should always result in a new state
let bank2 = new_from_parent(&Arc::new(bank1));
assert_ne!(bank0.hash_internal_state(), bank2.hash_internal_state());
let pubkey2 = solana_sdk::pubkey::new_rand();
info!("transfer 2 {}", pubkey2);
bank2.transfer(10, &mint_keypair, &pubkey2).unwrap();
bank2.update_accounts_hash();
assert!(bank2.verify_bank_hash(true));
}
#[test]
fn test_bank_hash_internal_state_verify() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(2_000);
let bank0 = Bank::new_for_tests(&genesis_config);
let pubkey = solana_sdk::pubkey::new_rand();
info!("transfer 0 {} mint: {}", pubkey, mint_keypair.pubkey());
bank0.transfer(1_000, &mint_keypair, &pubkey).unwrap();
let bank0_state = bank0.hash_internal_state();
let bank0 = Arc::new(bank0);
// Checkpointing should result in a new state while freezing the parent
let bank2 = Bank::new_from_parent(&bank0, &solana_sdk::pubkey::new_rand(), 1);
assert_ne!(bank0_state, bank2.hash_internal_state());
// Checkpointing should modify the checkpoint's state when freezed
assert_ne!(bank0_state, bank0.hash_internal_state());
// Checkpointing should never modify the checkpoint's state once frozen
let bank0_state = bank0.hash_internal_state();
bank2.update_accounts_hash();
assert!(bank2.verify_bank_hash(true));
let bank3 = Bank::new_from_parent(&bank0, &solana_sdk::pubkey::new_rand(), 2);
assert_eq!(bank0_state, bank0.hash_internal_state());
assert!(bank2.verify_bank_hash(true));
bank3.update_accounts_hash();
assert!(bank3.verify_bank_hash(true));
let pubkey2 = solana_sdk::pubkey::new_rand();
info!("transfer 2 {}", pubkey2);
bank2.transfer(10, &mint_keypair, &pubkey2).unwrap();
bank2.update_accounts_hash();
assert!(bank2.verify_bank_hash(true));
assert!(bank3.verify_bank_hash(true));
}
#[test]
#[should_panic(expected = "assertion failed: self.is_frozen()")]
fn test_verify_hash_unfrozen() {
let (genesis_config, _mint_keypair) = create_genesis_config(2_000);
let bank = Bank::new_for_tests(&genesis_config);
assert!(bank.verify_hash());
}
#[test]
fn test_verify_snapshot_bank() {
solana_logger::setup();
let pubkey = solana_sdk::pubkey::new_rand();
let (genesis_config, mint_keypair) = create_genesis_config(2_000);
let bank = Bank::new_for_tests(&genesis_config);
bank.transfer(1_000, &mint_keypair, &pubkey).unwrap();
bank.freeze();
bank.update_accounts_hash();
assert!(bank.verify_snapshot_bank(true, false, None));
// tamper the bank after freeze!
bank.increment_signature_count(1);
assert!(!bank.verify_snapshot_bank(true, false, None));
}
// Test that two bank forks with the same accounts should not hash to the same value.
#[test]
fn test_bank_hash_internal_state_same_account_different_fork() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(2_000);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let initial_state = bank0.hash_internal_state();
let bank1 = Bank::new_from_parent(&bank0, &Pubkey::default(), 1);
assert_ne!(bank1.hash_internal_state(), initial_state);
info!("transfer bank1");
let pubkey = solana_sdk::pubkey::new_rand();
bank1.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_ne!(bank1.hash_internal_state(), initial_state);
info!("transfer bank2");
// bank2 should not hash the same as bank1
let bank2 = Bank::new_from_parent(&bank0, &Pubkey::default(), 2);
bank2.transfer(1_000, &mint_keypair, &pubkey).unwrap();
assert_ne!(bank2.hash_internal_state(), initial_state);
assert_ne!(bank1.hash_internal_state(), bank2.hash_internal_state());
}
#[test]
fn test_hash_internal_state_genesis() {
let bank0 = Bank::new_for_tests(&create_genesis_config(10).0);
let bank1 = Bank::new_for_tests(&create_genesis_config(20).0);
assert_ne!(bank0.hash_internal_state(), bank1.hash_internal_state());
}
// See that the order of two transfers does not affect the result
// of hash_internal_state
#[test]
fn test_hash_internal_state_order() {
let (genesis_config, mint_keypair) = create_genesis_config(100);
let bank0 = Bank::new_for_tests(&genesis_config);
let bank1 = Bank::new_for_tests(&genesis_config);
assert_eq!(bank0.hash_internal_state(), bank1.hash_internal_state());
let key0 = solana_sdk::pubkey::new_rand();
let key1 = solana_sdk::pubkey::new_rand();
bank0.transfer(10, &mint_keypair, &key0).unwrap();
bank0.transfer(20, &mint_keypair, &key1).unwrap();
bank1.transfer(20, &mint_keypair, &key1).unwrap();
bank1.transfer(10, &mint_keypair, &key0).unwrap();
assert_eq!(bank0.hash_internal_state(), bank1.hash_internal_state());
}
#[test]
fn test_hash_internal_state_error() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(100);
let bank = Bank::new_for_tests(&genesis_config);
let key0 = solana_sdk::pubkey::new_rand();
bank.transfer(10, &mint_keypair, &key0).unwrap();
let orig = bank.hash_internal_state();
// Transfer will error but still take a fee
assert!(bank.transfer(1000, &mint_keypair, &key0).is_err());
assert_ne!(orig, bank.hash_internal_state());
let orig = bank.hash_internal_state();
let empty_keypair = Keypair::new();
assert!(bank.transfer(1000, &empty_keypair, &key0).is_err());
assert_eq!(orig, bank.hash_internal_state());
}
#[test]
fn test_bank_hash_internal_state_squash() {
let collector_id = Pubkey::default();
let bank0 = Arc::new(Bank::new_for_tests(&create_genesis_config(10).0));
let hash0 = bank0.hash_internal_state();
// save hash0 because new_from_parent
// updates sysvar entries
let bank1 = Bank::new_from_parent(&bank0, &collector_id, 1);
// no delta in bank1, hashes should always update
assert_ne!(hash0, bank1.hash_internal_state());
// remove parent
bank1.squash();
assert!(bank1.parents().is_empty());
}
/// Verifies that last ids and accounts are correctly referenced from parent
#[test]
fn test_bank_squash() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(2);
let key1 = Keypair::new();
let key2 = Keypair::new();
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let tx_transfer_mint_to_1 =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
trace!("parent process tx ");
assert_eq!(parent.process_transaction(&tx_transfer_mint_to_1), Ok(()));
trace!("done parent process tx ");
assert_eq!(parent.transaction_count(), 1);
assert_eq!(
parent.get_signature_status(&tx_transfer_mint_to_1.signatures[0]),
Some(Ok(()))
);
trace!("new from parent");
let bank = new_from_parent(&parent);
trace!("done new from parent");
assert_eq!(
bank.get_signature_status(&tx_transfer_mint_to_1.signatures[0]),
Some(Ok(()))
);
assert_eq!(bank.transaction_count(), parent.transaction_count());
let tx_transfer_1_to_2 =
system_transaction::transfer(&key1, &key2.pubkey(), 1, genesis_config.hash());
assert_eq!(bank.process_transaction(&tx_transfer_1_to_2), Ok(()));
assert_eq!(bank.transaction_count(), 2);
assert_eq!(parent.transaction_count(), 1);
assert_eq!(
parent.get_signature_status(&tx_transfer_1_to_2.signatures[0]),
None
);
for _ in 0..3 {
// first time these should match what happened above, assert that parents are ok
assert_eq!(bank.get_balance(&key1.pubkey()), 0);
assert_eq!(bank.get_account(&key1.pubkey()), None);
assert_eq!(bank.get_balance(&key2.pubkey()), 1);
trace!("start");
assert_eq!(
bank.get_signature_status(&tx_transfer_mint_to_1.signatures[0]),
Some(Ok(()))
);
assert_eq!(
bank.get_signature_status(&tx_transfer_1_to_2.signatures[0]),
Some(Ok(()))
);
// works iteration 0, no-ops on iteration 1 and 2
trace!("SQUASH");
bank.squash();
assert_eq!(parent.transaction_count(), 1);
assert_eq!(bank.transaction_count(), 2);
}
}
#[test]
fn test_bank_get_account_in_parent_after_squash() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let key1 = Keypair::new();
parent.transfer(1, &mint_keypair, &key1.pubkey()).unwrap();
assert_eq!(parent.get_balance(&key1.pubkey()), 1);
let bank = new_from_parent(&parent);
bank.squash();
assert_eq!(parent.get_balance(&key1.pubkey()), 1);
}
#[test]
fn test_bank_get_account_in_parent_after_squash2() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let key1 = Keypair::new();
bank0.transfer(1, &mint_keypair, &key1.pubkey()).unwrap();
assert_eq!(bank0.get_balance(&key1.pubkey()), 1);
let bank1 = Arc::new(Bank::new_from_parent(&bank0, &Pubkey::default(), 1));
bank1.transfer(3, &mint_keypair, &key1.pubkey()).unwrap();
let bank2 = Arc::new(Bank::new_from_parent(&bank0, &Pubkey::default(), 2));
bank2.transfer(2, &mint_keypair, &key1.pubkey()).unwrap();
let bank3 = Arc::new(Bank::new_from_parent(&bank1, &Pubkey::default(), 3));
bank1.squash();
// This picks up the values from 1 which is the highest root:
// TODO: if we need to access rooted banks older than this,
// need to fix the lookup.
assert_eq!(bank0.get_balance(&key1.pubkey()), 4);
assert_eq!(bank3.get_balance(&key1.pubkey()), 4);
assert_eq!(bank2.get_balance(&key1.pubkey()), 3);
bank3.squash();
assert_eq!(bank1.get_balance(&key1.pubkey()), 4);
let bank4 = Arc::new(Bank::new_from_parent(&bank3, &Pubkey::default(), 4));
bank4.transfer(4, &mint_keypair, &key1.pubkey()).unwrap();
assert_eq!(bank4.get_balance(&key1.pubkey()), 8);
assert_eq!(bank3.get_balance(&key1.pubkey()), 4);
bank4.squash();
let bank5 = Arc::new(Bank::new_from_parent(&bank4, &Pubkey::default(), 5));
bank5.squash();
let bank6 = Arc::new(Bank::new_from_parent(&bank5, &Pubkey::default(), 6));
bank6.squash();
// This picks up the values from 4 which is the highest root:
// TODO: if we need to access rooted banks older than this,
// need to fix the lookup.
assert_eq!(bank3.get_balance(&key1.pubkey()), 8);
assert_eq!(bank2.get_balance(&key1.pubkey()), 8);
assert_eq!(bank4.get_balance(&key1.pubkey()), 8);
}
#[test]
fn test_bank_get_account_modified_since_parent_with_fixed_root() {
let pubkey = solana_sdk::pubkey::new_rand();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let bank1 = Arc::new(Bank::new_for_tests(&genesis_config));
bank1.transfer(1, &mint_keypair, &pubkey).unwrap();
let result = bank1.get_account_modified_since_parent_with_fixed_root(&pubkey);
assert!(result.is_some());
let (account, slot) = result.unwrap();
assert_eq!(account.lamports(), 1);
assert_eq!(slot, 0);
let bank2 = Arc::new(Bank::new_from_parent(&bank1, &Pubkey::default(), 1));
assert!(bank2
.get_account_modified_since_parent_with_fixed_root(&pubkey)
.is_none());
bank2.transfer(100, &mint_keypair, &pubkey).unwrap();
let result = bank1.get_account_modified_since_parent_with_fixed_root(&pubkey);
assert!(result.is_some());
let (account, slot) = result.unwrap();
assert_eq!(account.lamports(), 1);
assert_eq!(slot, 0);
let result = bank2.get_account_modified_since_parent_with_fixed_root(&pubkey);
assert!(result.is_some());
let (account, slot) = result.unwrap();
assert_eq!(account.lamports(), 101);
assert_eq!(slot, 1);
bank1.squash();
let bank3 = Bank::new_from_parent(&bank2, &Pubkey::default(), 3);
assert_eq!(
None,
bank3.get_account_modified_since_parent_with_fixed_root(&pubkey)
);
}
#[test]
fn test_bank_update_sysvar_account() {
use sysvar::clock::Clock;
let dummy_clock_id = solana_sdk::pubkey::new_rand();
let dummy_rent_epoch = 44;
let (mut genesis_config, _mint_keypair) = create_genesis_config(500);
let expected_previous_slot = 3;
let mut expected_next_slot = expected_previous_slot + 1;
// First, initialize the clock sysvar
activate_all_features(&mut genesis_config);
let bank1 = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank1.calculate_capitalization(true), bank1.capitalization());
assert_capitalization_diff(
&bank1,
|| {
bank1.update_sysvar_account(&dummy_clock_id, |optional_account| {
assert!(optional_account.is_none());
let mut account = create_account(
&Clock {
slot: expected_previous_slot,
..Clock::default()
},
bank1.inherit_specially_retained_account_fields(optional_account),
);
account.set_rent_epoch(dummy_rent_epoch);
account
});
let current_account = bank1.get_account(&dummy_clock_id).unwrap();
assert_eq!(
expected_previous_slot,
from_account::<Clock, _>(&current_account).unwrap().slot
);
assert_eq!(dummy_rent_epoch, current_account.rent_epoch());
},
|old, new| {
assert_eq!(
old + min_rent_excempt_balance_for_sysvars(&bank1, &[sysvar::clock::id()]),
new
);
},
);
assert_capitalization_diff(
&bank1,
|| {
bank1.update_sysvar_account(&dummy_clock_id, |optional_account| {
assert!(optional_account.is_some());
create_account(
&Clock {
slot: expected_previous_slot,
..Clock::default()
},
bank1.inherit_specially_retained_account_fields(optional_account),
)
})
},
|old, new| {
// creating new sysvar twice in a slot shouldn't increment capitalization twice
assert_eq!(old, new);
},
);
// Updating should increment the clock's slot
let bank2 = Arc::new(Bank::new_from_parent(&bank1, &Pubkey::default(), 1));
assert_capitalization_diff(
&bank2,
|| {
bank2.update_sysvar_account(&dummy_clock_id, |optional_account| {
let slot = from_account::<Clock, _>(optional_account.as_ref().unwrap())
.unwrap()
.slot
+ 1;
create_account(
&Clock {
slot,
..Clock::default()
},
bank2.inherit_specially_retained_account_fields(optional_account),
)
});
let current_account = bank2.get_account(&dummy_clock_id).unwrap();
assert_eq!(
expected_next_slot,
from_account::<Clock, _>(&current_account).unwrap().slot
);
assert_eq!(dummy_rent_epoch, current_account.rent_epoch());
},
|old, new| {
// if existing, capitalization shouldn't change
assert_eq!(old, new);
},
);
// Updating again should give bank2's sysvar to the closure not bank1's.
// Thus, increment expected_next_slot accordingly
expected_next_slot += 1;
assert_capitalization_diff(
&bank2,
|| {
bank2.update_sysvar_account(&dummy_clock_id, |optional_account| {
let slot = from_account::<Clock, _>(optional_account.as_ref().unwrap())
.unwrap()
.slot
+ 1;
create_account(
&Clock {
slot,
..Clock::default()
},
bank2.inherit_specially_retained_account_fields(optional_account),
)
});
let current_account = bank2.get_account(&dummy_clock_id).unwrap();
assert_eq!(
expected_next_slot,
from_account::<Clock, _>(&current_account).unwrap().slot
);
},
|old, new| {
// updating twice in a slot shouldn't increment capitalization twice
assert_eq!(old, new);
},
);
}
#[test]
fn test_bank_epoch_vote_accounts() {
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let mut genesis_config =
create_genesis_config_with_leader(5, &leader_pubkey, leader_lamports).genesis_config;
// set this up weird, forces future generation, odd mod(), etc.
// this says: "vote_accounts for epoch X should be generated at slot index 3 in epoch X-2...
const SLOTS_PER_EPOCH: u64 = MINIMUM_SLOTS_PER_EPOCH as u64;
const LEADER_SCHEDULE_SLOT_OFFSET: u64 = SLOTS_PER_EPOCH * 3 - 3;
// no warmup allows me to do the normal division stuff below
genesis_config.epoch_schedule =
EpochSchedule::custom(SLOTS_PER_EPOCH, LEADER_SCHEDULE_SLOT_OFFSET, false);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let mut leader_vote_stake: Vec<_> = parent
.epoch_vote_accounts(0)
.map(|accounts| {
accounts
.iter()
.filter_map(|(pubkey, (stake, account))| {
if let Ok(vote_state) = account.vote_state().as_ref() {
if vote_state.node_pubkey == leader_pubkey {
Some((*pubkey, *stake))
} else {
None
}
} else {
None
}
})
.collect()
})
.unwrap();
assert_eq!(leader_vote_stake.len(), 1);
let (leader_vote_account, leader_stake) = leader_vote_stake.pop().unwrap();
assert!(leader_stake > 0);
let leader_stake = Stake {
delegation: Delegation {
stake: leader_lamports,
activation_epoch: std::u64::MAX, // bootstrap
..Delegation::default()
},
..Stake::default()
};
let mut epoch = 1;
loop {
if epoch > LEADER_SCHEDULE_SLOT_OFFSET / SLOTS_PER_EPOCH {
break;
}
let vote_accounts = parent.epoch_vote_accounts(epoch);
assert!(vote_accounts.is_some());
// epoch_stakes are a snapshot at the leader_schedule_slot_offset boundary
// in the prior epoch (0 in this case)
assert_eq!(
leader_stake.stake(0, None),
vote_accounts.unwrap().get(&leader_vote_account).unwrap().0
);
epoch += 1;
}
// child crosses epoch boundary and is the first slot in the epoch
let child = Bank::new_from_parent(
&parent,
&leader_pubkey,
SLOTS_PER_EPOCH - (LEADER_SCHEDULE_SLOT_OFFSET % SLOTS_PER_EPOCH),
);
assert!(child.epoch_vote_accounts(epoch).is_some());
assert_eq!(
leader_stake.stake(child.epoch(), None),
child
.epoch_vote_accounts(epoch)
.unwrap()
.get(&leader_vote_account)
.unwrap()
.0
);
// child crosses epoch boundary but isn't the first slot in the epoch, still
// makes an epoch stakes snapshot at 1
let child = Bank::new_from_parent(
&parent,
&leader_pubkey,
SLOTS_PER_EPOCH - (LEADER_SCHEDULE_SLOT_OFFSET % SLOTS_PER_EPOCH) + 1,
);
assert!(child.epoch_vote_accounts(epoch).is_some());
assert_eq!(
leader_stake.stake(child.epoch(), None),
child
.epoch_vote_accounts(epoch)
.unwrap()
.get(&leader_vote_account)
.unwrap()
.0
);
}
#[test]
fn test_zero_signatures() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.fee_rate_governor.lamports_per_signature = 2;
let key = Keypair::new();
let mut transfer_instruction =
system_instruction::transfer(&mint_keypair.pubkey(), &key.pubkey(), 0);
transfer_instruction.accounts[0].is_signer = false;
let message = Message::new(&[transfer_instruction], None);
let tx = Transaction::new(&[&Keypair::new(); 0], message, bank.last_blockhash());
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::SanitizeFailure)
);
assert_eq!(bank.get_balance(&key.pubkey()), 0);
}
#[test]
fn test_bank_get_slots_in_epoch() {
let (genesis_config, _) = create_genesis_config(500);
let bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.get_slots_in_epoch(0), MINIMUM_SLOTS_PER_EPOCH as u64);
assert_eq!(
bank.get_slots_in_epoch(2),
(MINIMUM_SLOTS_PER_EPOCH * 4) as u64
);
assert_eq!(
bank.get_slots_in_epoch(5000),
genesis_config.epoch_schedule.slots_per_epoch
);
}
#[test]
fn test_is_delta_true() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let key1 = Keypair::new();
let tx_transfer_mint_to_1 =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
assert_eq!(bank.process_transaction(&tx_transfer_mint_to_1), Ok(()));
assert!(bank.is_delta.load(Relaxed));
let bank1 = new_from_parent(&bank);
let hash1 = bank1.hash_internal_state();
assert!(!bank1.is_delta.load(Relaxed));
assert_ne!(hash1, bank.hash());
// ticks don't make a bank into a delta or change its state unless a block boundary is crossed
bank1.register_tick(&Hash::default());
assert!(!bank1.is_delta.load(Relaxed));
assert_eq!(bank1.hash_internal_state(), hash1);
}
#[test]
fn test_is_empty() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let key1 = Keypair::new();
// The zeroth bank is empty becasue there are no transactions
assert!(bank0.is_empty());
// Set is_delta to true, bank is no longer empty
let tx_transfer_mint_to_1 =
system_transaction::transfer(&mint_keypair, &key1.pubkey(), 1, genesis_config.hash());
assert_eq!(bank0.process_transaction(&tx_transfer_mint_to_1), Ok(()));
assert!(!bank0.is_empty());
}
#[test]
fn test_bank_inherit_tx_count() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
// Bank 1
let bank1 = Arc::new(Bank::new_from_parent(
&bank0,
&solana_sdk::pubkey::new_rand(),
1,
));
// Bank 2
let bank2 = Bank::new_from_parent(&bank0, &solana_sdk::pubkey::new_rand(), 2);
// transfer a token
assert_eq!(
bank1.process_transaction(&system_transaction::transfer(
&mint_keypair,
&Keypair::new().pubkey(),
1,
genesis_config.hash(),
)),
Ok(())
);
assert_eq!(bank0.transaction_count(), 0);
assert_eq!(bank2.transaction_count(), 0);
assert_eq!(bank1.transaction_count(), 1);
bank1.squash();
assert_eq!(bank0.transaction_count(), 0);
assert_eq!(bank2.transaction_count(), 0);
assert_eq!(bank1.transaction_count(), 1);
let bank6 = Bank::new_from_parent(&bank1, &solana_sdk::pubkey::new_rand(), 3);
assert_eq!(bank1.transaction_count(), 1);
assert_eq!(bank6.transaction_count(), 1);
bank6.squash();
assert_eq!(bank6.transaction_count(), 1);
}
#[test]
fn test_bank_inherit_fee_rate_governor() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(500);
genesis_config
.fee_rate_governor
.target_lamports_per_signature = 123;
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let bank1 = Arc::new(new_from_parent(&bank0));
assert_eq!(
bank0.fee_rate_governor.target_lamports_per_signature / 2,
bank1
.fee_rate_governor
.create_fee_calculator()
.lamports_per_signature
);
}
#[test]
fn test_bank_vote_accounts() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(500, &solana_sdk::pubkey::new_rand(), 1);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let vote_accounts = bank.vote_accounts();
assert_eq!(vote_accounts.len(), 1); // bootstrap validator has
// to have a vote account
let vote_keypair = Keypair::new();
let instructions = vote_instruction::create_account(
&mint_keypair.pubkey(),
&vote_keypair.pubkey(),
&VoteInit {
node_pubkey: mint_keypair.pubkey(),
authorized_voter: vote_keypair.pubkey(),
authorized_withdrawer: vote_keypair.pubkey(),
commission: 0,
},
10,
);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let transaction = Transaction::new(
&[&mint_keypair, &vote_keypair],
message,
bank.last_blockhash(),
);
bank.process_transaction(&transaction).unwrap();
let vote_accounts = bank.vote_accounts();
assert_eq!(vote_accounts.len(), 2);
assert!(vote_accounts.get(&vote_keypair.pubkey()).is_some());
assert!(bank.withdraw(&vote_keypair.pubkey(), 10).is_ok());
let vote_accounts = bank.vote_accounts();
assert_eq!(vote_accounts.len(), 1);
}
#[test]
fn test_bank_cloned_stake_delegations() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(500, &solana_sdk::pubkey::new_rand(), 1);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let stake_delegations = bank.cloned_stake_delegations();
assert_eq!(stake_delegations.len(), 1); // bootstrap validator has
// to have a stake delegation
let vote_keypair = Keypair::new();
let mut instructions = vote_instruction::create_account(
&mint_keypair.pubkey(),
&vote_keypair.pubkey(),
&VoteInit {
node_pubkey: mint_keypair.pubkey(),
authorized_voter: vote_keypair.pubkey(),
authorized_withdrawer: vote_keypair.pubkey(),
commission: 0,
},
10,
);
let stake_keypair = Keypair::new();
instructions.extend(stake_instruction::create_account_and_delegate_stake(
&mint_keypair.pubkey(),
&stake_keypair.pubkey(),
&vote_keypair.pubkey(),
&Authorized::auto(&stake_keypair.pubkey()),
&Lockup::default(),
10,
));
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let transaction = Transaction::new(
&[&mint_keypair, &vote_keypair, &stake_keypair],
message,
bank.last_blockhash(),
);
bank.process_transaction(&transaction).unwrap();
let stake_delegations = bank.cloned_stake_delegations();
assert_eq!(stake_delegations.len(), 2);
assert!(stake_delegations.get(&stake_keypair.pubkey()).is_some());
}
#[allow(deprecated)]
#[test]
fn test_bank_fees_account() {
let (mut genesis_config, _) = create_genesis_config(500);
genesis_config.fee_rate_governor = FeeRateGovernor::new(12345, 0);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let fees_account = bank.get_account(&sysvar::fees::id()).unwrap();
let fees = from_account::<Fees, _>(&fees_account).unwrap();
assert_eq!(
bank.fee_rate_governor.lamports_per_signature,
fees.fee_calculator.lamports_per_signature
);
assert_eq!(fees.fee_calculator.lamports_per_signature, 12345);
}
#[test]
fn test_is_delta_with_no_committables() {
let (genesis_config, mint_keypair) = create_genesis_config(8000);
let bank = Bank::new_for_tests(&genesis_config);
bank.is_delta.store(false, Relaxed);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let fail_tx =
system_transaction::transfer(&keypair1, &keypair2.pubkey(), 1, bank.last_blockhash());
// Should fail with TransactionError::AccountNotFound, which means
// the account which this tx operated on will not be committed. Thus
// the bank is_delta should still be false
assert_eq!(
bank.process_transaction(&fail_tx),
Err(TransactionError::AccountNotFound)
);
// Check the bank is_delta is still false
assert!(!bank.is_delta.load(Relaxed));
// Should fail with InstructionError, but InstructionErrors are committable,
// so is_delta should be true
assert_eq!(
bank.transfer(10_001, &mint_keypair, &solana_sdk::pubkey::new_rand()),
Err(TransactionError::InstructionError(
0,
SystemError::ResultWithNegativeLamports.into(),
))
);
assert!(bank.is_delta.load(Relaxed));
}
#[test]
fn test_bank_get_program_accounts() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
parent.restore_old_behavior_for_fragile_tests();
let genesis_accounts: Vec<_> = parent.get_all_accounts_with_modified_slots().unwrap();
assert!(
genesis_accounts
.iter()
.any(|(pubkey, _, _)| *pubkey == mint_keypair.pubkey()),
"mint pubkey not found"
);
assert!(
genesis_accounts
.iter()
.any(|(pubkey, _, _)| solana_sdk::sysvar::is_sysvar_id(pubkey)),
"no sysvars found"
);
let bank0 = Arc::new(new_from_parent(&parent));
let pubkey0 = solana_sdk::pubkey::new_rand();
let program_id = Pubkey::new(&[2; 32]);
let account0 = AccountSharedData::new(1, 0, &program_id);
bank0.store_account(&pubkey0, &account0);
assert_eq!(
bank0.get_program_accounts_modified_since_parent(&program_id),
vec![(pubkey0, account0.clone())]
);
let bank1 = Arc::new(new_from_parent(&bank0));
bank1.squash();
assert_eq!(
bank0
.get_program_accounts(&program_id, &ScanConfig::default(),)
.unwrap(),
vec![(pubkey0, account0.clone())]
);
assert_eq!(
bank1
.get_program_accounts(&program_id, &ScanConfig::default(),)
.unwrap(),
vec![(pubkey0, account0)]
);
assert_eq!(
bank1.get_program_accounts_modified_since_parent(&program_id),
vec![]
);
let bank2 = Arc::new(new_from_parent(&bank1));
let pubkey1 = solana_sdk::pubkey::new_rand();
let account1 = AccountSharedData::new(3, 0, &program_id);
bank2.store_account(&pubkey1, &account1);
// Accounts with 0 lamports should be filtered out by Accounts::load_by_program()
let pubkey2 = solana_sdk::pubkey::new_rand();
let account2 = AccountSharedData::new(0, 0, &program_id);
bank2.store_account(&pubkey2, &account2);
let bank3 = Arc::new(new_from_parent(&bank2));
bank3.squash();
assert_eq!(
bank1
.get_program_accounts(&program_id, &ScanConfig::default(),)
.unwrap()
.len(),
2
);
assert_eq!(
bank3
.get_program_accounts(&program_id, &ScanConfig::default(),)
.unwrap()
.len(),
2
);
}
#[test]
fn test_get_filtered_indexed_accounts_limit_exceeded() {
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let mut account_indexes = AccountSecondaryIndexes::default();
account_indexes.indexes.insert(AccountIndex::ProgramId);
let bank = Arc::new(Bank::new_with_config(
&genesis_config,
account_indexes,
false,
AccountShrinkThreshold::default(),
));
let address = Pubkey::new_unique();
let program_id = Pubkey::new_unique();
let limit = 100;
let account = AccountSharedData::new(1, limit, &program_id);
bank.store_account(&address, &account);
assert!(bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(program_id),
|_| true,
&ScanConfig::default(),
Some(limit), // limit here will be exceeded, resulting in aborted scan
)
.is_err());
}
#[test]
fn test_get_filtered_indexed_accounts() {
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let mut account_indexes = AccountSecondaryIndexes::default();
account_indexes.indexes.insert(AccountIndex::ProgramId);
let bank = Arc::new(Bank::new_with_config(
&genesis_config,
account_indexes,
false,
AccountShrinkThreshold::default(),
));
let address = Pubkey::new_unique();
let program_id = Pubkey::new_unique();
let account = AccountSharedData::new(1, 0, &program_id);
bank.store_account(&address, &account);
let indexed_accounts = bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(program_id),
|_| true,
&ScanConfig::default(),
None,
)
.unwrap();
assert_eq!(indexed_accounts.len(), 1);
assert_eq!(indexed_accounts[0], (address, account));
// Even though the account is re-stored in the bank (and the index) under a new program id,
// it is still present in the index under the original program id as well. This
// demonstrates the need for a redundant post-processing filter.
let another_program_id = Pubkey::new_unique();
let new_account = AccountSharedData::new(1, 0, &another_program_id);
let bank = Arc::new(new_from_parent(&bank));
bank.store_account(&address, &new_account);
let indexed_accounts = bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(program_id),
|_| true,
&ScanConfig::default(),
None,
)
.unwrap();
assert_eq!(indexed_accounts.len(), 1);
assert_eq!(indexed_accounts[0], (address, new_account.clone()));
let indexed_accounts = bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(another_program_id),
|_| true,
&ScanConfig::default(),
None,
)
.unwrap();
assert_eq!(indexed_accounts.len(), 1);
assert_eq!(indexed_accounts[0], (address, new_account.clone()));
// Post-processing filter
let indexed_accounts = bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(program_id),
|account| account.owner() == &program_id,
&ScanConfig::default(),
None,
)
.unwrap();
assert!(indexed_accounts.is_empty());
let indexed_accounts = bank
.get_filtered_indexed_accounts(
&IndexKey::ProgramId(another_program_id),
|account| account.owner() == &another_program_id,
&ScanConfig::default(),
None,
)
.unwrap();
assert_eq!(indexed_accounts.len(), 1);
assert_eq!(indexed_accounts[0], (address, new_account));
}
#[test]
fn test_status_cache_ancestors() {
solana_logger::setup();
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let bank1 = Arc::new(new_from_parent(&parent));
let mut bank = bank1;
for _ in 0..MAX_CACHE_ENTRIES * 2 {
bank = Arc::new(new_from_parent(&bank));
bank.squash();
}
let bank = new_from_parent(&bank);
assert_eq!(
bank.status_cache_ancestors(),
(bank.slot() - MAX_CACHE_ENTRIES as u64..=bank.slot()).collect::<Vec<_>>()
);
}
#[test]
fn test_add_builtin() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_vote_program_id() -> Pubkey {
Pubkey::new(&[42u8; 32])
}
fn mock_vote_processor(
_first_instruction_account: usize,
_instruction_data: &[u8],
invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
let program_id = instruction_context.get_program_key(transaction_context)?;
if mock_vote_program_id() != *program_id {
return Err(InstructionError::IncorrectProgramId);
}
Err(InstructionError::Custom(42))
}
assert!(bank.get_account(&mock_vote_program_id()).is_none());
bank.add_builtin(
"mock_vote_program",
&mock_vote_program_id(),
mock_vote_processor,
);
assert!(bank.get_account(&mock_vote_program_id()).is_some());
let mock_account = Keypair::new();
let mock_validator_identity = Keypair::new();
let mut instructions = vote_instruction::create_account(
&mint_keypair.pubkey(),
&mock_account.pubkey(),
&VoteInit {
node_pubkey: mock_validator_identity.pubkey(),
..VoteInit::default()
},
1,
);
instructions[1].program_id = mock_vote_program_id();
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let transaction = Transaction::new(
&[&mint_keypair, &mock_account, &mock_validator_identity],
message,
bank.last_blockhash(),
);
assert_eq!(
bank.process_transaction(&transaction),
Err(TransactionError::InstructionError(
1,
InstructionError::Custom(42)
))
);
}
#[test]
fn test_add_duplicate_static_program() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(500, &solana_sdk::pubkey::new_rand(), 0);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_vote_processor(
_first_instruction_account: usize,
_data: &[u8],
_invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
Err(InstructionError::Custom(42))
}
let mock_account = Keypair::new();
let mock_validator_identity = Keypair::new();
let instructions = vote_instruction::create_account(
&mint_keypair.pubkey(),
&mock_account.pubkey(),
&VoteInit {
node_pubkey: mock_validator_identity.pubkey(),
..VoteInit::default()
},
1,
);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let transaction = Transaction::new(
&[&mint_keypair, &mock_account, &mock_validator_identity],
message,
bank.last_blockhash(),
);
let vote_loader_account = bank.get_account(&solana_vote_program::id()).unwrap();
bank.add_builtin(
"solana_vote_program",
&solana_vote_program::id(),
mock_vote_processor,
);
let new_vote_loader_account = bank.get_account(&solana_vote_program::id()).unwrap();
// Vote loader account should not be updated since it was included in the genesis config.
assert_eq!(vote_loader_account.data(), new_vote_loader_account.data());
assert_eq!(
bank.process_transaction(&transaction),
Err(TransactionError::InstructionError(
1,
InstructionError::Custom(42)
))
);
}
#[test]
fn test_add_instruction_processor_for_existing_unrelated_accounts() {
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
_invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
Err(InstructionError::Custom(42))
}
// Non-builtin loader accounts can not be used for instruction processing
{
let stakes = bank.stakes_cache.stakes();
assert!(stakes.vote_accounts().as_ref().is_empty());
}
assert!(bank.stakes_cache.stakes().stake_delegations().is_empty());
assert_eq!(bank.calculate_capitalization(true), bank.capitalization());
let ((vote_id, vote_account), (stake_id, stake_account)) =
crate::stakes::tests::create_staked_node_accounts(1_0000);
bank.capitalization
.fetch_add(vote_account.lamports() + stake_account.lamports(), Relaxed);
bank.store_account(&vote_id, &vote_account);
bank.store_account(&stake_id, &stake_account);
{
let stakes = bank.stakes_cache.stakes();
assert!(!stakes.vote_accounts().as_ref().is_empty());
}
assert!(!bank.stakes_cache.stakes().stake_delegations().is_empty());
assert_eq!(bank.calculate_capitalization(true), bank.capitalization());
bank.add_builtin("mock_program1", &vote_id, mock_ix_processor);
bank.add_builtin("mock_program2", &stake_id, mock_ix_processor);
{
let stakes = bank.stakes_cache.stakes();
assert!(stakes.vote_accounts().as_ref().is_empty());
}
assert!(bank.stakes_cache.stakes().stake_delegations().is_empty());
assert_eq!(bank.calculate_capitalization(true), bank.capitalization());
assert_eq!(
"mock_program1",
String::from_utf8_lossy(bank.get_account(&vote_id).unwrap_or_default().data())
);
assert_eq!(
"mock_program2",
String::from_utf8_lossy(bank.get_account(&stake_id).unwrap_or_default().data())
);
// Re-adding builtin programs should be no-op
bank.update_accounts_hash();
let old_hash = bank.get_accounts_hash();
bank.add_builtin("mock_program1", &vote_id, mock_ix_processor);
bank.add_builtin("mock_program2", &stake_id, mock_ix_processor);
bank.update_accounts_hash();
let new_hash = bank.get_accounts_hash();
assert_eq!(old_hash, new_hash);
{
let stakes = bank.stakes_cache.stakes();
assert!(stakes.vote_accounts().as_ref().is_empty());
}
assert!(bank.stakes_cache.stakes().stake_delegations().is_empty());
assert_eq!(bank.calculate_capitalization(true), bank.capitalization());
assert_eq!(
"mock_program1",
String::from_utf8_lossy(bank.get_account(&vote_id).unwrap_or_default().data())
);
assert_eq!(
"mock_program2",
String::from_utf8_lossy(bank.get_account(&stake_id).unwrap_or_default().data())
);
}
#[allow(deprecated)]
#[test]
fn test_recent_blockhashes_sysvar() {
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
for i in 1..5 {
let bhq_account = bank.get_account(&sysvar::recent_blockhashes::id()).unwrap();
let recent_blockhashes =
from_account::<sysvar::recent_blockhashes::RecentBlockhashes, _>(&bhq_account)
.unwrap();
// Check length
assert_eq!(recent_blockhashes.len(), i);
let most_recent_hash = recent_blockhashes.iter().next().unwrap().blockhash;
// Check order
assert_eq!(Some(true), bank.check_hash_age(&most_recent_hash, 0));
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
}
#[allow(deprecated)]
#[test]
fn test_blockhash_queue_sysvar_consistency() {
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
let bhq_account = bank.get_account(&sysvar::recent_blockhashes::id()).unwrap();
let recent_blockhashes =
from_account::<sysvar::recent_blockhashes::RecentBlockhashes, _>(&bhq_account).unwrap();
let sysvar_recent_blockhash = recent_blockhashes[0].blockhash;
let bank_last_blockhash = bank.last_blockhash();
assert_eq!(sysvar_recent_blockhash, bank_last_blockhash);
}
#[test]
fn test_hash_internal_state_unchanged() {
let (genesis_config, _) = create_genesis_config(500);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
bank0.freeze();
let bank0_hash = bank0.hash();
let bank1 = Bank::new_from_parent(&bank0, &Pubkey::default(), 1);
bank1.freeze();
let bank1_hash = bank1.hash();
// Checkpointing should always result in a new state
assert_ne!(bank0_hash, bank1_hash);
}
#[test]
fn test_ticks_change_state() {
let (genesis_config, _) = create_genesis_config(500);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let bank1 = new_from_parent(&bank);
let hash1 = bank1.hash_internal_state();
// ticks don't change its state unless a block boundary is crossed
for _ in 0..genesis_config.ticks_per_slot {
assert_eq!(bank1.hash_internal_state(), hash1);
bank1.register_tick(&Hash::default());
}
assert_ne!(bank1.hash_internal_state(), hash1);
}
#[ignore]
#[test]
fn test_banks_leak() {
fn add_lotsa_stake_accounts(genesis_config: &mut GenesisConfig) {
const LOTSA: usize = 4_096;
(0..LOTSA).for_each(|_| {
let pubkey = solana_sdk::pubkey::new_rand();
genesis_config.add_account(
pubkey,
stake_state::create_lockup_stake_account(
&Authorized::auto(&pubkey),
&Lockup::default(),
&Rent::default(),
50_000_000,
),
);
});
}
solana_logger::setup();
let (mut genesis_config, _) = create_genesis_config(100_000_000_000_000);
add_lotsa_stake_accounts(&mut genesis_config);
let mut bank = std::sync::Arc::new(Bank::new_for_tests(&genesis_config));
let mut num_banks = 0;
let pid = std::process::id();
#[cfg(not(target_os = "linux"))]
error!(
"\nYou can run this to watch RAM:\n while read -p 'banks: '; do echo $(( $(ps -o vsize= -p {})/$REPLY));done", pid
);
loop {
num_banks += 1;
bank = std::sync::Arc::new(new_from_parent(&bank));
if num_banks % 100 == 0 {
#[cfg(target_os = "linux")]
{
let pages_consumed = std::fs::read_to_string(format!("/proc/{}/statm", pid))
.unwrap()
.split_whitespace()
.next()
.unwrap()
.parse::<usize>()
.unwrap();
error!(
"at {} banks: {} mem or {}kB/bank",
num_banks,
pages_consumed * 4096,
(pages_consumed * 4) / num_banks
);
}
#[cfg(not(target_os = "linux"))]
{
error!("{} banks, sleeping for 5 sec", num_banks);
std::thread::sleep(Duration::new(5, 0));
}
}
}
}
fn get_nonce_blockhash(bank: &Bank, nonce_pubkey: &Pubkey) -> Option<Hash> {
bank.get_account(nonce_pubkey).and_then(|acc| {
let state =
StateMut::<nonce::state::Versions>::state(&acc).map(|v| v.convert_to_current());
match state {
Ok(nonce::State::Initialized(ref data)) => Some(data.blockhash),
_ => None,
}
})
}
fn nonce_setup(
bank: &mut Arc<Bank>,
mint_keypair: &Keypair,
custodian_lamports: u64,
nonce_lamports: u64,
nonce_authority: Option<Pubkey>,
) -> Result<(Keypair, Keypair)> {
let custodian_keypair = Keypair::new();
let nonce_keypair = Keypair::new();
/* Setup accounts */
let mut setup_ixs = vec![system_instruction::transfer(
&mint_keypair.pubkey(),
&custodian_keypair.pubkey(),
custodian_lamports,
)];
let nonce_authority = nonce_authority.unwrap_or_else(|| nonce_keypair.pubkey());
setup_ixs.extend_from_slice(&system_instruction::create_nonce_account(
&custodian_keypair.pubkey(),
&nonce_keypair.pubkey(),
&nonce_authority,
nonce_lamports,
));
let message = Message::new(&setup_ixs, Some(&mint_keypair.pubkey()));
let setup_tx = Transaction::new(
&[mint_keypair, &custodian_keypair, &nonce_keypair],
message,
bank.last_blockhash(),
);
bank.process_transaction(&setup_tx)?;
Ok((custodian_keypair, nonce_keypair))
}
fn setup_nonce_with_bank<F>(
supply_lamports: u64,
mut genesis_cfg_fn: F,
custodian_lamports: u64,
nonce_lamports: u64,
nonce_authority: Option<Pubkey>,
feature_set: FeatureSet,
) -> Result<(Arc<Bank>, Keypair, Keypair, Keypair)>
where
F: FnMut(&mut GenesisConfig),
{
let (mut genesis_config, mint_keypair) = create_genesis_config(supply_lamports);
genesis_config.rent.lamports_per_byte_year = 0;
genesis_cfg_fn(&mut genesis_config);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.feature_set = Arc::new(feature_set);
let mut bank = Arc::new(bank);
// Banks 0 and 1 have no fees, wait two blocks before
// initializing our nonce accounts
for _ in 0..2 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let (custodian_keypair, nonce_keypair) = nonce_setup(
&mut bank,
&mint_keypair,
custodian_lamports,
nonce_lamports,
nonce_authority,
)?;
Ok((bank, mint_keypair, custodian_keypair, nonce_keypair))
}
#[test]
fn test_check_transaction_for_nonce_ok() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
let tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &nonce_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
let nonce_account = bank.get_account(&nonce_pubkey).unwrap();
assert_eq!(
bank.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx)),
Some((nonce_pubkey, nonce_account))
);
}
#[test]
fn test_check_transaction_for_nonce_not_nonce_fail() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
let tx = Transaction::new_signed_with_payer(
&[
system_instruction::transfer(&custodian_pubkey, &nonce_pubkey, 100_000),
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert!(bank
.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx,))
.is_none());
}
#[test]
fn test_check_transaction_for_nonce_missing_ix_pubkey_fail() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
let mut tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &nonce_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
tx.message.instructions[0].accounts.clear();
assert!(bank
.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx))
.is_none());
}
#[test]
fn test_check_transaction_for_nonce_nonce_acc_does_not_exist_fail() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let missing_keypair = Keypair::new();
let missing_pubkey = missing_keypair.pubkey();
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
let tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&missing_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &nonce_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert!(bank
.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx))
.is_none());
}
#[test]
fn test_check_transaction_for_nonce_bad_tx_hash_fail() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &nonce_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
Hash::default(),
);
assert!(bank
.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx))
.is_none());
}
#[test]
fn test_assign_from_nonce_account_fail() {
let (genesis_config, _mint_keypair) = create_genesis_config(100_000_000);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let nonce = Keypair::new();
let nonce_account = AccountSharedData::new_data(
42_424_242,
&nonce::state::Versions::new_current(nonce::State::Initialized(
nonce::state::Data::default(),
)),
&system_program::id(),
)
.unwrap();
let blockhash = bank.last_blockhash();
bank.store_account(&nonce.pubkey(), &nonce_account);
let ix = system_instruction::assign(&nonce.pubkey(), &Pubkey::new(&[9u8; 32]));
let message = Message::new(&[ix], Some(&nonce.pubkey()));
let tx = Transaction::new(&[&nonce], message, blockhash);
let expect = Err(TransactionError::InstructionError(
0,
InstructionError::ModifiedProgramId,
));
assert_eq!(bank.process_transaction(&tx), expect);
}
#[test]
fn test_nonce_transaction() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
assert_eq!(bank.get_balance(&custodian_pubkey), 4_750_000);
assert_eq!(bank.get_balance(&nonce_pubkey), 250_000);
/* Grab the hash stored in the nonce account */
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
/* Kick nonce hash off the blockhash_queue */
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
/* Expect a non-Nonce transfer to fail */
assert_eq!(
bank.process_transaction(&system_transaction::transfer(
&custodian_keypair,
&alice_pubkey,
100_000,
nonce_hash
),),
Err(TransactionError::BlockhashNotFound),
);
/* Check fee not charged */
assert_eq!(bank.get_balance(&custodian_pubkey), 4_750_000);
/* Nonce transfer */
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(bank.process_transaction(&nonce_tx), Ok(()));
/* Check balances */
let mut recent_message = nonce_tx.message;
recent_message.recent_blockhash = bank.last_blockhash();
let mut expected_balance = 4_650_000
- bank
.get_fee_for_message(&recent_message.try_into().unwrap())
.unwrap();
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_eq!(bank.get_balance(&nonce_pubkey), 250_000);
assert_eq!(bank.get_balance(&alice_pubkey), 100_000);
/* Confirm stored nonce has advanced */
let new_nonce = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
assert_ne!(nonce_hash, new_nonce);
/* Nonce re-use fails */
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::BlockhashNotFound)
);
/* Check fee not charged and nonce not advanced */
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_eq!(
new_nonce,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
let nonce_hash = new_nonce;
/* Kick nonce hash off the blockhash_queue */
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::InstructionError(
1,
system_instruction::SystemError::ResultWithNegativeLamports.into(),
))
);
/* Check fee charged and nonce has advanced */
let mut recent_message = nonce_tx.message.clone();
recent_message.recent_blockhash = bank.last_blockhash();
expected_balance -= bank
.get_fee_for_message(&SanitizedMessage::try_from(recent_message).unwrap())
.unwrap();
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_ne!(
nonce_hash,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
/* Confirm replaying a TX that failed with InstructionError::* now
* fails with TransactionError::BlockhashNotFound
*/
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::BlockhashNotFound),
);
}
#[test]
fn test_nonce_transaction_with_tx_wide_caps() {
let feature_set = FeatureSet::all_enabled();
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
assert_eq!(bank.get_balance(&custodian_pubkey), 4_750_000);
assert_eq!(bank.get_balance(&nonce_pubkey), 250_000);
/* Grab the hash stored in the nonce account */
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
/* Kick nonce hash off the blockhash_queue */
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
/* Expect a non-Nonce transfer to fail */
assert_eq!(
bank.process_transaction(&system_transaction::transfer(
&custodian_keypair,
&alice_pubkey,
100_000,
nonce_hash
),),
Err(TransactionError::BlockhashNotFound),
);
/* Check fee not charged */
assert_eq!(bank.get_balance(&custodian_pubkey), 4_750_000);
/* Nonce transfer */
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(bank.process_transaction(&nonce_tx), Ok(()));
/* Check balances */
let mut recent_message = nonce_tx.message;
recent_message.recent_blockhash = bank.last_blockhash();
let mut expected_balance = 4_650_000
- bank
.get_fee_for_message(&recent_message.try_into().unwrap())
.unwrap();
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_eq!(bank.get_balance(&nonce_pubkey), 250_000);
assert_eq!(bank.get_balance(&alice_pubkey), 100_000);
/* Confirm stored nonce has advanced */
let new_nonce = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
assert_ne!(nonce_hash, new_nonce);
/* Nonce re-use fails */
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::BlockhashNotFound)
);
/* Check fee not charged and nonce not advanced */
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_eq!(
new_nonce,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
let nonce_hash = new_nonce;
/* Kick nonce hash off the blockhash_queue */
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000_000),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::InstructionError(
1,
system_instruction::SystemError::ResultWithNegativeLamports.into(),
))
);
/* Check fee charged and nonce has advanced */
let mut recent_message = nonce_tx.message.clone();
recent_message.recent_blockhash = bank.last_blockhash();
expected_balance -= bank
.get_fee_for_message(&SanitizedMessage::try_from(recent_message).unwrap())
.unwrap();
assert_eq!(bank.get_balance(&custodian_pubkey), expected_balance);
assert_ne!(
nonce_hash,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
/* Confirm replaying a TX that failed with InstructionError::* now
* fails with TransactionError::BlockhashNotFound
*/
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::BlockhashNotFound),
);
}
#[test]
fn test_nonce_authority() {
solana_logger::setup();
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let bad_nonce_authority_keypair = Keypair::new();
let bad_nonce_authority = bad_nonce_authority_keypair.pubkey();
let custodian_account = bank.get_account(&custodian_pubkey).unwrap();
debug!("alice: {}", alice_pubkey);
debug!("custodian: {}", custodian_pubkey);
debug!("nonce: {}", nonce_pubkey);
debug!("nonce account: {:?}", bank.get_account(&nonce_pubkey));
debug!("cust: {:?}", custodian_account);
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &bad_nonce_authority),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 42),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &bad_nonce_authority_keypair],
nonce_hash,
);
debug!("{:?}", nonce_tx);
let initial_custodian_balance = custodian_account.lamports();
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::InstructionError(
0,
InstructionError::MissingRequiredSignature,
))
);
/* Check fee charged and nonce has *not* advanced */
let mut recent_message = nonce_tx.message;
recent_message.recent_blockhash = bank.last_blockhash();
assert_eq!(
bank.get_balance(&custodian_pubkey),
initial_custodian_balance
- bank
.get_fee_for_message(&recent_message.try_into().unwrap())
.unwrap()
);
assert_ne!(
nonce_hash,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
}
#[test]
fn test_nonce_payer() {
solana_logger::setup();
let nonce_starting_balance = 250_000;
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) = setup_nonce_with_bank(
10_000_000,
|_| {},
5_000_000,
nonce_starting_balance,
None,
feature_set,
)
.unwrap();
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
debug!("alice: {}", alice_pubkey);
debug!("custodian: {}", custodian_pubkey);
debug!("nonce: {}", nonce_pubkey);
debug!("nonce account: {:?}", bank.get_account(&nonce_pubkey));
debug!("cust: {:?}", bank.get_account(&custodian_pubkey));
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000_000),
],
Some(&nonce_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
debug!("{:?}", nonce_tx);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::InstructionError(
1,
system_instruction::SystemError::ResultWithNegativeLamports.into(),
))
);
/* Check fee charged and nonce has advanced */
let mut recent_message = nonce_tx.message;
recent_message.recent_blockhash = bank.last_blockhash();
assert_eq!(
bank.get_balance(&nonce_pubkey),
nonce_starting_balance
- bank
.get_fee_for_message(&recent_message.try_into().unwrap())
.unwrap()
);
assert_ne!(
nonce_hash,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
}
#[test]
fn test_nonce_payer_tx_wide_cap() {
solana_logger::setup();
let nonce_starting_balance =
250_000 + FeeStructure::default().compute_fee_bins.last().unwrap().fee;
let feature_set = FeatureSet::all_enabled();
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) = setup_nonce_with_bank(
10_000_000,
|_| {},
5_000_000,
nonce_starting_balance,
None,
feature_set,
)
.unwrap();
let alice_keypair = Keypair::new();
let alice_pubkey = alice_keypair.pubkey();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
debug!("alice: {}", alice_pubkey);
debug!("custodian: {}", custodian_pubkey);
debug!("nonce: {}", nonce_pubkey);
debug!("nonce account: {:?}", bank.get_account(&nonce_pubkey));
debug!("cust: {:?}", bank.get_account(&custodian_pubkey));
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(&custodian_pubkey, &alice_pubkey, 100_000_000),
],
Some(&nonce_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
debug!("{:?}", nonce_tx);
assert_eq!(
bank.process_transaction(&nonce_tx),
Err(TransactionError::InstructionError(
1,
system_instruction::SystemError::ResultWithNegativeLamports.into(),
))
);
/* Check fee charged and nonce has advanced */
let mut recent_message = nonce_tx.message;
recent_message.recent_blockhash = bank.last_blockhash();
assert_eq!(
bank.get_balance(&nonce_pubkey),
nonce_starting_balance
- bank
.get_fee_for_message(&recent_message.try_into().unwrap())
.unwrap()
);
assert_ne!(
nonce_hash,
get_nonce_blockhash(&bank, &nonce_pubkey).unwrap()
);
}
#[test]
fn test_nonce_fee_calculator_updates() {
let (mut genesis_config, mint_keypair) = create_genesis_config(1_000_000);
genesis_config.rent.lamports_per_byte_year = 0;
let mut bank = Bank::new_for_tests(&genesis_config);
bank.feature_set = Arc::new(FeatureSet::all_enabled());
bank.deactivate_feature(&tx_wide_compute_cap::id());
let mut bank = Arc::new(bank);
// Deliberately use bank 0 to initialize nonce account, so that nonce account fee_calculator indicates 0 fees
let (custodian_keypair, nonce_keypair) =
nonce_setup(&mut bank, &mint_keypair, 500_000, 100_000, None).unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
// Grab the hash and fee_calculator stored in the nonce account
let (stored_nonce_hash, stored_fee_calculator) = bank
.get_account(&nonce_pubkey)
.and_then(|acc| {
let state =
StateMut::<nonce::state::Versions>::state(&acc).map(|v| v.convert_to_current());
match state {
Ok(nonce::State::Initialized(ref data)) => {
Some((data.blockhash, data.fee_calculator.clone()))
}
_ => None,
}
})
.unwrap();
// Kick nonce hash off the blockhash_queue
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
// Nonce transfer
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(
&custodian_pubkey,
&solana_sdk::pubkey::new_rand(),
100_000,
),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
stored_nonce_hash,
);
bank.process_transaction(&nonce_tx).unwrap();
// Grab the new hash and fee_calculator; both should be updated
let (nonce_hash, fee_calculator) = bank
.get_account(&nonce_pubkey)
.and_then(|acc| {
let state =
StateMut::<nonce::state::Versions>::state(&acc).map(|v| v.convert_to_current());
match state {
Ok(nonce::State::Initialized(ref data)) => {
Some((data.blockhash, data.fee_calculator.clone()))
}
_ => None,
}
})
.unwrap();
assert_ne!(stored_nonce_hash, nonce_hash);
assert_ne!(stored_fee_calculator, fee_calculator);
}
#[test]
fn test_nonce_fee_calculator_updates_tx_wide_cap() {
let (mut genesis_config, mint_keypair) = create_genesis_config(1_000_000);
genesis_config.rent.lamports_per_byte_year = 0;
let mut bank = Bank::new_for_tests(&genesis_config);
bank.feature_set = Arc::new(FeatureSet::all_enabled());
let mut bank = Arc::new(bank);
// Deliberately use bank 0 to initialize nonce account, so that nonce account fee_calculator indicates 0 fees
let (custodian_keypair, nonce_keypair) =
nonce_setup(&mut bank, &mint_keypair, 500_000, 100_000, None).unwrap();
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
// Grab the hash and fee_calculator stored in the nonce account
let (stored_nonce_hash, stored_fee_calculator) = bank
.get_account(&nonce_pubkey)
.and_then(|acc| {
let state =
StateMut::<nonce::state::Versions>::state(&acc).map(|v| v.convert_to_current());
match state {
Ok(nonce::State::Initialized(ref data)) => {
Some((data.blockhash, data.fee_calculator.clone()))
}
_ => None,
}
})
.unwrap();
// Kick nonce hash off the blockhash_queue
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
// Nonce transfer
let nonce_tx = Transaction::new_signed_with_payer(
&[
system_instruction::advance_nonce_account(&nonce_pubkey, &nonce_pubkey),
system_instruction::transfer(
&custodian_pubkey,
&solana_sdk::pubkey::new_rand(),
100_000,
),
],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
stored_nonce_hash,
);
bank.process_transaction(&nonce_tx).unwrap();
// Grab the new hash and fee_calculator; both should be updated
let (nonce_hash, fee_calculator) = bank
.get_account(&nonce_pubkey)
.and_then(|acc| {
let state =
StateMut::<nonce::state::Versions>::state(&acc).map(|v| v.convert_to_current());
match state {
Ok(nonce::State::Initialized(ref data)) => {
Some((data.blockhash, data.fee_calculator.clone()))
}
_ => None,
}
})
.unwrap();
assert_ne!(stored_nonce_hash, nonce_hash);
assert_ne!(stored_fee_calculator, fee_calculator);
}
#[test]
fn test_check_ro_durable_nonce_fails() {
let mut feature_set = FeatureSet::all_enabled();
feature_set.deactivate(&tx_wide_compute_cap::id());
let (mut bank, _mint_keypair, custodian_keypair, nonce_keypair) =
setup_nonce_with_bank(10_000_000, |_| {}, 5_000_000, 250_000, None, feature_set)
.unwrap();
Arc::get_mut(&mut bank)
.unwrap()
.activate_feature(&feature_set::nonce_must_be_writable::id());
let custodian_pubkey = custodian_keypair.pubkey();
let nonce_pubkey = nonce_keypair.pubkey();
let nonce_hash = get_nonce_blockhash(&bank, &nonce_pubkey).unwrap();
let account_metas = vec![
AccountMeta::new_readonly(nonce_pubkey, false),
#[allow(deprecated)]
AccountMeta::new_readonly(sysvar::recent_blockhashes::id(), false),
AccountMeta::new_readonly(nonce_pubkey, true),
];
let nonce_instruction = Instruction::new_with_bincode(
system_program::id(),
&system_instruction::SystemInstruction::AdvanceNonceAccount,
account_metas,
);
let tx = Transaction::new_signed_with_payer(
&[nonce_instruction],
Some(&custodian_pubkey),
&[&custodian_keypair, &nonce_keypair],
nonce_hash,
);
// Caught by the system program because the tx hash is valid
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InstructionError(
0,
InstructionError::InvalidArgument
))
);
// Kick nonce hash off the blockhash_queue
for _ in 0..MAX_RECENT_BLOCKHASHES + 1 {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
bank = Arc::new(new_from_parent(&bank));
}
// Caught by the runtime because it is a nonce transaction
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::BlockhashNotFound)
);
assert_eq!(
bank.check_transaction_for_nonce(&SanitizedTransaction::from_transaction_for_tests(tx)),
None
);
}
#[test]
fn test_collect_balances() {
let (genesis_config, _mint_keypair) = create_genesis_config(500);
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let bank0 = Arc::new(new_from_parent(&parent));
let keypair = Keypair::new();
let pubkey0 = solana_sdk::pubkey::new_rand();
let pubkey1 = solana_sdk::pubkey::new_rand();
let program_id = Pubkey::new(&[2; 32]);
let keypair_account = AccountSharedData::new(8, 0, &program_id);
let account0 = AccountSharedData::new(11, 0, &program_id);
let program_account = AccountSharedData::new(1, 10, &Pubkey::default());
bank0.store_account(&keypair.pubkey(), &keypair_account);
bank0.store_account(&pubkey0, &account0);
bank0.store_account(&program_id, &program_account);
let instructions = vec![CompiledInstruction::new(1, &(), vec![0])];
let tx0 = Transaction::new_with_compiled_instructions(
&[&keypair],
&[pubkey0],
Hash::default(),
vec![program_id],
instructions,
);
let instructions = vec![CompiledInstruction::new(1, &(), vec![0])];
let tx1 = Transaction::new_with_compiled_instructions(
&[&keypair],
&[pubkey1],
Hash::default(),
vec![program_id],
instructions,
);
let txs = vec![tx0, tx1];
let batch = bank0.prepare_batch_for_tests(txs.clone());
let balances = bank0.collect_balances(&batch);
assert_eq!(balances.len(), 2);
assert_eq!(balances[0], vec![8, 11, 1]);
assert_eq!(balances[1], vec![8, 0, 1]);
let txs: Vec<_> = txs.into_iter().rev().collect();
let batch = bank0.prepare_batch_for_tests(txs);
let balances = bank0.collect_balances(&batch);
assert_eq!(balances.len(), 2);
assert_eq!(balances[0], vec![8, 0, 1]);
assert_eq!(balances[1], vec![8, 11, 1]);
}
#[test]
fn test_pre_post_transaction_balances() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(500);
let fee_rate_governor = FeeRateGovernor::new(1, 0);
genesis_config.fee_rate_governor = fee_rate_governor;
let parent = Arc::new(Bank::new_for_tests(&genesis_config));
let bank0 = Arc::new(new_from_parent(&parent));
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let pubkey0 = solana_sdk::pubkey::new_rand();
let pubkey1 = solana_sdk::pubkey::new_rand();
let pubkey2 = solana_sdk::pubkey::new_rand();
let keypair0_account = AccountSharedData::new(8, 0, &Pubkey::default());
let keypair1_account = AccountSharedData::new(9, 0, &Pubkey::default());
let account0 = AccountSharedData::new(11, 0, &Pubkey::default());
bank0.store_account(&keypair0.pubkey(), &keypair0_account);
bank0.store_account(&keypair1.pubkey(), &keypair1_account);
bank0.store_account(&pubkey0, &account0);
let blockhash = bank0.last_blockhash();
let tx0 = system_transaction::transfer(&keypair0, &pubkey0, 2, blockhash);
let tx1 = system_transaction::transfer(&Keypair::new(), &pubkey1, 2, blockhash);
let tx2 = system_transaction::transfer(&keypair1, &pubkey2, 12, blockhash);
let txs = vec![tx0, tx1, tx2];
let lock_result = bank0.prepare_batch_for_tests(txs);
let (transaction_results, transaction_balances_set) = bank0
.load_execute_and_commit_transactions(
&lock_result,
MAX_PROCESSING_AGE,
true,
false,
false,
&mut ExecuteTimings::default(),
);
assert_eq!(transaction_balances_set.pre_balances.len(), 3);
assert_eq!(transaction_balances_set.post_balances.len(), 3);
assert!(transaction_results.execution_results[0].was_executed_successfully());
assert_eq!(transaction_balances_set.pre_balances[0], vec![8, 11, 1]);
assert_eq!(transaction_balances_set.post_balances[0], vec![5, 13, 1]);
// Failed transactions still produce balance sets
// This is a TransactionError - not possible to charge fees
assert!(matches!(
transaction_results.execution_results[1],
TransactionExecutionResult::NotExecuted(TransactionError::AccountNotFound),
));
assert_eq!(transaction_balances_set.pre_balances[1], vec![0, 0, 1]);
assert_eq!(transaction_balances_set.post_balances[1], vec![0, 0, 1]);
// Failed transactions still produce balance sets
// This is an InstructionError - fees charged
assert!(matches!(
transaction_results.execution_results[2],
TransactionExecutionResult::Executed(TransactionExecutionDetails {
status: Err(TransactionError::InstructionError(
0,
InstructionError::Custom(1),
)),
..
}),
));
assert_eq!(transaction_balances_set.pre_balances[2], vec![9, 0, 1]);
assert_eq!(transaction_balances_set.post_balances[2], vec![8, 0, 1]);
}
#[test]
fn test_transaction_with_duplicate_accounts_in_instruction() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_process_instruction(
_first_instruction_account: usize,
data: &[u8],
invoke_context: &mut InvokeContext,
) -> result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
let lamports = data[0] as u64;
instruction_context
.try_borrow_instruction_account(transaction_context, 2)?
.checked_sub_lamports(lamports)?;
instruction_context
.try_borrow_instruction_account(transaction_context, 1)?
.checked_add_lamports(lamports)?;
instruction_context
.try_borrow_instruction_account(transaction_context, 0)?
.checked_sub_lamports(lamports)?;
instruction_context
.try_borrow_instruction_account(transaction_context, 1)?
.checked_add_lamports(lamports)?;
Ok(())
}
let mock_program_id = Pubkey::new(&[2u8; 32]);
bank.add_builtin("mock_program", &mock_program_id, mock_process_instruction);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let dup_pubkey = from_pubkey;
let from_account = AccountSharedData::new(100, 1, &mock_program_id);
let to_account = AccountSharedData::new(0, 1, &mock_program_id);
bank.store_account(&from_pubkey, &from_account);
bank.store_account(&to_pubkey, &to_account);
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
AccountMeta::new(dup_pubkey, false),
];
let instruction = Instruction::new_with_bincode(mock_program_id, &10, account_metas);
let tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
let result = bank.process_transaction(&tx);
assert_eq!(result, Ok(()));
assert_eq!(bank.get_balance(&from_pubkey), 80);
assert_eq!(bank.get_balance(&to_pubkey), 20);
}
#[test]
fn test_transaction_with_program_ids_passed_to_programs() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
#[allow(clippy::unnecessary_wraps)]
fn mock_process_instruction(
_first_instruction_account: usize,
_data: &[u8],
_invoke_context: &mut InvokeContext,
) -> result::Result<(), InstructionError> {
Ok(())
}
let mock_program_id = Pubkey::new(&[2u8; 32]);
bank.add_builtin("mock_program", &mock_program_id, mock_process_instruction);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let dup_pubkey = from_pubkey;
let from_account = AccountSharedData::new(100, 1, &mock_program_id);
let to_account = AccountSharedData::new(0, 1, &mock_program_id);
bank.store_account(&from_pubkey, &from_account);
bank.store_account(&to_pubkey, &to_account);
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
AccountMeta::new(dup_pubkey, false),
AccountMeta::new(mock_program_id, false),
];
let instruction = Instruction::new_with_bincode(mock_program_id, &10, account_metas);
let tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
let result = bank.process_transaction(&tx);
assert_eq!(result, Ok(()));
}
#[test]
fn test_account_ids_after_program_ids() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
];
let instruction =
Instruction::new_with_bincode(solana_vote_program::id(), &10, account_metas);
let mut tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
tx.message.account_keys.push(solana_sdk::pubkey::new_rand());
bank.add_builtin(
"mock_vote",
&solana_vote_program::id(),
mock_ok_vote_processor,
);
let result = bank.process_transaction(&tx);
assert_eq!(result, Ok(()));
let account = bank.get_account(&solana_vote_program::id()).unwrap();
info!("account: {:?}", account);
assert!(account.executable());
}
#[test]
fn test_incinerator() {
let (genesis_config, mint_keypair) = create_genesis_config(1_000_000_000_000);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
// Move to the first normal slot so normal rent behaviour applies
let bank = Bank::new_from_parent(
&bank0,
&Pubkey::default(),
genesis_config.epoch_schedule.first_normal_slot,
);
let pre_capitalization = bank.capitalization();
// Burn a non-rent exempt amount
let burn_amount = bank.get_minimum_balance_for_rent_exemption(0) - 1;
assert_eq!(bank.get_balance(&incinerator::id()), 0);
bank.transfer(burn_amount, &mint_keypair, &incinerator::id())
.unwrap();
assert_eq!(bank.get_balance(&incinerator::id()), burn_amount);
bank.freeze();
assert_eq!(bank.get_balance(&incinerator::id()), 0);
// Ensure that no rent was collected, and the entire burn amount was removed from bank
// capitalization
assert_eq!(bank.capitalization(), pre_capitalization - burn_amount);
}
#[test]
fn test_duplicate_account_key() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
];
bank.add_builtin(
"mock_vote",
&solana_vote_program::id(),
mock_ok_vote_processor,
);
let instruction =
Instruction::new_with_bincode(solana_vote_program::id(), &10, account_metas);
let mut tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
tx.message.account_keys.push(from_pubkey);
let result = bank.process_transaction(&tx);
assert_eq!(result, Err(TransactionError::AccountLoadedTwice));
}
#[test]
fn test_process_transaction_with_too_many_account_locks() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
];
bank.add_builtin(
"mock_vote",
&solana_vote_program::id(),
mock_ok_vote_processor,
);
let instruction =
Instruction::new_with_bincode(solana_vote_program::id(), &10, account_metas);
let mut tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
while tx.message.account_keys.len() <= MAX_TX_ACCOUNT_LOCKS {
tx.message.account_keys.push(solana_sdk::pubkey::new_rand());
}
let result = bank.process_transaction(&tx);
assert_eq!(result, Err(TransactionError::TooManyAccountLocks));
}
#[test]
fn test_program_id_as_payer() {
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
];
bank.add_builtin(
"mock_vote",
&solana_vote_program::id(),
mock_ok_vote_processor,
);
let instruction =
Instruction::new_with_bincode(solana_vote_program::id(), &10, account_metas);
let mut tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
info!(
"mint: {} account keys: {:?}",
mint_keypair.pubkey(),
tx.message.account_keys
);
assert_eq!(tx.message.account_keys.len(), 4);
tx.message.account_keys.clear();
tx.message.account_keys.push(solana_vote_program::id());
tx.message.account_keys.push(mint_keypair.pubkey());
tx.message.account_keys.push(from_pubkey);
tx.message.account_keys.push(to_pubkey);
tx.message.instructions[0].program_id_index = 0;
tx.message.instructions[0].accounts.clear();
tx.message.instructions[0].accounts.push(2);
tx.message.instructions[0].accounts.push(3);
let result = bank.process_transaction(&tx);
assert_eq!(result, Err(TransactionError::SanitizeFailure));
}
#[allow(clippy::unnecessary_wraps)]
fn mock_ok_vote_processor(
_first_instruction_account: usize,
_data: &[u8],
_invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
Ok(())
}
#[test]
fn test_ref_account_key_after_program_id() {
let (genesis_config, mint_keypair) = create_genesis_config(500);
let mut bank = Bank::new_for_tests(&genesis_config);
let from_pubkey = solana_sdk::pubkey::new_rand();
let to_pubkey = solana_sdk::pubkey::new_rand();
let account_metas = vec![
AccountMeta::new(from_pubkey, false),
AccountMeta::new(to_pubkey, false),
];
bank.add_builtin(
"mock_vote",
&solana_vote_program::id(),
mock_ok_vote_processor,
);
let instruction =
Instruction::new_with_bincode(solana_vote_program::id(), &10, account_metas);
let mut tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
tx.message.account_keys.push(solana_sdk::pubkey::new_rand());
assert_eq!(tx.message.account_keys.len(), 5);
tx.message.instructions[0].accounts.remove(0);
tx.message.instructions[0].accounts.push(4);
let result = bank.process_transaction(&tx);
assert_eq!(result, Ok(()));
}
#[test]
fn test_fuzz_instructions() {
solana_logger::setup();
use rand::{thread_rng, Rng};
let (genesis_config, _mint_keypair) = create_genesis_config(1_000_000_000);
let mut bank = Bank::new_for_tests(&genesis_config);
let max_programs = 5;
let program_keys: Vec<_> = (0..max_programs)
.enumerate()
.map(|i| {
let key = solana_sdk::pubkey::new_rand();
let name = format!("program{:?}", i);
bank.add_builtin(&name, &key, mock_ok_vote_processor);
(key, name.as_bytes().to_vec())
})
.collect();
let max_keys = 100;
let keys: Vec<_> = (0..max_keys)
.enumerate()
.map(|_| {
let key = solana_sdk::pubkey::new_rand();
let balance = if thread_rng().gen_ratio(9, 10) {
let lamports = if thread_rng().gen_ratio(1, 5) {
thread_rng().gen_range(0, 10)
} else {
thread_rng().gen_range(20, 100)
};
let space = thread_rng().gen_range(0, 10);
let owner = Pubkey::default();
let account = AccountSharedData::new(lamports, space, &owner);
bank.store_account(&key, &account);
lamports
} else {
0
};
(key, balance)
})
.collect();
let mut results = HashMap::new();
for _ in 0..2_000 {
let num_keys = if thread_rng().gen_ratio(1, 5) {
thread_rng().gen_range(0, max_keys)
} else {
thread_rng().gen_range(1, 4)
};
let num_instructions = thread_rng().gen_range(0, max_keys - num_keys);
let mut account_keys: Vec<_> = if thread_rng().gen_ratio(1, 5) {
(0..num_keys)
.map(|_| {
let idx = thread_rng().gen_range(0, keys.len());
keys[idx].0
})
.collect()
} else {
let mut inserted = HashSet::new();
(0..num_keys)
.map(|_| {
let mut idx;
loop {
idx = thread_rng().gen_range(0, keys.len());
if !inserted.contains(&idx) {
break;
}
}
inserted.insert(idx);
keys[idx].0
})
.collect()
};
let instructions: Vec<_> = if num_keys > 0 {
(0..num_instructions)
.map(|_| {
let num_accounts_to_pass = thread_rng().gen_range(0, num_keys);
let account_indexes = (0..num_accounts_to_pass)
.map(|_| thread_rng().gen_range(0, num_keys))
.collect();
let program_index: u8 = thread_rng().gen_range(0, num_keys) as u8;
if thread_rng().gen_ratio(4, 5) {
let programs_index = thread_rng().gen_range(0, program_keys.len());
account_keys[program_index as usize] = program_keys[programs_index].0;
}
CompiledInstruction::new(program_index, &10, account_indexes)
})
.collect()
} else {
vec![]
};
let account_keys_len = std::cmp::max(account_keys.len(), 2);
let num_signatures = if thread_rng().gen_ratio(1, 5) {
thread_rng().gen_range(0, account_keys_len + 10)
} else {
thread_rng().gen_range(1, account_keys_len)
};
let num_required_signatures = if thread_rng().gen_ratio(1, 5) {
thread_rng().gen_range(0, account_keys_len + 10) as u8
} else {
thread_rng().gen_range(1, std::cmp::max(2, num_signatures)) as u8
};
let num_readonly_signed_accounts = if thread_rng().gen_ratio(1, 5) {
thread_rng().gen_range(0, account_keys_len) as u8
} else {
let max = if num_required_signatures > 1 {
num_required_signatures - 1
} else {
1
};
thread_rng().gen_range(0, max) as u8
};
let num_readonly_unsigned_accounts = if thread_rng().gen_ratio(1, 5)
|| (num_required_signatures as usize) >= account_keys_len
{
thread_rng().gen_range(0, account_keys_len) as u8
} else {
thread_rng().gen_range(0, account_keys_len - num_required_signatures as usize) as u8
};
let header = MessageHeader {
num_required_signatures,
num_readonly_signed_accounts,
num_readonly_unsigned_accounts,
};
let message = Message {
header,
account_keys,
recent_blockhash: bank.last_blockhash(),
instructions,
};
let tx = Transaction {
signatures: vec![Signature::default(); num_signatures],
message,
};
let result = bank.process_transaction(&tx);
for (key, balance) in &keys {
assert_eq!(bank.get_balance(key), *balance);
}
for (key, name) in &program_keys {
let account = bank.get_account(key).unwrap();
assert!(account.executable());
assert_eq!(account.data(), name);
}
info!("result: {:?}", result);
let result_key = format!("{:?}", result);
*results.entry(result_key).or_insert(0) += 1;
}
info!("results: {:?}", results);
}
#[test]
fn test_bank_hash_consistency() {
solana_logger::setup();
let mut genesis_config = GenesisConfig::new(
&[(
Pubkey::new(&[42; 32]),
AccountSharedData::new(1_000_000_000_000, 0, &system_program::id()),
)],
&[],
);
genesis_config.creation_time = 0;
genesis_config.cluster_type = ClusterType::MainnetBeta;
genesis_config.rent.burn_percent = 100;
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
// Check a few slots, cross an epoch boundary
assert_eq!(bank.get_slots_in_epoch(0), 32);
loop {
goto_end_of_slot(Arc::get_mut(&mut bank).unwrap());
if bank.slot == 0 {
assert_eq!(
bank.hash().to_string(),
"HREoNvUAuqqGdJxYTgnFqjTxsuuBVUFFDNLGR2cdrtMf"
);
}
if bank.slot == 32 {
assert_eq!(
bank.hash().to_string(),
"J8kjxLMMrpEVQUbX54zDALkXidjdXyFSL5wD2d7xUaWL"
);
}
if bank.slot == 64 {
assert_eq!(
bank.hash().to_string(),
"yPCTEPtNi2DJb8KyqPKgBK7HCfiEpH2oS3Nn12LPBHm"
);
}
if bank.slot == 128 {
assert_eq!(
bank.hash().to_string(),
"2oG1rmA59tmr457oK4oF6C6TcM2gyy2ZAKeJoUhMNb1L"
);
break;
}
bank = Arc::new(new_from_parent(&bank));
}
}
#[test]
fn test_same_program_id_uses_unqiue_executable_accounts() {
fn nested_processor(
_first_instruction_account: usize,
_data: &[u8],
invoke_context: &mut InvokeContext,
) -> result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
let _ = instruction_context
.try_borrow_account(transaction_context, 1)?
.checked_add_lamports(1);
Ok(())
}
let (genesis_config, mint_keypair) = create_genesis_config(50000);
let mut bank = Bank::new_for_tests(&genesis_config);
// Add a new program
let program1_pubkey = solana_sdk::pubkey::new_rand();
bank.add_builtin("program", &program1_pubkey, nested_processor);
// Add a new program owned by the first
let program2_pubkey = solana_sdk::pubkey::new_rand();
let mut program2_account = AccountSharedData::new(42, 1, &program1_pubkey);
program2_account.set_executable(true);
bank.store_account(&program2_pubkey, &program2_account);
let instruction = Instruction::new_with_bincode(program2_pubkey, &10, vec![]);
let tx = Transaction::new_signed_with_payer(
&[instruction.clone(), instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
assert!(bank.process_transaction(&tx).is_ok());
assert_eq!(1, bank.get_balance(&program1_pubkey));
assert_eq!(42, bank.get_balance(&program2_pubkey));
}
fn get_shrink_account_size() -> usize {
let (genesis_config, _mint_keypair) = create_genesis_config(1_000_000_000);
// Set root for bank 0, with caching disabled so we can get the size
// of the storage for this slot
let mut bank0 = Arc::new(Bank::new_with_config(
&genesis_config,
AccountSecondaryIndexes::default(),
false,
AccountShrinkThreshold::default(),
));
bank0.restore_old_behavior_for_fragile_tests();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank0).unwrap());
bank0.freeze();
bank0.squash();
let sizes = bank0
.rc
.accounts
.scan_slot(0, |stored_account| Some(stored_account.stored_size()));
// Create an account such that it takes DEFAULT_ACCOUNTS_SHRINK_RATIO of the total account space for
// the slot, so when it gets pruned, the storage entry will become a shrink candidate.
let bank0_total_size: usize = sizes.into_iter().sum();
let pubkey0_size = (bank0_total_size as f64 / (1.0 - DEFAULT_ACCOUNTS_SHRINK_RATIO)).ceil();
assert!(
pubkey0_size / (pubkey0_size + bank0_total_size as f64) > DEFAULT_ACCOUNTS_SHRINK_RATIO
);
pubkey0_size as usize
}
#[test]
fn test_clean_nonrooted() {
solana_logger::setup();
let (genesis_config, _mint_keypair) = create_genesis_config(1_000_000_000);
let pubkey0 = Pubkey::new(&[0; 32]);
let pubkey1 = Pubkey::new(&[1; 32]);
info!("pubkey0: {}", pubkey0);
info!("pubkey1: {}", pubkey1);
// Set root for bank 0, with caching enabled
let mut bank0 = Arc::new(Bank::new_with_config(
&genesis_config,
AccountSecondaryIndexes::default(),
true,
AccountShrinkThreshold::default(),
));
let account_zero = AccountSharedData::new(0, 0, &Pubkey::new_unique());
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank0).unwrap());
bank0.freeze();
bank0.squash();
// Flush now so that accounts cache cleaning doesn't clean up bank 0 when later
// slots add updates to the cache
bank0.force_flush_accounts_cache();
// Store some lamports in bank 1
let some_lamports = 123;
let mut bank1 = Arc::new(Bank::new_from_parent(&bank0, &Pubkey::default(), 1));
bank1.deposit(&pubkey0, some_lamports).unwrap();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank1).unwrap());
bank1.freeze();
bank1.flush_accounts_cache_slot();
bank1.print_accounts_stats();
// Store some lamports for pubkey1 in bank 2, root bank 2
// bank2's parent is bank0
let mut bank2 = Arc::new(Bank::new_from_parent(&bank0, &Pubkey::default(), 2));
bank2.deposit(&pubkey1, some_lamports).unwrap();
bank2.store_account(&pubkey0, &account_zero);
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank2).unwrap());
bank2.freeze();
bank2.squash();
bank2.force_flush_accounts_cache();
bank2.print_accounts_stats();
drop(bank1);
// Clean accounts, which should add earlier slots to the shrink
// candidate set
bank2.clean_accounts(false, false, None);
let mut bank3 = Arc::new(Bank::new_from_parent(&bank2, &Pubkey::default(), 3));
bank3.deposit(&pubkey1, some_lamports + 1).unwrap();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank3).unwrap());
bank3.freeze();
bank3.squash();
bank3.force_flush_accounts_cache();
bank3.clean_accounts(false, false, None);
assert_eq!(
bank3.rc.accounts.accounts_db.ref_count_for_pubkey(&pubkey0),
2
);
assert!(bank3
.rc
.accounts
.accounts_db
.storage
.get_slot_stores(1)
.is_none());
bank3.print_accounts_stats();
}
#[test]
fn test_shrink_candidate_slots_cached() {
solana_logger::setup();
let (genesis_config, _mint_keypair) = create_genesis_config(1_000_000_000);
let pubkey0 = solana_sdk::pubkey::new_rand();
let pubkey1 = solana_sdk::pubkey::new_rand();
let pubkey2 = solana_sdk::pubkey::new_rand();
// Set root for bank 0, with caching enabled
let mut bank0 = Arc::new(Bank::new_with_config(
&genesis_config,
AccountSecondaryIndexes::default(),
true,
AccountShrinkThreshold::default(),
));
bank0.restore_old_behavior_for_fragile_tests();
let pubkey0_size = get_shrink_account_size();
let account0 = AccountSharedData::new(1000, pubkey0_size as usize, &Pubkey::new_unique());
bank0.store_account(&pubkey0, &account0);
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank0).unwrap());
bank0.freeze();
bank0.squash();
// Flush now so that accounts cache cleaning doesn't clean up bank 0 when later
// slots add updates to the cache
bank0.force_flush_accounts_cache();
// Store some lamports in bank 1
let some_lamports = 123;
let mut bank1 = Arc::new(new_from_parent(&bank0));
bank1.deposit(&pubkey1, some_lamports).unwrap();
bank1.deposit(&pubkey2, some_lamports).unwrap();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank1).unwrap());
bank1.freeze();
bank1.squash();
// Flush now so that accounts cache cleaning doesn't clean up bank 0 when later
// slots add updates to the cache
bank1.force_flush_accounts_cache();
// Store some lamports for pubkey1 in bank 2, root bank 2
let mut bank2 = Arc::new(new_from_parent(&bank1));
bank2.deposit(&pubkey1, some_lamports).unwrap();
bank2.store_account(&pubkey0, &account0);
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank2).unwrap());
bank2.freeze();
bank2.squash();
bank2.force_flush_accounts_cache();
// Clean accounts, which should add earlier slots to the shrink
// candidate set
bank2.clean_accounts(false, false, None);
// Slots 0 and 1 should be candidates for shrinking, but slot 2
// shouldn't because none of its accounts are outdated by a later
// root
assert_eq!(bank2.shrink_candidate_slots(), 2);
let alive_counts: Vec<usize> = (0..3)
.map(|slot| {
bank2
.rc
.accounts
.accounts_db
.alive_account_count_in_slot(slot)
})
.collect();
// No more slots should be shrunk
assert_eq!(bank2.shrink_candidate_slots(), 0);
// alive_counts represents the count of alive accounts in the three slots 0,1,2
assert_eq!(alive_counts, vec![11, 1, 7]);
}
#[test]
fn test_process_stale_slot_with_budget() {
solana_logger::setup();
let (genesis_config, _mint_keypair) = create_genesis_config(1_000_000_000);
let pubkey1 = solana_sdk::pubkey::new_rand();
let pubkey2 = solana_sdk::pubkey::new_rand();
let mut bank = Arc::new(Bank::new_for_tests(&genesis_config));
bank.restore_old_behavior_for_fragile_tests();
assert_eq!(bank.process_stale_slot_with_budget(0, 0), 0);
assert_eq!(bank.process_stale_slot_with_budget(133, 0), 133);
assert_eq!(bank.process_stale_slot_with_budget(0, 100), 0);
assert_eq!(bank.process_stale_slot_with_budget(33, 100), 0);
assert_eq!(bank.process_stale_slot_with_budget(133, 100), 33);
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank).unwrap());
bank.squash();
let some_lamports = 123;
let mut bank = Arc::new(new_from_parent(&bank));
bank.deposit(&pubkey1, some_lamports).unwrap();
bank.deposit(&pubkey2, some_lamports).unwrap();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank).unwrap());
let mut bank = Arc::new(new_from_parent(&bank));
bank.deposit(&pubkey1, some_lamports).unwrap();
goto_end_of_slot(Arc::<Bank>::get_mut(&mut bank).unwrap());
bank.squash();
bank.clean_accounts(false, false, None);
let force_to_return_alive_account = 0;
assert_eq!(
bank.process_stale_slot_with_budget(22, force_to_return_alive_account),
22
);
let consumed_budgets: usize = (0..3)
.map(|_| bank.process_stale_slot_with_budget(0, force_to_return_alive_account))
.sum();
// consumed_budgets represents the count of alive accounts in the three slots 0,1,2
assert_eq!(consumed_budgets, 12);
}
#[test]
fn test_add_builtin_no_overwrite() {
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
#[allow(clippy::unnecessary_wraps)]
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
_invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
Ok(())
}
let slot = 123;
let program_id = solana_sdk::pubkey::new_rand();
let mut bank = Arc::new(Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
));
assert_eq!(bank.get_account_modified_slot(&program_id), None);
Arc::get_mut(&mut bank).unwrap().add_builtin(
"mock_program",
&program_id,
mock_ix_processor,
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
let mut bank = Arc::new(new_from_parent(&bank));
Arc::get_mut(&mut bank).unwrap().add_builtin(
"mock_program",
&program_id,
mock_ix_processor,
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
}
#[test]
fn test_add_builtin_loader_no_overwrite() {
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
#[allow(clippy::unnecessary_wraps)]
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
Ok(())
}
let slot = 123;
let loader_id = solana_sdk::pubkey::new_rand();
let mut bank = Arc::new(Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
));
assert_eq!(bank.get_account_modified_slot(&loader_id), None);
Arc::get_mut(&mut bank)
.unwrap()
.add_builtin("mock_program", &loader_id, mock_ix_processor);
assert_eq!(bank.get_account_modified_slot(&loader_id).unwrap().1, slot);
let mut bank = Arc::new(new_from_parent(&bank));
Arc::get_mut(&mut bank)
.unwrap()
.add_builtin("mock_program", &loader_id, mock_ix_processor);
assert_eq!(bank.get_account_modified_slot(&loader_id).unwrap().1, slot);
}
#[test]
fn test_add_builtin_account() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(100_000);
activate_all_features(&mut genesis_config);
let slot = 123;
let program_id = solana_sdk::pubkey::new_rand();
let bank = Arc::new(Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
));
assert_eq!(bank.get_account_modified_slot(&program_id), None);
assert_capitalization_diff(
&bank,
|| bank.add_builtin_account("mock_program", &program_id, false),
|old, new| {
assert_eq!(old + 1, new);
},
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
let bank = Arc::new(new_from_parent(&bank));
assert_capitalization_diff(
&bank,
|| bank.add_builtin_account("mock_program", &program_id, false),
|old, new| assert_eq!(old, new),
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
let bank = Arc::new(new_from_parent(&bank));
// When replacing builtin_program, name must change to disambiguate from repeated
// invocations.
assert_capitalization_diff(
&bank,
|| bank.add_builtin_account("mock_program v2", &program_id, true),
|old, new| assert_eq!(old, new),
);
assert_eq!(
bank.get_account_modified_slot(&program_id).unwrap().1,
bank.slot()
);
let bank = Arc::new(new_from_parent(&bank));
assert_capitalization_diff(
&bank,
|| bank.add_builtin_account("mock_program v2", &program_id, true),
|old, new| assert_eq!(old, new),
);
// replacing with same name shouldn't update account
assert_eq!(
bank.get_account_modified_slot(&program_id).unwrap().1,
bank.parent_slot()
);
}
#[test]
fn test_add_builtin_account_inherited_cap_while_replacing() {
let (genesis_config, mint_keypair) = create_genesis_config(100_000);
let bank = Bank::new_for_tests(&genesis_config);
let program_id = solana_sdk::pubkey::new_rand();
bank.add_builtin_account("mock_program", &program_id, false);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
// someone mess with program_id's balance
bank.withdraw(&mint_keypair.pubkey(), 10).unwrap();
assert_ne!(bank.capitalization(), bank.calculate_capitalization(true));
bank.deposit(&program_id, 10).unwrap();
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
bank.add_builtin_account("mock_program v2", &program_id, true);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
}
#[test]
fn test_add_builtin_account_squatted_while_not_replacing() {
let (genesis_config, mint_keypair) = create_genesis_config(100_000);
let bank = Bank::new_for_tests(&genesis_config);
let program_id = solana_sdk::pubkey::new_rand();
// someone managed to squat at program_id!
bank.withdraw(&mint_keypair.pubkey(), 10).unwrap();
assert_ne!(bank.capitalization(), bank.calculate_capitalization(true));
bank.deposit(&program_id, 10).unwrap();
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
bank.add_builtin_account("mock_program", &program_id, false);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
}
#[test]
#[should_panic(
expected = "Can't change frozen bank by adding not-existing new builtin \
program (mock_program, CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre). \
Maybe, inconsistent program activation is detected on snapshot restore?"
)]
fn test_add_builtin_account_after_frozen() {
use std::str::FromStr;
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let slot = 123;
let program_id = Pubkey::from_str("CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre").unwrap();
let bank = Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
);
bank.freeze();
bank.add_builtin_account("mock_program", &program_id, false);
}
#[test]
#[should_panic(
expected = "There is no account to replace with builtin program (mock_program, \
CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre)."
)]
fn test_add_builtin_account_replace_none() {
use std::str::FromStr;
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let slot = 123;
let program_id = Pubkey::from_str("CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre").unwrap();
let bank = Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
);
bank.add_builtin_account("mock_program", &program_id, true);
}
#[test]
fn test_add_precompiled_account() {
let (mut genesis_config, _mint_keypair) = create_genesis_config(100_000);
activate_all_features(&mut genesis_config);
let slot = 123;
let program_id = solana_sdk::pubkey::new_rand();
let bank = Arc::new(Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
));
assert_eq!(bank.get_account_modified_slot(&program_id), None);
assert_capitalization_diff(
&bank,
|| bank.add_precompiled_account(&program_id),
|old, new| {
assert_eq!(old + 1, new);
},
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
let bank = Arc::new(new_from_parent(&bank));
assert_capitalization_diff(
&bank,
|| bank.add_precompiled_account(&program_id),
|old, new| assert_eq!(old, new),
);
assert_eq!(bank.get_account_modified_slot(&program_id).unwrap().1, slot);
}
#[test]
fn test_add_precompiled_account_inherited_cap_while_replacing() {
let (genesis_config, mint_keypair) = create_genesis_config(100_000);
let bank = Bank::new_for_tests(&genesis_config);
let program_id = solana_sdk::pubkey::new_rand();
bank.add_precompiled_account(&program_id);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
// someone mess with program_id's balance
bank.withdraw(&mint_keypair.pubkey(), 10).unwrap();
assert_ne!(bank.capitalization(), bank.calculate_capitalization(true));
bank.deposit(&program_id, 10).unwrap();
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
bank.add_precompiled_account(&program_id);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
}
#[test]
fn test_add_precompiled_account_squatted_while_not_replacing() {
let (genesis_config, mint_keypair) = create_genesis_config(100_000);
let bank = Bank::new_for_tests(&genesis_config);
let program_id = solana_sdk::pubkey::new_rand();
// someone managed to squat at program_id!
bank.withdraw(&mint_keypair.pubkey(), 10).unwrap();
assert_ne!(bank.capitalization(), bank.calculate_capitalization(true));
bank.deposit(&program_id, 10).unwrap();
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
bank.add_precompiled_account(&program_id);
assert_eq!(bank.capitalization(), bank.calculate_capitalization(true));
}
#[test]
#[should_panic(
expected = "Can't change frozen bank by adding not-existing new precompiled \
program (CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre). \
Maybe, inconsistent program activation is detected on snapshot restore?"
)]
fn test_add_precompiled_account_after_frozen() {
use std::str::FromStr;
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let slot = 123;
let program_id = Pubkey::from_str("CiXgo2KHKSDmDnV1F6B69eWFgNAPiSBjjYvfB4cvRNre").unwrap();
let bank = Bank::new_from_parent(
&Arc::new(Bank::new_for_tests(&genesis_config)),
&Pubkey::default(),
slot,
);
bank.freeze();
bank.add_precompiled_account(&program_id);
}
#[test]
fn test_reconfigure_token2_native_mint() {
solana_logger::setup();
let mut genesis_config =
create_genesis_config_with_leader(5, &solana_sdk::pubkey::new_rand(), 0).genesis_config;
// ClusterType::Development - Native mint exists immediately
assert_eq!(genesis_config.cluster_type, ClusterType::Development);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(
bank.get_balance(&inline_spl_token::native_mint::id()),
1000000000
);
// Testnet - Native mint blinks into existence at epoch 93
genesis_config.cluster_type = ClusterType::Testnet;
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.get_balance(&inline_spl_token::native_mint::id()), 0);
bank.deposit(&inline_spl_token::native_mint::id(), 4200000000)
.unwrap();
let bank = Bank::new_from_parent(
&bank,
&Pubkey::default(),
genesis_config.epoch_schedule.get_first_slot_in_epoch(93),
);
let native_mint_account = bank
.get_account(&inline_spl_token::native_mint::id())
.unwrap();
assert_eq!(native_mint_account.data().len(), 82);
assert_eq!(
bank.get_balance(&inline_spl_token::native_mint::id()),
4200000000
);
assert_eq!(native_mint_account.owner(), &inline_spl_token::id());
// MainnetBeta - Native mint blinks into existence at epoch 75
genesis_config.cluster_type = ClusterType::MainnetBeta;
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
assert_eq!(bank.get_balance(&inline_spl_token::native_mint::id()), 0);
bank.deposit(&inline_spl_token::native_mint::id(), 4200000000)
.unwrap();
let bank = Bank::new_from_parent(
&bank,
&Pubkey::default(),
genesis_config.epoch_schedule.get_first_slot_in_epoch(75),
);
let native_mint_account = bank
.get_account(&inline_spl_token::native_mint::id())
.unwrap();
assert_eq!(native_mint_account.data().len(), 82);
assert_eq!(
bank.get_balance(&inline_spl_token::native_mint::id()),
4200000000
);
assert_eq!(native_mint_account.owner(), &inline_spl_token::id());
}
#[test]
fn test_ensure_no_storage_rewards_pool() {
solana_logger::setup();
let mut genesis_config =
create_genesis_config_with_leader(5, &solana_sdk::pubkey::new_rand(), 0).genesis_config;
// Testnet - Storage rewards pool is purged at epoch 93
// Also this is with bad capitalization
genesis_config.cluster_type = ClusterType::Testnet;
genesis_config.inflation = Inflation::default();
let reward_pubkey = solana_sdk::pubkey::new_rand();
genesis_config.rewards_pools.insert(
reward_pubkey,
Account::new(u64::MAX, 0, &solana_sdk::pubkey::new_rand()),
);
let bank0 = Bank::new_for_tests(&genesis_config);
// because capitalization has been reset with bogus capitalization calculation allowing overflows,
// deliberately substract 1 lamport to simulate it
bank0.capitalization.fetch_sub(1, Relaxed);
let bank0 = Arc::new(bank0);
assert_eq!(bank0.get_balance(&reward_pubkey), u64::MAX,);
let bank1 = Bank::new_from_parent(
&bank0,
&Pubkey::default(),
genesis_config.epoch_schedule.get_first_slot_in_epoch(93),
);
// assert that everything gets in order....
assert!(bank1.get_account(&reward_pubkey).is_none());
let sysvar_and_builtin_program_delta = 1;
assert_eq!(
bank0.capitalization() + 1 + 1_000_000_000 + sysvar_and_builtin_program_delta,
bank1.capitalization()
);
assert_eq!(bank1.capitalization(), bank1.calculate_capitalization(true));
// Depending on RUSTFLAGS, this test exposes rust's checked math behavior or not...
// So do some convolted setup; anyway this test itself will just be temporary
let bank0 = std::panic::AssertUnwindSafe(bank0);
let overflowing_capitalization =
std::panic::catch_unwind(|| bank0.calculate_capitalization(true));
if let Ok(overflowing_capitalization) = overflowing_capitalization {
info!("asserting overflowing capitalization for bank0");
assert_eq!(overflowing_capitalization, bank0.capitalization());
} else {
info!("NOT-asserting overflowing capitalization for bank0");
}
}
#[derive(Debug)]
struct TestExecutor {}
impl Executor for TestExecutor {
fn execute<'a, 'b>(
&self,
_first_instruction_account: usize,
_instruction_data: &[u8],
_invoke_context: &'a mut InvokeContext<'b>,
_use_jit: bool,
) -> std::result::Result<(), InstructionError> {
Ok(())
}
}
#[test]
fn test_cached_executors() {
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let key3 = solana_sdk::pubkey::new_rand();
let key4 = solana_sdk::pubkey::new_rand();
let executor: Arc<dyn Executor> = Arc::new(TestExecutor {});
let mut cache = CachedExecutors::new(3, 0);
cache.put(&[(&key1, executor.clone())]);
cache.put(&[(&key2, executor.clone())]);
cache.put(&[(&key3, executor.clone())]);
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key2).is_some());
assert!(cache.get(&key3).is_some());
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key2).is_some());
cache.put(&[(&key4, executor.clone())]);
assert!(cache.get(&key4).is_some());
let num_retained = [&key1, &key2, &key3]
.iter()
.filter_map(|key| cache.get(key))
.count();
assert_eq!(num_retained, 2);
assert!(cache.get(&key4).is_some());
assert!(cache.get(&key4).is_some());
assert!(cache.get(&key4).is_some());
cache.put(&[(&key3, executor.clone())]);
assert!(cache.get(&key3).is_some());
let num_retained = [&key1, &key2, &key4]
.iter()
.filter_map(|key| cache.get(key))
.count();
assert_eq!(num_retained, 2);
}
#[test]
fn test_cached_executor_eviction() {
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let key3 = solana_sdk::pubkey::new_rand();
let key4 = solana_sdk::pubkey::new_rand();
let executor: Arc<dyn Executor> = Arc::new(TestExecutor {});
let mut cache = CachedExecutors::new(3, 0);
assert!(cache.current_epoch == 0);
cache.put(&[(&key1, executor.clone())]);
cache.put(&[(&key2, executor.clone())]);
cache.put(&[(&key3, executor.clone())]);
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key1).is_some());
let mut cache = Arc::new(cache).clone_with_epoch(1);
assert!(cache.current_epoch == 1);
assert!(cache.get(&key2).is_some());
assert!(cache.get(&key2).is_some());
assert!(cache.get(&key3).is_some());
Arc::make_mut(&mut cache).put(&[(&key4, executor.clone())]);
assert!(cache.get(&key4).is_some());
let num_retained = [&key1, &key2, &key3]
.iter()
.filter_map(|key| cache.get(key))
.count();
assert_eq!(num_retained, 2);
Arc::make_mut(&mut cache).put(&[(&key1, executor.clone())]);
Arc::make_mut(&mut cache).put(&[(&key3, executor.clone())]);
assert!(cache.get(&key1).is_some());
assert!(cache.get(&key3).is_some());
let num_retained = [&key2, &key4]
.iter()
.filter_map(|key| cache.get(key))
.count();
assert_eq!(num_retained, 1);
cache = cache.clone_with_epoch(2);
assert!(cache.current_epoch == 2);
Arc::make_mut(&mut cache).put(&[(&key3, executor.clone())]);
assert!(cache.get(&key3).is_some());
}
#[test]
fn test_cached_executors_evicts_smallest() {
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let key3 = solana_sdk::pubkey::new_rand();
let executor: Arc<dyn Executor> = Arc::new(TestExecutor {});
let mut cache = CachedExecutors::new(2, 0);
cache.put(&[(&key1, executor.clone())]);
for _ in 0..5 {
let _ = cache.get(&key1);
}
cache.put(&[(&key2, executor.clone())]);
// make key1's use-count for sure greater than key2's
let _ = cache.get(&key1);
let mut entries = cache
.executors
.iter()
.map(|(k, v)| (*k, v.epoch_count.load(Relaxed)))
.collect::<Vec<_>>();
entries.sort_by_key(|(_, v)| *v);
assert!(entries[0].1 < entries[1].1);
cache.put(&[(&key3, executor.clone())]);
assert!(cache.get(&entries[0].0).is_none());
assert!(cache.get(&entries[1].0).is_some());
}
#[test]
fn test_bank_executor_cache() {
solana_logger::setup();
let (genesis_config, _) = create_genesis_config(1);
let bank = Bank::new_for_tests(&genesis_config);
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let key3 = solana_sdk::pubkey::new_rand();
let key4 = solana_sdk::pubkey::new_rand();
let key5 = solana_sdk::pubkey::new_rand();
let executor: Arc<dyn Executor> = Arc::new(TestExecutor {});
fn new_executable_account(owner: Pubkey) -> AccountSharedData {
AccountSharedData::from(Account {
owner,
executable: true,
..Account::default()
})
}
let accounts = &[
(key1, new_executable_account(bpf_loader_upgradeable::id())),
(key2, new_executable_account(bpf_loader::id())),
(key3, new_executable_account(bpf_loader_deprecated::id())),
(key4, new_executable_account(native_loader::id())),
(key5, AccountSharedData::default()),
];
// don't do any work if not dirty
let mut executors = Executors::default();
executors.insert(key1, TransactionExecutor::new_cached(executor.clone()));
executors.insert(key2, TransactionExecutor::new_cached(executor.clone()));
executors.insert(key3, TransactionExecutor::new_cached(executor.clone()));
executors.insert(key4, TransactionExecutor::new_cached(executor.clone()));
let executors = Rc::new(RefCell::new(executors));
executors
.borrow_mut()
.get_mut(&key1)
.unwrap()
.clear_miss_for_test();
bank.update_executors(true, executors);
let executors = bank.get_executors(accounts);
assert_eq!(executors.borrow().len(), 0);
// do work
let mut executors = Executors::default();
executors.insert(key1, TransactionExecutor::new_miss(executor.clone()));
executors.insert(key2, TransactionExecutor::new_miss(executor.clone()));
executors.insert(key3, TransactionExecutor::new_miss(executor.clone()));
executors.insert(key4, TransactionExecutor::new_miss(executor.clone()));
let executors = Rc::new(RefCell::new(executors));
bank.update_executors(true, executors);
let executors = bank.get_executors(accounts);
assert_eq!(executors.borrow().len(), 3);
assert!(executors.borrow().contains_key(&key1));
assert!(executors.borrow().contains_key(&key2));
assert!(executors.borrow().contains_key(&key3));
// Check inheritance
let bank = Bank::new_from_parent(&Arc::new(bank), &solana_sdk::pubkey::new_rand(), 1);
let executors = bank.get_executors(accounts);
assert_eq!(executors.borrow().len(), 3);
assert!(executors.borrow().contains_key(&key1));
assert!(executors.borrow().contains_key(&key2));
assert!(executors.borrow().contains_key(&key3));
// Remove all
bank.remove_executor(&key1);
bank.remove_executor(&key2);
bank.remove_executor(&key3);
bank.remove_executor(&key4);
let executors = bank.get_executors(accounts);
assert_eq!(executors.borrow().len(), 0);
}
#[test]
fn test_bank_executor_cow() {
solana_logger::setup();
let (genesis_config, _) = create_genesis_config(1);
let root = Arc::new(Bank::new_for_tests(&genesis_config));
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let executor: Arc<dyn Executor> = Arc::new(TestExecutor {});
let executable_account = AccountSharedData::from(Account {
owner: bpf_loader_upgradeable::id(),
executable: true,
..Account::default()
});
let accounts = &[
(key1, executable_account.clone()),
(key2, executable_account),
];
// add one to root bank
let mut executors = Executors::default();
executors.insert(key1, TransactionExecutor::new_miss(executor.clone()));
let executors = Rc::new(RefCell::new(executors));
root.update_executors(true, executors);
let executors = root.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
let fork1 = Bank::new_from_parent(&root, &Pubkey::default(), 1);
let fork2 = Bank::new_from_parent(&root, &Pubkey::default(), 2);
let executors = fork1.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
let executors = fork2.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
let mut executors = Executors::default();
executors.insert(key2, TransactionExecutor::new_miss(executor.clone()));
let executors = Rc::new(RefCell::new(executors));
fork1.update_executors(true, executors);
let executors = fork1.get_executors(accounts);
assert_eq!(executors.borrow().len(), 2);
let executors = fork2.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
fork1.remove_executor(&key1);
let executors = fork1.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
let executors = fork2.get_executors(accounts);
assert_eq!(executors.borrow().len(), 1);
}
#[test]
fn test_compute_active_feature_set() {
let (genesis_config, _mint_keypair) = create_genesis_config(100_000);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let mut bank = Bank::new_from_parent(&bank0, &Pubkey::default(), 1);
let test_feature = "TestFeature11111111111111111111111111111111"
.parse::<Pubkey>()
.unwrap();
let mut feature_set = FeatureSet::default();
feature_set.inactive.insert(test_feature);
bank.feature_set = Arc::new(feature_set.clone());
let new_activations = bank.compute_active_feature_set(true);
assert!(new_activations.is_empty());
assert!(!bank.feature_set.is_active(&test_feature));
// Depositing into the `test_feature` account should do nothing
bank.deposit(&test_feature, 42).unwrap();
let new_activations = bank.compute_active_feature_set(true);
assert!(new_activations.is_empty());
assert!(!bank.feature_set.is_active(&test_feature));
// Request `test_feature` activation
let feature = Feature::default();
assert_eq!(feature.activated_at, None);
bank.store_account(&test_feature, &feature::create_account(&feature, 42));
// Run `compute_active_feature_set` disallowing new activations
let new_activations = bank.compute_active_feature_set(false);
assert!(new_activations.is_empty());
assert!(!bank.feature_set.is_active(&test_feature));
let feature = feature::from_account(&bank.get_account(&test_feature).expect("get_account"))
.expect("from_account");
assert_eq!(feature.activated_at, None);
// Run `compute_active_feature_set` allowing new activations
let new_activations = bank.compute_active_feature_set(true);
assert_eq!(new_activations.len(), 1);
assert!(bank.feature_set.is_active(&test_feature));
let feature = feature::from_account(&bank.get_account(&test_feature).expect("get_account"))
.expect("from_account");
assert_eq!(feature.activated_at, Some(1));
// Reset the bank's feature set
bank.feature_set = Arc::new(feature_set);
assert!(!bank.feature_set.is_active(&test_feature));
// Running `compute_active_feature_set` will not cause new activations, but
// `test_feature` is now be active
let new_activations = bank.compute_active_feature_set(true);
assert!(new_activations.is_empty());
assert!(bank.feature_set.is_active(&test_feature));
}
#[test]
fn test_program_replacement() {
let (genesis_config, _mint_keypair) = create_genesis_config(0);
let mut bank = Bank::new_for_tests(&genesis_config);
// Setup original program account
let old_address = Pubkey::new_unique();
let new_address = Pubkey::new_unique();
bank.store_account_and_update_capitalization(
&old_address,
&AccountSharedData::from(Account {
lamports: 100,
..Account::default()
}),
);
assert_eq!(bank.get_balance(&old_address), 100);
// Setup new program account
let new_program_account = AccountSharedData::from(Account {
lamports: 123,
..Account::default()
});
bank.store_account_and_update_capitalization(&new_address, &new_program_account);
assert_eq!(bank.get_balance(&new_address), 123);
let original_capitalization = bank.capitalization();
bank.replace_program_account(&old_address, &new_address, "bank-apply_program_replacement");
// New program account is now empty
assert_eq!(bank.get_balance(&new_address), 0);
// Old program account holds the new program account
assert_eq!(bank.get_account(&old_address), Some(new_program_account));
// Lamports in the old token account were burnt
assert_eq!(bank.capitalization(), original_capitalization - 100);
}
pub fn update_vote_account_timestamp(
timestamp: BlockTimestamp,
bank: &Bank,
vote_pubkey: &Pubkey,
) {
let mut vote_account = bank.get_account(vote_pubkey).unwrap_or_default();
let mut vote_state = VoteState::from(&vote_account).unwrap_or_default();
vote_state.last_timestamp = timestamp;
let versioned = VoteStateVersions::new_current(vote_state);
VoteState::to(&versioned, &mut vote_account).unwrap();
bank.store_account(vote_pubkey, &vote_account);
}
fn min_rent_excempt_balance_for_sysvars(bank: &Bank, sysvar_ids: &[Pubkey]) -> u64 {
sysvar_ids
.iter()
.map(|sysvar_id| {
trace!("min_rent_excempt_balance_for_sysvars: {}", sysvar_id);
bank.get_minimum_balance_for_rent_exemption(
bank.get_account(sysvar_id).unwrap().data().len(),
)
})
.sum()
}
#[test]
fn test_adjust_sysvar_balance_for_rent() {
let (genesis_config, _mint_keypair) = create_genesis_config(0);
let bank = Bank::new_for_tests(&genesis_config);
let mut smaller_sample_sysvar = AccountSharedData::new(1, 0, &Pubkey::default());
assert_eq!(smaller_sample_sysvar.lamports(), 1);
bank.adjust_sysvar_balance_for_rent(&mut smaller_sample_sysvar);
assert_eq!(
smaller_sample_sysvar.lamports(),
bank.get_minimum_balance_for_rent_exemption(smaller_sample_sysvar.data().len()),
);
let mut bigger_sample_sysvar = AccountSharedData::new(
1,
smaller_sample_sysvar.data().len() + 1,
&Pubkey::default(),
);
bank.adjust_sysvar_balance_for_rent(&mut bigger_sample_sysvar);
assert!(smaller_sample_sysvar.lamports() < bigger_sample_sysvar.lamports());
// excess lamports shouldn't be reduced by adjust_sysvar_balance_for_rent()
let excess_lamports = smaller_sample_sysvar.lamports() + 999;
smaller_sample_sysvar.set_lamports(excess_lamports);
bank.adjust_sysvar_balance_for_rent(&mut smaller_sample_sysvar);
assert_eq!(smaller_sample_sysvar.lamports(), excess_lamports);
}
#[test]
fn test_update_clock_timestamp() {
let leader_pubkey = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
genesis_config,
voting_keypair,
..
} = create_genesis_config_with_leader(5, &leader_pubkey, 3);
let mut bank = Bank::new_for_tests(&genesis_config);
// Advance past slot 0, which has special handling.
bank = new_from_parent(&Arc::new(bank));
bank = new_from_parent(&Arc::new(bank));
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis()
);
bank.update_clock(None);
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis()
);
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: bank.unix_timestamp_from_genesis() - 1,
},
&bank,
&voting_keypair.pubkey(),
);
bank.update_clock(None);
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis()
);
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: bank.unix_timestamp_from_genesis(),
},
&bank,
&voting_keypair.pubkey(),
);
bank.update_clock(None);
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis()
);
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: bank.unix_timestamp_from_genesis() + 1,
},
&bank,
&voting_keypair.pubkey(),
);
bank.update_clock(None);
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis() + 1
);
// Timestamp cannot go backward from ancestor Bank to child
bank = new_from_parent(&Arc::new(bank));
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: bank.unix_timestamp_from_genesis() - 1,
},
&bank,
&voting_keypair.pubkey(),
);
bank.update_clock(None);
assert_eq!(
bank.clock().unix_timestamp,
bank.unix_timestamp_from_genesis()
);
}
fn poh_estimate_offset(bank: &Bank) -> Duration {
let mut epoch_start_slot = bank.epoch_schedule.get_first_slot_in_epoch(bank.epoch());
if epoch_start_slot == bank.slot() {
epoch_start_slot = bank
.epoch_schedule
.get_first_slot_in_epoch(bank.epoch() - 1);
}
bank.slot().saturating_sub(epoch_start_slot) as u32
* Duration::from_nanos(bank.ns_per_slot as u64)
}
#[test]
fn test_warp_timestamp_again_feature_slow() {
fn max_allowable_delta_since_epoch(bank: &Bank, max_allowable_drift: u32) -> i64 {
let poh_estimate_offset = poh_estimate_offset(bank);
(poh_estimate_offset.as_secs()
+ (poh_estimate_offset * max_allowable_drift / 100).as_secs()) as i64
}
let leader_pubkey = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
voting_keypair,
..
} = create_genesis_config_with_leader(5, &leader_pubkey, 3);
let slots_in_epoch = 32;
genesis_config
.accounts
.remove(&feature_set::warp_timestamp_again::id())
.unwrap();
genesis_config.epoch_schedule = EpochSchedule::new(slots_in_epoch);
let mut bank = Bank::new_for_tests(&genesis_config);
let recent_timestamp: UnixTimestamp = bank.unix_timestamp_from_genesis();
let additional_secs = 8; // Greater than MAX_ALLOWABLE_DRIFT_PERCENTAGE for full epoch
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: recent_timestamp + additional_secs,
},
&bank,
&voting_keypair.pubkey(),
);
// additional_secs greater than MAX_ALLOWABLE_DRIFT_PERCENTAGE for an epoch
// timestamp bounded to 50% deviation
for _ in 0..31 {
bank = new_from_parent(&Arc::new(bank));
assert_eq!(
bank.clock().unix_timestamp,
bank.clock().epoch_start_timestamp
+ max_allowable_delta_since_epoch(&bank, MAX_ALLOWABLE_DRIFT_PERCENTAGE),
);
assert_eq!(bank.clock().epoch_start_timestamp, recent_timestamp);
}
// Request `warp_timestamp_again` activation
let feature = Feature { activated_at: None };
bank.store_account(
&feature_set::warp_timestamp_again::id(),
&feature::create_account(&feature, 42),
);
let previous_epoch_timestamp = bank.clock().epoch_start_timestamp;
let previous_timestamp = bank.clock().unix_timestamp;
// Advance to epoch boundary to activate; time is warped to estimate with no bounding
bank = new_from_parent(&Arc::new(bank));
assert_ne!(bank.clock().epoch_start_timestamp, previous_timestamp);
assert!(
bank.clock().epoch_start_timestamp
> previous_epoch_timestamp
+ max_allowable_delta_since_epoch(&bank, MAX_ALLOWABLE_DRIFT_PERCENTAGE)
);
// Refresh vote timestamp
let recent_timestamp: UnixTimestamp = bank.clock().unix_timestamp;
let additional_secs = 8;
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: recent_timestamp + additional_secs,
},
&bank,
&voting_keypair.pubkey(),
);
// additional_secs greater than MAX_ALLOWABLE_DRIFT_PERCENTAGE for 22 slots
// timestamp bounded to 80% deviation
for _ in 0..23 {
bank = new_from_parent(&Arc::new(bank));
assert_eq!(
bank.clock().unix_timestamp,
bank.clock().epoch_start_timestamp
+ max_allowable_delta_since_epoch(&bank, MAX_ALLOWABLE_DRIFT_PERCENTAGE_SLOW),
);
assert_eq!(bank.clock().epoch_start_timestamp, recent_timestamp);
}
for _ in 0..8 {
bank = new_from_parent(&Arc::new(bank));
assert_eq!(
bank.clock().unix_timestamp,
bank.clock().epoch_start_timestamp
+ poh_estimate_offset(&bank).as_secs() as i64
+ additional_secs,
);
assert_eq!(bank.clock().epoch_start_timestamp, recent_timestamp);
}
}
#[test]
fn test_timestamp_fast() {
fn max_allowable_delta_since_epoch(bank: &Bank, max_allowable_drift: u32) -> i64 {
let poh_estimate_offset = poh_estimate_offset(bank);
(poh_estimate_offset.as_secs()
- (poh_estimate_offset * max_allowable_drift / 100).as_secs()) as i64
}
let leader_pubkey = solana_sdk::pubkey::new_rand();
let GenesisConfigInfo {
mut genesis_config,
voting_keypair,
..
} = create_genesis_config_with_leader(5, &leader_pubkey, 3);
let slots_in_epoch = 32;
genesis_config.epoch_schedule = EpochSchedule::new(slots_in_epoch);
let mut bank = Bank::new_for_tests(&genesis_config);
let recent_timestamp: UnixTimestamp = bank.unix_timestamp_from_genesis();
let additional_secs = 5; // Greater than MAX_ALLOWABLE_DRIFT_PERCENTAGE_FAST for full epoch
update_vote_account_timestamp(
BlockTimestamp {
slot: bank.slot(),
timestamp: recent_timestamp - additional_secs,
},
&bank,
&voting_keypair.pubkey(),
);
// additional_secs greater than MAX_ALLOWABLE_DRIFT_PERCENTAGE_FAST for an epoch
// timestamp bounded to 25% deviation
for _ in 0..31 {
bank = new_from_parent(&Arc::new(bank));
assert_eq!(
bank.clock().unix_timestamp,
bank.clock().epoch_start_timestamp
+ max_allowable_delta_since_epoch(&bank, MAX_ALLOWABLE_DRIFT_PERCENTAGE_FAST),
);
assert_eq!(bank.clock().epoch_start_timestamp, recent_timestamp);
}
}
#[test]
fn test_program_is_native_loader() {
let (genesis_config, mint_keypair) = create_genesis_config(50000);
let bank = Bank::new_for_tests(&genesis_config);
let tx = Transaction::new_signed_with_payer(
&[Instruction::new_with_bincode(
native_loader::id(),
&(),
vec![],
)],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InstructionError(
0,
InstructionError::UnsupportedProgramId
))
);
}
#[test]
fn test_debug_bank() {
let (genesis_config, _mint_keypair) = create_genesis_config(50000);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.finish_init(&genesis_config, None, false);
let debug = format!("{:#?}", bank);
assert!(!debug.is_empty());
}
#[derive(Debug)]
enum AcceptableScanResults {
DroppedSlotError,
NoFailure,
Both,
}
fn test_store_scan_consistency<F: 'static>(
accounts_db_caching_enabled: bool,
update_f: F,
drop_callback: Option<Box<dyn DropCallback + Send + Sync>>,
acceptable_scan_results: AcceptableScanResults,
) where
F: Fn(
Arc<Bank>,
crossbeam_channel::Sender<Arc<Bank>>,
crossbeam_channel::Receiver<BankId>,
Arc<HashSet<Pubkey>>,
Pubkey,
u64,
) + std::marker::Send,
{
solana_logger::setup();
// Set up initial bank
let mut genesis_config = create_genesis_config_with_leader(
10,
&solana_sdk::pubkey::new_rand(),
374_999_998_287_840,
)
.genesis_config;
genesis_config.rent = Rent::free();
let bank0 = Arc::new(Bank::new_with_config(
&genesis_config,
AccountSecondaryIndexes::default(),
accounts_db_caching_enabled,
AccountShrinkThreshold::default(),
));
bank0.set_callback(drop_callback);
// Set up pubkeys to write to
let total_pubkeys = ITER_BATCH_SIZE * 10;
let total_pubkeys_to_modify = 10;
let all_pubkeys: Vec<Pubkey> = std::iter::repeat_with(solana_sdk::pubkey::new_rand)
.take(total_pubkeys)
.collect();
let program_id = system_program::id();
let starting_lamports = 1;
let starting_account = AccountSharedData::new(starting_lamports, 0, &program_id);
// Write accounts to the store
for key in &all_pubkeys {
bank0.store_account(key, &starting_account);
}
// Set aside a subset of accounts to modify
let pubkeys_to_modify: Arc<HashSet<Pubkey>> = Arc::new(
all_pubkeys
.into_iter()
.take(total_pubkeys_to_modify)
.collect(),
);
let exit = Arc::new(AtomicBool::new(false));
// Thread that runs scan and constantly checks for
// consistency
let pubkeys_to_modify_ = pubkeys_to_modify.clone();
// Channel over which the bank to scan is sent
let (bank_to_scan_sender, bank_to_scan_receiver): (
crossbeam_channel::Sender<Arc<Bank>>,
crossbeam_channel::Receiver<Arc<Bank>>,
) = bounded(1);
let (scan_finished_sender, scan_finished_receiver): (
crossbeam_channel::Sender<BankId>,
crossbeam_channel::Receiver<BankId>,
) = unbounded();
let num_banks_scanned = Arc::new(AtomicU64::new(0));
let scan_thread = {
let exit = exit.clone();
let num_banks_scanned = num_banks_scanned.clone();
Builder::new()
.name("scan".to_string())
.spawn(move || {
loop {
info!("starting scan iteration");
if exit.load(Relaxed) {
info!("scan exiting");
return;
}
if let Ok(bank_to_scan) =
bank_to_scan_receiver.recv_timeout(Duration::from_millis(10))
{
info!("scanning program accounts for slot {}", bank_to_scan.slot());
let accounts_result = bank_to_scan
.get_program_accounts(&program_id, &ScanConfig::default());
let _ = scan_finished_sender.send(bank_to_scan.bank_id());
num_banks_scanned.fetch_add(1, Relaxed);
match (&acceptable_scan_results, accounts_result.is_err()) {
(AcceptableScanResults::DroppedSlotError, _)
| (AcceptableScanResults::Both, true) => {
assert_eq!(
accounts_result,
Err(ScanError::SlotRemoved {
slot: bank_to_scan.slot(),
bank_id: bank_to_scan.bank_id()
})
);
}
(AcceptableScanResults::NoFailure, _)
| (AcceptableScanResults::Both, false) => {
assert!(accounts_result.is_ok())
}
}
// Should never see empty accounts because no slot ever deleted
// any of the original accounts, and the scan should reflect the
// account state at some frozen slot `X` (no partial updates).
if let Ok(accounts) = accounts_result {
assert!(!accounts.is_empty());
let mut expected_lamports = None;
let mut target_accounts_found = HashSet::new();
for (pubkey, account) in accounts {
let account_balance = account.lamports();
if pubkeys_to_modify_.contains(&pubkey) {
target_accounts_found.insert(pubkey);
if let Some(expected_lamports) = expected_lamports {
assert_eq!(account_balance, expected_lamports);
} else {
// All pubkeys in the specified set should have the same balance
expected_lamports = Some(account_balance);
}
}
}
// Should've found all the accounts, i.e. no partial cleans should
// be detected
assert_eq!(target_accounts_found.len(), total_pubkeys_to_modify);
}
}
}
})
.unwrap()
};
// Thread that constantly updates the accounts, sets
// roots, and cleans
let update_thread = Builder::new()
.name("update".to_string())
.spawn(move || {
update_f(
bank0,
bank_to_scan_sender,
scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports,
);
})
.unwrap();
// Let threads run for a while, check the scans didn't see any mixed slots
let min_expected_number_of_scans = 5;
std::thread::sleep(Duration::new(5, 0));
let mut remaining_loops = 1000;
loop {
if num_banks_scanned.load(Relaxed) > min_expected_number_of_scans {
break;
} else {
std::thread::sleep(Duration::from_millis(100));
}
remaining_loops -= 1;
if remaining_loops == 0 {
break; // just quit and try to get the thread result (panic, etc.)
}
}
exit.store(true, Relaxed);
scan_thread.join().unwrap();
update_thread.join().unwrap();
assert!(remaining_loops > 0, "test timed out");
}
#[test]
fn test_store_scan_consistency_unrooted() {
for accounts_db_caching_enabled in &[false, true] {
let (pruned_banks_sender, pruned_banks_receiver) = unbounded();
let abs_request_handler = AbsRequestHandler {
snapshot_request_handler: None,
pruned_banks_receiver,
};
test_store_scan_consistency(
*accounts_db_caching_enabled,
move |bank0,
bank_to_scan_sender,
_scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports| {
let mut current_major_fork_bank = bank0;
loop {
let mut current_minor_fork_bank = current_major_fork_bank.clone();
let num_new_banks = 2;
let lamports = current_minor_fork_bank.slot() + starting_lamports + 1;
// Modify banks on the two banks on the minor fork
for pubkeys_to_modify in &pubkeys_to_modify
.iter()
.chunks(pubkeys_to_modify.len() / num_new_banks)
{
current_minor_fork_bank = Arc::new(Bank::new_from_parent(
&current_minor_fork_bank,
&solana_sdk::pubkey::new_rand(),
current_minor_fork_bank.slot() + 2,
));
let account = AccountSharedData::new(lamports, 0, &program_id);
// Write partial updates to each of the banks in the minor fork so if any of them
// get cleaned up, there will be keys with the wrong account value/missing.
for key in pubkeys_to_modify {
current_minor_fork_bank.store_account(key, &account);
}
current_minor_fork_bank.freeze();
}
// All the parent banks made in this iteration of the loop
// are currently discoverable, previous parents should have
// been squashed
assert_eq!(
current_minor_fork_bank.clone().parents_inclusive().len(),
num_new_banks + 1,
);
// `next_major_bank` needs to be sandwiched between the minor fork banks
// That way, after the squash(), the minor fork has the potential to see a
// *partial* clean of the banks < `next_major_bank`.
current_major_fork_bank = Arc::new(Bank::new_from_parent(
&current_major_fork_bank,
&solana_sdk::pubkey::new_rand(),
current_minor_fork_bank.slot() - 1,
));
let lamports = current_major_fork_bank.slot() + starting_lamports + 1;
let account = AccountSharedData::new(lamports, 0, &program_id);
for key in pubkeys_to_modify.iter() {
// Store rooted updates to these pubkeys such that the minor
// fork updates to the same keys will be deleted by clean
current_major_fork_bank.store_account(key, &account);
}
// Send the last new bank to the scan thread to perform the scan.
// Meanwhile this thread will continually set roots on a separate fork
// and squash/clean, purging the account entries from the minor forks
/*
bank 0
/ \
minor bank 1 \
/ current_major_fork_bank
minor bank 2
*/
// The capacity of the channel is 1 so that this thread will wait for the scan to finish before starting
// the next iteration, allowing the scan to stay in sync with these updates
// such that every scan will see this interruption.
if bank_to_scan_sender.send(current_minor_fork_bank).is_err() {
// Channel was disconnected, exit
return;
}
current_major_fork_bank.freeze();
current_major_fork_bank.squash();
// Try to get cache flush/clean to overlap with the scan
current_major_fork_bank.force_flush_accounts_cache();
current_major_fork_bank.clean_accounts(false, false, None);
// Move purge here so that Bank::drop()->purge_slots() doesn't race
// with clean. Simulates the call from AccountsBackgroundService
let is_abs_service = true;
abs_request_handler
.handle_pruned_banks(&current_major_fork_bank, is_abs_service);
}
},
Some(Box::new(SendDroppedBankCallback::new(
pruned_banks_sender.clone(),
))),
AcceptableScanResults::NoFailure,
)
}
}
#[test]
fn test_store_scan_consistency_root() {
for accounts_db_caching_enabled in &[false, true] {
test_store_scan_consistency(
*accounts_db_caching_enabled,
|bank0,
bank_to_scan_sender,
_scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports| {
let mut current_bank = bank0.clone();
let mut prev_bank = bank0;
loop {
let lamports_this_round = current_bank.slot() + starting_lamports + 1;
let account = AccountSharedData::new(lamports_this_round, 0, &program_id);
for key in pubkeys_to_modify.iter() {
current_bank.store_account(key, &account);
}
current_bank.freeze();
// Send the previous bank to the scan thread to perform the scan.
// Meanwhile this thread will squash and update roots immediately after
// so the roots will update while scanning.
//
// The capacity of the channel is 1 so that this thread will wait for the scan to finish before starting
// the next iteration, allowing the scan to stay in sync with these updates
// such that every scan will see this interruption.
if bank_to_scan_sender.send(prev_bank).is_err() {
// Channel was disconnected, exit
return;
}
current_bank.squash();
if current_bank.slot() % 2 == 0 {
current_bank.force_flush_accounts_cache();
current_bank.clean_accounts(true, false, None);
}
prev_bank = current_bank.clone();
current_bank = Arc::new(Bank::new_from_parent(
&current_bank,
&solana_sdk::pubkey::new_rand(),
current_bank.slot() + 1,
));
}
},
None,
AcceptableScanResults::NoFailure,
);
}
}
fn setup_banks_on_fork_to_remove(
bank0: Arc<Bank>,
pubkeys_to_modify: Arc<HashSet<Pubkey>>,
program_id: &Pubkey,
starting_lamports: u64,
num_banks_on_fork: usize,
step_size: usize,
) -> (Arc<Bank>, Vec<(Slot, BankId)>, Ancestors) {
// Need at least 2 keys to create inconsistency in account balances when deleting
// slots
assert!(pubkeys_to_modify.len() > 1);
// Tracks the bank at the tip of the to be created fork
let mut bank_at_fork_tip = bank0;
// All the slots on the fork except slot 0
let mut slots_on_fork = Vec::with_capacity(num_banks_on_fork);
// All accounts in each set of `step_size` slots will have the same account balances.
// The account balances of the accounts changes every `step_size` banks. Thus if you
// delete any one of the latest `step_size` slots, then you will see varying account
// balances when loading the accounts.
assert!(num_banks_on_fork >= 2);
assert!(step_size >= 2);
let pubkeys_to_modify: Vec<Pubkey> = pubkeys_to_modify.iter().cloned().collect();
let pubkeys_to_modify_per_slot = (pubkeys_to_modify.len() / step_size).max(1);
for _ in (0..num_banks_on_fork).step_by(step_size) {
let mut lamports_this_round = 0;
for i in 0..step_size {
bank_at_fork_tip = Arc::new(Bank::new_from_parent(
&bank_at_fork_tip,
&solana_sdk::pubkey::new_rand(),
bank_at_fork_tip.slot() + 1,
));
if lamports_this_round == 0 {
lamports_this_round = bank_at_fork_tip.bank_id() + starting_lamports + 1;
}
let pubkey_to_modify_starting_index = i * pubkeys_to_modify_per_slot;
let account = AccountSharedData::new(lamports_this_round, 0, program_id);
for pubkey_index_to_modify in pubkey_to_modify_starting_index
..pubkey_to_modify_starting_index + pubkeys_to_modify_per_slot
{
let key = pubkeys_to_modify[pubkey_index_to_modify % pubkeys_to_modify.len()];
bank_at_fork_tip.store_account(&key, &account);
}
bank_at_fork_tip.freeze();
slots_on_fork.push((bank_at_fork_tip.slot(), bank_at_fork_tip.bank_id()));
}
}
let ancestors: Vec<(Slot, usize)> = slots_on_fork.iter().map(|(s, _)| (*s, 0)).collect();
let ancestors = Ancestors::from(ancestors);
(bank_at_fork_tip, slots_on_fork, ancestors)
}
#[test]
fn test_remove_unrooted_before_scan() {
for accounts_db_caching_enabled in &[false, true] {
test_store_scan_consistency(
*accounts_db_caching_enabled,
|bank0,
bank_to_scan_sender,
scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports| {
loop {
let (bank_at_fork_tip, slots_on_fork, ancestors) =
setup_banks_on_fork_to_remove(
bank0.clone(),
pubkeys_to_modify.clone(),
&program_id,
starting_lamports,
10,
2,
);
// Test removing the slot before the scan starts, should cause
// SlotRemoved error every time
for k in pubkeys_to_modify.iter() {
assert!(bank_at_fork_tip.load_slow(&ancestors, k).is_some());
}
bank_at_fork_tip.remove_unrooted_slots(&slots_on_fork);
// Accounts on this fork should not be found after removal
for k in pubkeys_to_modify.iter() {
assert!(bank_at_fork_tip.load_slow(&ancestors, k).is_none());
}
if bank_to_scan_sender.send(bank_at_fork_tip.clone()).is_err() {
return;
}
// Wait for scan to finish before starting next iteration
let finished_scan_bank_id = scan_finished_receiver.recv();
if finished_scan_bank_id.is_err() {
return;
}
assert_eq!(finished_scan_bank_id.unwrap(), bank_at_fork_tip.bank_id());
}
},
None,
// Test removing the slot before the scan starts, should error every time
AcceptableScanResults::DroppedSlotError,
);
}
}
#[test]
fn test_remove_unrooted_scan_then_recreate_same_slot_before_scan() {
for accounts_db_caching_enabled in &[false, true] {
test_store_scan_consistency(
*accounts_db_caching_enabled,
|bank0,
bank_to_scan_sender,
scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports| {
let mut prev_bank = bank0.clone();
loop {
let start = Instant::now();
let (bank_at_fork_tip, slots_on_fork, ancestors) =
setup_banks_on_fork_to_remove(
bank0.clone(),
pubkeys_to_modify.clone(),
&program_id,
starting_lamports,
10,
2,
);
info!("setting up banks elapsed: {}", start.elapsed().as_millis());
// Remove the fork. Then we'll recreate the slots and only after we've
// recreated the slots, do we send this old bank for scanning.
// Skip scanning bank 0 on first iteration of loop, since those accounts
// aren't being removed
if prev_bank.slot() != 0 {
info!(
"sending bank with slot: {:?}, elapsed: {}",
prev_bank.slot(),
start.elapsed().as_millis()
);
// Although we dumped the slots last iteration via `remove_unrooted_slots()`,
// we've recreated those slots this iteration, so they should be findable
// again
for k in pubkeys_to_modify.iter() {
assert!(bank_at_fork_tip.load_slow(&ancestors, k).is_some());
}
// Now after we've recreated the slots removed in the previous loop
// iteration, send the previous bank, should fail even though the
// same slots were recreated
if bank_to_scan_sender.send(prev_bank.clone()).is_err() {
return;
}
let finished_scan_bank_id = scan_finished_receiver.recv();
if finished_scan_bank_id.is_err() {
return;
}
// Wait for scan to finish before starting next iteration
assert_eq!(finished_scan_bank_id.unwrap(), prev_bank.bank_id());
}
bank_at_fork_tip.remove_unrooted_slots(&slots_on_fork);
prev_bank = bank_at_fork_tip;
}
},
None,
// Test removing the slot before the scan starts, should error every time
AcceptableScanResults::DroppedSlotError,
);
}
}
#[test]
fn test_remove_unrooted_scan_interleaved_with_remove_unrooted_slots() {
for accounts_db_caching_enabled in &[false, true] {
test_store_scan_consistency(
*accounts_db_caching_enabled,
|bank0,
bank_to_scan_sender,
scan_finished_receiver,
pubkeys_to_modify,
program_id,
starting_lamports| {
loop {
let step_size = 2;
let (bank_at_fork_tip, slots_on_fork, ancestors) =
setup_banks_on_fork_to_remove(
bank0.clone(),
pubkeys_to_modify.clone(),
&program_id,
starting_lamports,
10,
step_size,
);
// Although we dumped the slots last iteration via `remove_unrooted_slots()`,
// we've recreated those slots this iteration, so they should be findable
// again
for k in pubkeys_to_modify.iter() {
assert!(bank_at_fork_tip.load_slow(&ancestors, k).is_some());
}
// Now after we've recreated the slots removed in the previous loop
// iteration, send the previous bank, should fail even though the
// same slots were recreated
if bank_to_scan_sender.send(bank_at_fork_tip.clone()).is_err() {
return;
}
// Remove 1 < `step_size` of the *latest* slots while the scan is happening.
// This should create inconsistency between the account balances of accounts
// stored in that slot, and the accounts stored in earlier slots
let slot_to_remove = *slots_on_fork.last().unwrap();
bank_at_fork_tip.remove_unrooted_slots(&[slot_to_remove]);
// Wait for scan to finish before starting next iteration
let finished_scan_bank_id = scan_finished_receiver.recv();
if finished_scan_bank_id.is_err() {
return;
}
assert_eq!(finished_scan_bank_id.unwrap(), bank_at_fork_tip.bank_id());
// Remove the rest of the slots before the next iteration
for (slot, bank_id) in slots_on_fork {
bank_at_fork_tip.remove_unrooted_slots(&[(slot, bank_id)]);
}
}
},
None,
// Test removing the slot before the scan starts, should error every time
AcceptableScanResults::Both,
);
}
}
#[test]
fn test_get_inflation_start_slot_devnet_testnet() {
let GenesisConfigInfo {
mut genesis_config, ..
} = create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
genesis_config
.accounts
.remove(&feature_set::pico_inflation::id())
.unwrap();
genesis_config
.accounts
.remove(&feature_set::full_inflation::devnet_and_testnet::id())
.unwrap();
for pair in feature_set::FULL_INFLATION_FEATURE_PAIRS.iter() {
genesis_config.accounts.remove(&pair.vote_id).unwrap();
genesis_config.accounts.remove(&pair.enable_id).unwrap();
}
let bank = Bank::new_for_tests(&genesis_config);
// Advance slot
let mut bank = new_from_parent(&Arc::new(bank));
bank = new_from_parent(&Arc::new(bank));
assert_eq!(bank.get_inflation_start_slot(), 0);
assert_eq!(bank.slot(), 2);
// Request `pico_inflation` activation
bank.store_account(
&feature_set::pico_inflation::id(),
&feature::create_account(
&Feature {
activated_at: Some(1),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 1);
// Advance slot
bank = new_from_parent(&Arc::new(bank));
assert_eq!(bank.slot(), 3);
// Request `full_inflation::devnet_and_testnet` activation,
// which takes priority over pico_inflation
bank.store_account(
&feature_set::full_inflation::devnet_and_testnet::id(),
&feature::create_account(
&Feature {
activated_at: Some(2),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 2);
// Request `full_inflation::mainnet::certusone` activation,
// which should have no effect on `get_inflation_start_slot`
bank.store_account(
&feature_set::full_inflation::mainnet::certusone::vote::id(),
&feature::create_account(
&Feature {
activated_at: Some(3),
},
42,
),
);
bank.store_account(
&feature_set::full_inflation::mainnet::certusone::enable::id(),
&feature::create_account(
&Feature {
activated_at: Some(3),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 2);
}
#[test]
fn test_get_inflation_start_slot_mainnet() {
let GenesisConfigInfo {
mut genesis_config, ..
} = create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
genesis_config
.accounts
.remove(&feature_set::pico_inflation::id())
.unwrap();
genesis_config
.accounts
.remove(&feature_set::full_inflation::devnet_and_testnet::id())
.unwrap();
for pair in feature_set::FULL_INFLATION_FEATURE_PAIRS.iter() {
genesis_config.accounts.remove(&pair.vote_id).unwrap();
genesis_config.accounts.remove(&pair.enable_id).unwrap();
}
let bank = Bank::new_for_tests(&genesis_config);
// Advance slot
let mut bank = new_from_parent(&Arc::new(bank));
bank = new_from_parent(&Arc::new(bank));
assert_eq!(bank.get_inflation_start_slot(), 0);
assert_eq!(bank.slot(), 2);
// Request `pico_inflation` activation
bank.store_account(
&feature_set::pico_inflation::id(),
&feature::create_account(
&Feature {
activated_at: Some(1),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 1);
// Advance slot
bank = new_from_parent(&Arc::new(bank));
assert_eq!(bank.slot(), 3);
// Request `full_inflation::mainnet::certusone` activation,
// which takes priority over pico_inflation
bank.store_account(
&feature_set::full_inflation::mainnet::certusone::vote::id(),
&feature::create_account(
&Feature {
activated_at: Some(2),
},
42,
),
);
bank.store_account(
&feature_set::full_inflation::mainnet::certusone::enable::id(),
&feature::create_account(
&Feature {
activated_at: Some(2),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 2);
// Advance slot
bank = new_from_parent(&Arc::new(bank));
assert_eq!(bank.slot(), 4);
// Request `full_inflation::devnet_and_testnet` activation,
// which should have no effect on `get_inflation_start_slot`
bank.store_account(
&feature_set::full_inflation::devnet_and_testnet::id(),
&feature::create_account(
&Feature {
activated_at: Some(bank.slot()),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_start_slot(), 2);
}
#[test]
fn test_get_inflation_num_slots_with_activations() {
let GenesisConfigInfo {
mut genesis_config, ..
} = create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
let slots_per_epoch = 32;
genesis_config.epoch_schedule = EpochSchedule::new(slots_per_epoch);
genesis_config
.accounts
.remove(&feature_set::pico_inflation::id())
.unwrap();
genesis_config
.accounts
.remove(&feature_set::full_inflation::devnet_and_testnet::id())
.unwrap();
for pair in feature_set::FULL_INFLATION_FEATURE_PAIRS.iter() {
genesis_config.accounts.remove(&pair.vote_id).unwrap();
genesis_config.accounts.remove(&pair.enable_id).unwrap();
}
let mut bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.get_inflation_num_slots(), 0);
for _ in 0..2 * slots_per_epoch {
bank = new_from_parent(&Arc::new(bank));
}
assert_eq!(bank.get_inflation_num_slots(), 2 * slots_per_epoch);
// Activate pico_inflation
let pico_inflation_activation_slot = bank.slot();
bank.store_account(
&feature_set::pico_inflation::id(),
&feature::create_account(
&Feature {
activated_at: Some(pico_inflation_activation_slot),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_num_slots(), slots_per_epoch);
for _ in 0..slots_per_epoch {
bank = new_from_parent(&Arc::new(bank));
}
assert_eq!(bank.get_inflation_num_slots(), 2 * slots_per_epoch);
// Activate full_inflation::devnet_and_testnet
let full_inflation_activation_slot = bank.slot();
bank.store_account(
&feature_set::full_inflation::devnet_and_testnet::id(),
&feature::create_account(
&Feature {
activated_at: Some(full_inflation_activation_slot),
},
42,
),
);
bank.compute_active_feature_set(true);
assert_eq!(bank.get_inflation_num_slots(), slots_per_epoch);
for _ in 0..slots_per_epoch {
bank = new_from_parent(&Arc::new(bank));
}
assert_eq!(bank.get_inflation_num_slots(), 2 * slots_per_epoch);
}
#[test]
fn test_get_inflation_num_slots_already_activated() {
let GenesisConfigInfo {
mut genesis_config, ..
} = create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
let slots_per_epoch = 32;
genesis_config.epoch_schedule = EpochSchedule::new(slots_per_epoch);
let mut bank = Bank::new_for_tests(&genesis_config);
assert_eq!(bank.get_inflation_num_slots(), 0);
for _ in 0..slots_per_epoch {
bank = new_from_parent(&Arc::new(bank));
}
assert_eq!(bank.get_inflation_num_slots(), slots_per_epoch);
for _ in 0..slots_per_epoch {
bank = new_from_parent(&Arc::new(bank));
}
assert_eq!(bank.get_inflation_num_slots(), 2 * slots_per_epoch);
}
#[test]
fn test_stake_vote_account_validity() {
let validator_vote_keypairs0 = ValidatorVoteKeypairs::new_rand();
let validator_vote_keypairs1 = ValidatorVoteKeypairs::new_rand();
let validator_keypairs = vec![&validator_vote_keypairs0, &validator_vote_keypairs1];
let GenesisConfigInfo { genesis_config, .. } = create_genesis_config_with_vote_accounts(
1_000_000_000,
&validator_keypairs,
vec![10_000; 2],
);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let thread_pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
let vote_and_stake_accounts = bank
.load_vote_and_stake_accounts_with_thread_pool(&thread_pool, null_tracer())
.vote_with_stake_delegations_map;
assert_eq!(vote_and_stake_accounts.len(), 2);
let mut vote_account = bank
.get_account(&validator_vote_keypairs0.vote_keypair.pubkey())
.unwrap_or_default();
let original_lamports = vote_account.lamports();
vote_account.set_lamports(0);
// Simulate vote account removal via full withdrawal
bank.store_account(
&validator_vote_keypairs0.vote_keypair.pubkey(),
&vote_account,
);
// Modify staked vote account owner; a vote account owned by another program could be
// freely modified with malicious data
let bogus_vote_program = Pubkey::new_unique();
vote_account.set_lamports(original_lamports);
vote_account.set_owner(bogus_vote_program);
bank.store_account(
&validator_vote_keypairs0.vote_keypair.pubkey(),
&vote_account,
);
assert_eq!(bank.vote_accounts().len(), 1);
// Modify stake account owner; a stake account owned by another program could be freely
// modified with malicious data
let bogus_stake_program = Pubkey::new_unique();
let mut stake_account = bank
.get_account(&validator_vote_keypairs1.stake_keypair.pubkey())
.unwrap_or_default();
stake_account.set_owner(bogus_stake_program);
bank.store_account(
&validator_vote_keypairs1.stake_keypair.pubkey(),
&stake_account,
);
// Accounts must be valid stake and vote accounts
let thread_pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap();
let vote_and_stake_accounts = bank
.load_vote_and_stake_accounts_with_thread_pool(&thread_pool, null_tracer())
.vote_with_stake_delegations_map;
assert_eq!(vote_and_stake_accounts.len(), 0);
}
#[test]
fn test_vote_epoch_panic() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(
1_000_000_000_000_000,
&Pubkey::new_unique(),
bootstrap_validator_stake_lamports(),
);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
let vote_keypair = keypair_from_seed(&[1u8; 32]).unwrap();
let stake_keypair = keypair_from_seed(&[2u8; 32]).unwrap();
let mut setup_ixs = Vec::new();
setup_ixs.extend(
vote_instruction::create_account(
&mint_keypair.pubkey(),
&vote_keypair.pubkey(),
&VoteInit {
node_pubkey: mint_keypair.pubkey(),
authorized_voter: vote_keypair.pubkey(),
authorized_withdrawer: mint_keypair.pubkey(),
commission: 0,
},
1_000_000_000,
)
.into_iter(),
);
setup_ixs.extend(
stake_instruction::create_account_and_delegate_stake(
&mint_keypair.pubkey(),
&stake_keypair.pubkey(),
&vote_keypair.pubkey(),
&Authorized::auto(&mint_keypair.pubkey()),
&Lockup::default(),
1_000_000_000_000,
)
.into_iter(),
);
setup_ixs.push(vote_instruction::withdraw(
&vote_keypair.pubkey(),
&mint_keypair.pubkey(),
1_000_000_000,
&mint_keypair.pubkey(),
));
setup_ixs.push(system_instruction::transfer(
&mint_keypair.pubkey(),
&vote_keypair.pubkey(),
1_000_000_000,
));
let result = bank.process_transaction(&Transaction::new(
&[&mint_keypair, &vote_keypair, &stake_keypair],
Message::new(&setup_ixs, Some(&mint_keypair.pubkey())),
bank.last_blockhash(),
));
assert!(result.is_ok());
let _bank = Bank::new_from_parent(
&bank,
&mint_keypair.pubkey(),
genesis_config.epoch_schedule.get_first_slot_in_epoch(1),
);
}
#[test]
fn test_tx_log_order() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(
1_000_000_000_000_000,
&Pubkey::new_unique(),
bootstrap_validator_stake_lamports(),
);
let bank = Arc::new(Bank::new_for_tests(&genesis_config));
*bank.transaction_log_collector_config.write().unwrap() = TransactionLogCollectorConfig {
mentioned_addresses: HashSet::new(),
filter: TransactionLogCollectorFilter::All,
};
let blockhash = bank.last_blockhash();
let sender0 = Keypair::new();
let sender1 = Keypair::new();
bank.transfer(100, &mint_keypair, &sender0.pubkey())
.unwrap();
bank.transfer(100, &mint_keypair, &sender1.pubkey())
.unwrap();
let recipient0 = Pubkey::new_unique();
let recipient1 = Pubkey::new_unique();
let tx0 = system_transaction::transfer(&sender0, &recipient0, 10, blockhash);
let success_sig = tx0.signatures[0];
let tx1 = system_transaction::transfer(&sender1, &recipient1, 110, blockhash); // Should produce insufficient funds log
let failure_sig = tx1.signatures[0];
let tx2 = system_transaction::transfer(&sender0, &recipient0, 1, blockhash);
let txs = vec![tx0, tx1, tx2];
let batch = bank.prepare_batch_for_tests(txs);
let execution_results = bank
.load_execute_and_commit_transactions(
&batch,
MAX_PROCESSING_AGE,
false,
false,
true,
&mut ExecuteTimings::default(),
)
.0
.execution_results;
assert_eq!(execution_results.len(), 3);
assert!(execution_results[0].details().is_some());
assert!(execution_results[0]
.details()
.unwrap()
.log_messages
.as_ref()
.unwrap()[1]
.contains(&"success".to_string()));
assert!(execution_results[1].details().is_some());
assert!(execution_results[1]
.details()
.unwrap()
.log_messages
.as_ref()
.unwrap()[2]
.contains(&"failed".to_string()));
assert!(!execution_results[2].was_executed());
let stored_logs = &bank.transaction_log_collector.read().unwrap().logs;
let success_log_info = stored_logs
.iter()
.find(|transaction_log_info| transaction_log_info.signature == success_sig)
.unwrap();
assert!(success_log_info.result.is_ok());
let success_log = success_log_info.log_messages.clone().pop().unwrap();
assert!(success_log.contains(&"success".to_string()));
let failure_log_info = stored_logs
.iter()
.find(|transaction_log_info| transaction_log_info.signature == failure_sig)
.unwrap();
assert!(failure_log_info.result.is_err());
let failure_log = failure_log_info.log_messages.clone().pop().unwrap();
assert!(failure_log.contains(&"failed".to_string()));
}
#[test]
fn test_get_largest_accounts() {
let GenesisConfigInfo { genesis_config, .. } =
create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
let bank = Bank::new_for_tests(&genesis_config);
let pubkeys: Vec<_> = (0..5).map(|_| Pubkey::new_unique()).collect();
let pubkeys_hashset: HashSet<_> = pubkeys.iter().cloned().collect();
let pubkeys_balances: Vec<_> = pubkeys
.iter()
.cloned()
.zip(vec![
sol_to_lamports(2.0),
sol_to_lamports(3.0),
sol_to_lamports(3.0),
sol_to_lamports(4.0),
sol_to_lamports(5.0),
])
.collect();
// Initialize accounts; all have larger SOL balances than current Bank built-ins
let account0 = AccountSharedData::new(pubkeys_balances[0].1, 0, &Pubkey::default());
bank.store_account(&pubkeys_balances[0].0, &account0);
let account1 = AccountSharedData::new(pubkeys_balances[1].1, 0, &Pubkey::default());
bank.store_account(&pubkeys_balances[1].0, &account1);
let account2 = AccountSharedData::new(pubkeys_balances[2].1, 0, &Pubkey::default());
bank.store_account(&pubkeys_balances[2].0, &account2);
let account3 = AccountSharedData::new(pubkeys_balances[3].1, 0, &Pubkey::default());
bank.store_account(&pubkeys_balances[3].0, &account3);
let account4 = AccountSharedData::new(pubkeys_balances[4].1, 0, &Pubkey::default());
bank.store_account(&pubkeys_balances[4].0, &account4);
// Create HashSet to exclude an account
let exclude4: HashSet<_> = pubkeys[4..].iter().cloned().collect();
let mut sorted_accounts = pubkeys_balances.clone();
sorted_accounts.sort_by(|a, b| a.1.cmp(&b.1).reverse());
// Return only one largest account
assert_eq!(
bank.get_largest_accounts(1, &pubkeys_hashset, AccountAddressFilter::Include)
.unwrap(),
vec![(pubkeys[4], sol_to_lamports(5.0))]
);
assert_eq!(
bank.get_largest_accounts(1, &HashSet::new(), AccountAddressFilter::Exclude)
.unwrap(),
vec![(pubkeys[4], sol_to_lamports(5.0))]
);
assert_eq!(
bank.get_largest_accounts(1, &exclude4, AccountAddressFilter::Exclude)
.unwrap(),
vec![(pubkeys[3], sol_to_lamports(4.0))]
);
// Return all added accounts
let results = bank
.get_largest_accounts(10, &pubkeys_hashset, AccountAddressFilter::Include)
.unwrap();
assert_eq!(results.len(), sorted_accounts.len());
for pubkey_balance in sorted_accounts.iter() {
assert!(results.contains(pubkey_balance));
}
let mut sorted_results = results.clone();
sorted_results.sort_by(|a, b| a.1.cmp(&b.1).reverse());
assert_eq!(sorted_results, results);
let expected_accounts = sorted_accounts[1..].to_vec();
let results = bank
.get_largest_accounts(10, &exclude4, AccountAddressFilter::Exclude)
.unwrap();
// results include 5 Bank builtins
assert_eq!(results.len(), 10);
for pubkey_balance in expected_accounts.iter() {
assert!(results.contains(pubkey_balance));
}
let mut sorted_results = results.clone();
sorted_results.sort_by(|a, b| a.1.cmp(&b.1).reverse());
assert_eq!(sorted_results, results);
// Return 3 added accounts
let expected_accounts = sorted_accounts[0..4].to_vec();
let results = bank
.get_largest_accounts(4, &pubkeys_hashset, AccountAddressFilter::Include)
.unwrap();
assert_eq!(results.len(), expected_accounts.len());
for pubkey_balance in expected_accounts.iter() {
assert!(results.contains(pubkey_balance));
}
let expected_accounts = expected_accounts[1..4].to_vec();
let results = bank
.get_largest_accounts(3, &exclude4, AccountAddressFilter::Exclude)
.unwrap();
assert_eq!(results.len(), expected_accounts.len());
for pubkey_balance in expected_accounts.iter() {
assert!(results.contains(pubkey_balance));
}
// Exclude more, and non-sequential, accounts
let exclude: HashSet<_> = vec![pubkeys[0], pubkeys[2], pubkeys[4]]
.iter()
.cloned()
.collect();
assert_eq!(
bank.get_largest_accounts(2, &exclude, AccountAddressFilter::Exclude)
.unwrap(),
vec![pubkeys_balances[3], pubkeys_balances[1]]
);
}
#[test]
fn test_transfer_sysvar() {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(
1_000_000_000_000_000,
&Pubkey::new_unique(),
bootstrap_validator_stake_lamports(),
);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
instruction_context
.try_borrow_instruction_account(transaction_context, 1)?
.set_data(&[0; 40]);
Ok(())
}
let program_id = solana_sdk::pubkey::new_rand();
bank.add_builtin("mock_program1", &program_id, mock_ix_processor);
let blockhash = bank.last_blockhash();
#[allow(deprecated)]
let blockhash_sysvar = sysvar::clock::id();
#[allow(deprecated)]
let orig_lamports = bank.get_account(&sysvar::clock::id()).unwrap().lamports();
let tx = system_transaction::transfer(&mint_keypair, &blockhash_sysvar, 10, blockhash);
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InstructionError(
0,
InstructionError::ReadonlyLamportChange
))
);
assert_eq!(
bank.get_account(&sysvar::clock::id()).unwrap().lamports(),
orig_lamports
);
let accounts = vec![
AccountMeta::new(mint_keypair.pubkey(), true),
AccountMeta::new(blockhash_sysvar, false),
];
let ix = Instruction::new_with_bincode(program_id, &0, accounts);
let message = Message::new(&[ix], Some(&mint_keypair.pubkey()));
let tx = Transaction::new(&[&mint_keypair], message, blockhash);
assert_eq!(
bank.process_transaction(&tx),
Err(TransactionError::InstructionError(
0,
InstructionError::ReadonlyDataModified
))
);
}
#[test]
fn test_clean_dropped_unrooted_frozen_banks() {
solana_logger::setup();
do_test_clean_dropped_unrooted_banks(FreezeBank1::Yes);
}
#[test]
fn test_clean_dropped_unrooted_unfrozen_banks() {
solana_logger::setup();
do_test_clean_dropped_unrooted_banks(FreezeBank1::No);
}
/// A simple enum to toggle freezing Bank1 or not. Used in the clean_dropped_unrooted tests.
enum FreezeBank1 {
No,
Yes,
}
fn do_test_clean_dropped_unrooted_banks(freeze_bank1: FreezeBank1) {
//! Test that dropped unrooted banks are cleaned up properly
//!
//! slot 0: bank0 (rooted)
//! / \
//! slot 1: / bank1 (unrooted and dropped)
//! /
//! slot 2: bank2 (rooted)
//!
//! In the scenario above, when `clean_accounts()` is called on bank2, the keys that exist
//! _only_ in bank1 should be cleaned up, since those keys are unreachable.
//!
//! The following scenarios are tested:
//!
//! 1. A key is written _only_ in an unrooted bank (key1)
//! - In this case, key1 should be cleaned up
//! 2. A key is written in both an unrooted _and_ rooted bank (key3)
//! - In this case, key3's ref-count should be decremented correctly
//! 3. A key with zero lamports is _only_ in an unrooted bank (key4)
//! - In this case, key4 should be cleaned up
//! 4. A key with zero lamports is in both an unrooted _and_ rooted bank (key5)
//! - In this case, key5's ref-count should be decremented correctly
let (genesis_config, mint_keypair) = create_genesis_config(100);
let bank0 = Arc::new(Bank::new_for_tests(&genesis_config));
let collector = Pubkey::new_unique();
let owner = Pubkey::new_unique();
let key1 = Keypair::new(); // only touched in bank1
let key2 = Keypair::new(); // only touched in bank2
let key3 = Keypair::new(); // touched in both bank1 and bank2
let key4 = Keypair::new(); // in only bank1, and has zero lamports
let key5 = Keypair::new(); // in both bank1 and bank2, and has zero lamports
bank0.transfer(2, &mint_keypair, &key2.pubkey()).unwrap();
bank0.freeze();
let slot = 1;
let bank1 = Bank::new_from_parent(&bank0, &collector, slot);
bank1.transfer(3, &mint_keypair, &key1.pubkey()).unwrap();
bank1.store_account(&key4.pubkey(), &AccountSharedData::new(0, 0, &owner));
bank1.store_account(&key5.pubkey(), &AccountSharedData::new(0, 0, &owner));
if let FreezeBank1::Yes = freeze_bank1 {
bank1.freeze();
}
let slot = slot + 1;
let bank2 = Bank::new_from_parent(&bank0, &collector, slot);
bank2.transfer(4, &mint_keypair, &key2.pubkey()).unwrap();
bank2.transfer(6, &mint_keypair, &key3.pubkey()).unwrap();
bank2.store_account(&key5.pubkey(), &AccountSharedData::new(0, 0, &owner));
bank2.freeze(); // the freeze here is not strictly necessary, but more for illustration
bank2.squash();
drop(bank1);
bank2.clean_accounts(false, false, None);
let expected_ref_count_for_cleaned_up_keys = 0;
let expected_ref_count_for_keys_in_both_slot1_and_slot2 = 1;
assert_eq!(
bank2
.rc
.accounts
.accounts_db
.accounts_index
.ref_count_from_storage(&key1.pubkey()),
expected_ref_count_for_cleaned_up_keys
);
assert_ne!(
bank2
.rc
.accounts
.accounts_db
.accounts_index
.ref_count_from_storage(&key3.pubkey()),
expected_ref_count_for_cleaned_up_keys
);
assert_eq!(
bank2
.rc
.accounts
.accounts_db
.accounts_index
.ref_count_from_storage(&key4.pubkey()),
expected_ref_count_for_cleaned_up_keys
);
assert_eq!(
bank2
.rc
.accounts
.accounts_db
.accounts_index
.ref_count_from_storage(&key5.pubkey()),
expected_ref_count_for_keys_in_both_slot1_and_slot2,
);
assert_eq!(
bank2.rc.accounts.accounts_db.alive_account_count_in_slot(1),
0
);
}
#[test]
fn test_rent_debits() {
let mut rent_debits = RentDebits::default();
// No entry for 0 rewards
rent_debits.insert(&Pubkey::new_unique(), 0, 0);
assert_eq!(rent_debits.0.len(), 0);
// Some that actually work
rent_debits.insert(&Pubkey::new_unique(), 1, 0);
assert_eq!(rent_debits.0.len(), 1);
rent_debits.insert(&Pubkey::new_unique(), i64::MAX as u64, 0);
assert_eq!(rent_debits.0.len(), 2);
}
#[test]
fn test_compute_budget_program_noop() {
solana_logger::setup();
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(
1_000_000_000_000_000,
&Pubkey::new_unique(),
bootstrap_validator_stake_lamports(),
);
// activate all features except..
activate_all_features(&mut genesis_config);
genesis_config
.accounts
.remove(&feature_set::tx_wide_compute_cap::id());
genesis_config
.accounts
.remove(&feature_set::requestable_heap_size::id());
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
let compute_budget = invoke_context.get_compute_budget();
assert_eq!(
*compute_budget,
ComputeBudget {
max_units: 200_000,
heap_size: None,
..ComputeBudget::default()
}
);
Ok(())
}
let program_id = solana_sdk::pubkey::new_rand();
bank.add_builtin("mock_program", &program_id, mock_ix_processor);
let message = Message::new(
&[
ComputeBudgetInstruction::request_units(1, 0),
ComputeBudgetInstruction::request_heap_frame(48 * 1024),
Instruction::new_with_bincode(program_id, &0, vec![]),
],
Some(&mint_keypair.pubkey()),
);
let tx = Transaction::new(&[&mint_keypair], message, bank.last_blockhash());
bank.process_transaction(&tx).unwrap();
}
#[test]
fn test_compute_request_instruction() {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(
1_000_000_000_000_000,
&Pubkey::new_unique(),
bootstrap_validator_stake_lamports(),
);
let mut bank = Bank::new_for_tests(&genesis_config);
fn mock_ix_processor(
_first_instruction_account: usize,
_data: &[u8],
invoke_context: &mut InvokeContext,
) -> std::result::Result<(), InstructionError> {
let compute_budget = invoke_context.get_compute_budget();
assert_eq!(
*compute_budget,
ComputeBudget {
max_units: 1,
heap_size: Some(48 * 1024),
..ComputeBudget::default()
}
);
Ok(())
}
let program_id = solana_sdk::pubkey::new_rand();
bank.add_builtin("mock_program", &program_id, mock_ix_processor);
let message = Message::new(
&[
ComputeBudgetInstruction::request_units(1, 0),
ComputeBudgetInstruction::request_heap_frame(48 * 1024),
Instruction::new_with_bincode(program_id, &0, vec![]),
],
Some(&mint_keypair.pubkey()),
);
let tx = Transaction::new(&[&mint_keypair], message, bank.last_blockhash());
bank.process_transaction(&tx).unwrap();
}
#[test]
fn test_verify_and_hash_transaction_sig_len() {
let GenesisConfigInfo {
mut genesis_config, ..
} = create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
// activate all features but verify_tx_signatures_len
activate_all_features(&mut genesis_config);
genesis_config
.accounts
.remove(&feature_set::verify_tx_signatures_len::id());
let bank = Bank::new_for_tests(&genesis_config);
let mut rng = rand::thread_rng();
let recent_blockhash = hash::new_rand(&mut rng);
let from_keypair = Keypair::new();
let to_keypair = Keypair::new();
let from_pubkey = from_keypair.pubkey();
let to_pubkey = to_keypair.pubkey();
enum TestCase {
AddSignature,
RemoveSignature,
}
let make_transaction = |case: TestCase| {
let message = Message::new(
&[system_instruction::transfer(&from_pubkey, &to_pubkey, 1)],
Some(&from_pubkey),
);
let mut tx = Transaction::new(&[&from_keypair], message, recent_blockhash);
assert_eq!(tx.message.header.num_required_signatures, 1);
match case {
TestCase::AddSignature => {
let signature = to_keypair.sign_message(&tx.message.serialize());
tx.signatures.push(signature);
}
TestCase::RemoveSignature => {
tx.signatures.remove(0);
}
}
tx
};
// Too few signatures: Sanitization failure
{
let tx = make_transaction(TestCase::RemoveSignature);
assert_eq!(
bank.verify_transaction(tx.into(), TransactionVerificationMode::FullVerification)
.err(),
Some(TransactionError::SanitizeFailure),
);
}
// Too many signatures: Sanitization failure
{
let tx = make_transaction(TestCase::AddSignature);
assert_eq!(
bank.verify_transaction(tx.into(), TransactionVerificationMode::FullVerification)
.err(),
Some(TransactionError::SanitizeFailure),
);
}
}
#[test]
fn test_verify_transactions_packet_data_size() {
let GenesisConfigInfo { genesis_config, .. } =
create_genesis_config_with_leader(42, &solana_sdk::pubkey::new_rand(), 42);
let bank = Bank::new_for_tests(&genesis_config);
let mut rng = rand::thread_rng();
let recent_blockhash = hash::new_rand(&mut rng);
let keypair = Keypair::new();
let pubkey = keypair.pubkey();
let make_transaction = |size| {
let ixs: Vec<_> = std::iter::repeat_with(|| {
system_instruction::transfer(&pubkey, &Pubkey::new_unique(), 1)
})
.take(size)
.collect();
let message = Message::new(&ixs[..], Some(&pubkey));
Transaction::new(&[&keypair], message, recent_blockhash)
};
// Small transaction.
{
let tx = make_transaction(5);
assert!(bincode::serialized_size(&tx).unwrap() <= PACKET_DATA_SIZE as u64);
assert!(bank
.verify_transaction(tx.into(), TransactionVerificationMode::FullVerification)
.is_ok(),);
}
// Big transaction.
{
let tx = make_transaction(25);
assert!(bincode::serialized_size(&tx).unwrap() > PACKET_DATA_SIZE as u64);
assert_eq!(
bank.verify_transaction(tx.into(), TransactionVerificationMode::FullVerification)
.err(),
Some(TransactionError::SanitizeFailure),
);
}
// Assert that verify fails as soon as serialized
// size exceeds packet data size.
for size in 1..30 {
let tx = make_transaction(size);
assert_eq!(
bincode::serialized_size(&tx).unwrap() <= PACKET_DATA_SIZE as u64,
bank.verify_transaction(tx.into(), TransactionVerificationMode::FullVerification)
.is_ok(),
);
}
}
#[test]
fn test_call_precomiled_program() {
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(42, &Pubkey::new_unique(), 42);
activate_all_features(&mut genesis_config);
let bank = Bank::new_for_tests(&genesis_config);
// libsecp256k1
let secp_privkey = libsecp256k1::SecretKey::random(&mut rand::thread_rng());
let message_arr = b"hello";
let instruction = solana_sdk::secp256k1_instruction::new_secp256k1_instruction(
&secp_privkey,
message_arr,
);
let tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
// calling the program should be successful when called from the bank
// even if the program itself is not called
bank.process_transaction(&tx).unwrap();
// ed25519
let privkey = ed25519_dalek::Keypair::generate(&mut rand::thread_rng());
let message_arr = b"hello";
let instruction =
solana_sdk::ed25519_instruction::new_ed25519_instruction(&privkey, message_arr);
let tx = Transaction::new_signed_with_payer(
&[instruction],
Some(&mint_keypair.pubkey()),
&[&mint_keypair],
bank.last_blockhash(),
);
// calling the program should be successful when called from the bank
// even if the program itself is not called
bank.process_transaction(&tx).unwrap();
}
#[test]
fn test_calculate_fee() {
// Default: no fee.
let message =
SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap();
assert_eq!(
Bank::calculate_fee(&message, 0, &FeeStructure::default(), false),
0
);
// One signature, a fee.
assert_eq!(
Bank::calculate_fee(&message, 1, &FeeStructure::default(), false),
1
);
// Two signatures, double the fee.
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let ix1 = system_instruction::transfer(&key1, &key0, 1);
let message = SanitizedMessage::try_from(Message::new(&[ix0, ix1], Some(&key0))).unwrap();
assert_eq!(
Bank::calculate_fee(&message, 2, &FeeStructure::default(), false),
4
);
}
#[test]
fn test_calculate_fee_compute_units() {
let fee_structure = FeeStructure::default();
let max_fee = fee_structure.compute_fee_bins.last().unwrap().fee;
let lamports_per_signature = fee_structure.lamports_per_signature;
// One signature, no unit request
let message =
SanitizedMessage::try_from(Message::new(&[], Some(&Pubkey::new_unique()))).unwrap();
assert_eq!(
Bank::calculate_fee(&message, 1, &fee_structure, true),
max_fee + lamports_per_signature
);
// Three signatures, two instructions, no unit request
let ix0 = system_instruction::transfer(&Pubkey::new_unique(), &Pubkey::new_unique(), 1);
let ix1 = system_instruction::transfer(&Pubkey::new_unique(), &Pubkey::new_unique(), 1);
let message =
SanitizedMessage::try_from(Message::new(&[ix0, ix1], Some(&Pubkey::new_unique())))
.unwrap();
assert_eq!(
Bank::calculate_fee(&message, 1, &fee_structure, true),
max_fee + 3 * lamports_per_signature
);
// Explicit fee schedule
let expected_fee_structure = &[
// (units requested, fee in SOL),
(0, 0.0),
(5_000, 0.0),
(10_000, 0.0),
(100_000, 0.0),
(300_000, 0.0),
(500_000, 0.0),
(700_000, 0.0),
(900_000, 0.0),
(1_100_000, 0.0),
(1_300_000, 0.0),
(1_500_000, 0.0), // ComputeBudget capped
];
for pair in expected_fee_structure.iter() {
const ADDITIONAL_FEE: u64 = 42;
let ix0 = ComputeBudgetInstruction::request_units(pair.0, ADDITIONAL_FEE as u32);
let ix1 = Instruction::new_with_bincode(Pubkey::new_unique(), &0, vec![]);
let message =
SanitizedMessage::try_from(Message::new(&[ix0, ix1], Some(&Pubkey::new_unique())))
.unwrap();
let fee = Bank::calculate_fee(&message, 1, &fee_structure, true);
assert_eq!(
fee,
sol_to_lamports(pair.1) + lamports_per_signature + ADDITIONAL_FEE
);
}
}
#[test]
fn test_calculate_fee_secp256k1() {
let key0 = Pubkey::new_unique();
let key1 = Pubkey::new_unique();
let ix0 = system_instruction::transfer(&key0, &key1, 1);
let mut secp_instruction1 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![],
};
let mut secp_instruction2 = Instruction {
program_id: secp256k1_program::id(),
accounts: vec![],
data: vec![1],
};
let message = SanitizedMessage::try_from(Message::new(
&[
ix0.clone(),
secp_instruction1.clone(),
secp_instruction2.clone(),
],
Some(&key0),
))
.unwrap();
assert_eq!(
Bank::calculate_fee(&message, 1, &FeeStructure::default(), false),
2
);
secp_instruction1.data = vec![0];
secp_instruction2.data = vec![10];
let message = SanitizedMessage::try_from(Message::new(
&[ix0, secp_instruction1, secp_instruction2],
Some(&key0),
))
.unwrap();
assert_eq!(
Bank::calculate_fee(&message, 1, &FeeStructure::default(), false),
11
);
}
#[test]
fn test_an_empty_instruction_without_program() {
let (genesis_config, mint_keypair) = create_genesis_config(1);
let destination = solana_sdk::pubkey::new_rand();
let mut ix = system_instruction::transfer(&mint_keypair.pubkey(), &destination, 0);
ix.program_id = native_loader::id(); // Empty executable account chain
let message = Message::new(&[ix], Some(&mint_keypair.pubkey()));
let tx = Transaction::new(&[&mint_keypair], message, genesis_config.hash());
let bank = Bank::new_for_tests(&genesis_config);
bank.process_transaction(&tx).unwrap();
let mut bank = Bank::new_for_tests(&genesis_config);
bank.activate_feature(&reject_empty_instruction_without_program::id());
assert_eq!(
bank.process_transaction(&tx).unwrap_err(),
TransactionError::InstructionError(0, InstructionError::UnsupportedProgramId),
);
}
#[test]
fn test_transaction_log_collector_get_logs_for_address() {
let address = Pubkey::new_unique();
let mut mentioned_address_map = HashMap::new();
mentioned_address_map.insert(address, vec![0]);
let transaction_log_collector = TransactionLogCollector {
mentioned_address_map,
..TransactionLogCollector::default()
};
assert_eq!(
transaction_log_collector.get_logs_for_address(Some(&address)),
Some(Vec::<TransactionLogInfo>::new()),
);
}
/// Test exceeding the accounts data budget by creating accounts in a loop
#[test]
fn test_accounts_data_budget_exceeded() {
use {
solana_program_runtime::accounts_data_meter::MAX_ACCOUNTS_DATA_LEN,
solana_sdk::system_instruction::MAX_PERMITTED_DATA_LENGTH,
};
solana_logger::setup();
let (genesis_config, mint_keypair) = create_genesis_config(1_000_000_000_000);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.activate_feature(&feature_set::cap_accounts_data_len::id());
let mut i = 0;
let result = loop {
let txn = system_transaction::create_account(
&mint_keypair,
&Keypair::new(),
bank.last_blockhash(),
1,
MAX_PERMITTED_DATA_LENGTH,
&solana_sdk::system_program::id(),
);
let result = bank.process_transaction(&txn);
assert!(bank.load_accounts_data_len() <= MAX_ACCOUNTS_DATA_LEN);
if result.is_err() {
break result;
}
assert!(
i < MAX_ACCOUNTS_DATA_LEN / MAX_PERMITTED_DATA_LENGTH,
"test must complete within bounded limits"
);
i += 1;
};
assert!(matches!(
result,
Err(TransactionError::InstructionError(
_,
solana_sdk::instruction::InstructionError::AccountsDataBudgetExceeded,
))
));
}
#[test]
fn test_executor_cache_get_primer_count_upper_bound_inclusive() {
let pubkey = Pubkey::default();
let v = [];
assert_eq!(
CachedExecutors::get_primer_count_upper_bound_inclusive(&v),
0
);
let v = [(&pubkey, 1)];
assert_eq!(
CachedExecutors::get_primer_count_upper_bound_inclusive(&v),
1
);
let v = (0u64..10).map(|i| (&pubkey, i)).collect::<Vec<_>>();
assert_eq!(
CachedExecutors::get_primer_count_upper_bound_inclusive(v.as_slice()),
7
);
}
#[derive(Serialize, Deserialize)]
enum MockTransferInstruction {
Transfer(u64),
}
fn mock_transfer_process_instruction(
_first_instruction_account: usize,
data: &[u8],
invoke_context: &mut InvokeContext,
) -> result::Result<(), InstructionError> {
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context.get_current_instruction_context()?;
if let Ok(instruction) = bincode::deserialize(data) {
match instruction {
MockTransferInstruction::Transfer(amount) => {
instruction_context
.try_borrow_instruction_account(transaction_context, 1)?
.checked_sub_lamports(amount)?;
instruction_context
.try_borrow_instruction_account(transaction_context, 2)?
.checked_add_lamports(amount)?;
Ok(())
}
}
} else {
Err(InstructionError::InvalidInstructionData)
}
}
fn create_mock_transfer(
payer: &Keypair,
from: &Keypair,
to: &Keypair,
amount: u64,
mock_program_id: Pubkey,
recent_blockhash: Hash,
) -> Transaction {
let account_metas = vec![
AccountMeta::new(payer.pubkey(), true),
AccountMeta::new(from.pubkey(), true),
AccountMeta::new(to.pubkey(), true),
];
let transfer_instruction = Instruction::new_with_bincode(
mock_program_id,
&MockTransferInstruction::Transfer(amount),
account_metas,
);
Transaction::new_signed_with_payer(
&[transfer_instruction],
Some(&payer.pubkey()),
&[payer, from, to],
recent_blockhash,
)
}
#[test]
fn test_invalid_rent_state_changes_existing_accounts() {
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(sol_to_lamports(100.), &Pubkey::new_unique(), 42);
genesis_config.rent = Rent::default();
let mock_program_id = Pubkey::new_unique();
let account_data_size = 100;
let rent_exempt_minimum = genesis_config.rent.minimum_balance(account_data_size);
// Create legacy accounts of various kinds
let rent_paying_account = Keypair::new();
genesis_config.accounts.insert(
rent_paying_account.pubkey(),
Account::new(rent_exempt_minimum - 1, account_data_size, &mock_program_id),
);
let rent_exempt_account = Keypair::new();
genesis_config.accounts.insert(
rent_exempt_account.pubkey(),
Account::new(rent_exempt_minimum, account_data_size, &mock_program_id),
);
// Activate features, including require_rent_exempt_accounts
activate_all_features(&mut genesis_config);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.add_builtin(
"mock_program",
&mock_program_id,
mock_transfer_process_instruction,
);
let recent_blockhash = bank.last_blockhash();
let check_account_is_rent_exempt = |pubkey: &Pubkey| -> bool {
let account = bank.get_account(pubkey).unwrap();
Rent::default().is_exempt(account.lamports(), account.data().len())
};
// RentPaying account can be left as Uninitialized, in other RentPaying states, or RentExempt
let tx = create_mock_transfer(
&mint_keypair, // payer
&rent_paying_account, // from
&mint_keypair, // to
1,
mock_program_id,
recent_blockhash,
);
let result = bank.process_transaction(&tx);
assert!(result.is_ok());
assert!(!check_account_is_rent_exempt(&rent_paying_account.pubkey()));
let tx = create_mock_transfer(
&mint_keypair, // payer
&rent_paying_account, // from
&mint_keypair, // to
rent_exempt_minimum - 2,
mock_program_id,
recent_blockhash,
);
let result = bank.process_transaction(&tx);
assert!(result.is_ok());
assert!(bank.get_account(&rent_paying_account.pubkey()).is_none());
bank.store_account(
// restore program-owned account
&rent_paying_account.pubkey(),
&AccountSharedData::new(rent_exempt_minimum - 1, account_data_size, &mock_program_id),
);
let result = bank.transfer(1, &mint_keypair, &rent_paying_account.pubkey());
assert!(result.is_ok());
assert!(check_account_is_rent_exempt(&rent_paying_account.pubkey()));
// RentExempt account can only remain RentExempt or be Uninitialized
let tx = create_mock_transfer(
&mint_keypair, // payer
&rent_exempt_account, // from
&mint_keypair, // to
1,
mock_program_id,
recent_blockhash,
);
let result = bank.process_transaction(&tx);
assert!(result.is_err());
assert!(check_account_is_rent_exempt(&rent_exempt_account.pubkey()));
let result = bank.transfer(1, &mint_keypair, &rent_exempt_account.pubkey());
assert!(result.is_ok());
assert!(check_account_is_rent_exempt(&rent_exempt_account.pubkey()));
let tx = create_mock_transfer(
&mint_keypair, // payer
&rent_exempt_account, // from
&mint_keypair, // to
rent_exempt_minimum + 1,
mock_program_id,
recent_blockhash,
);
let result = bank.process_transaction(&tx);
assert!(result.is_ok());
assert!(bank.get_account(&rent_exempt_account.pubkey()).is_none());
}
#[test]
fn test_invalid_rent_state_changes_new_accounts() {
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(sol_to_lamports(100.), &Pubkey::new_unique(), 42);
genesis_config.rent = Rent::default();
let mock_program_id = Pubkey::new_unique();
let account_data_size = 100;
let rent_exempt_minimum = genesis_config.rent.minimum_balance(account_data_size);
// Activate features, including require_rent_exempt_accounts
activate_all_features(&mut genesis_config);
let mut bank = Bank::new_for_tests(&genesis_config);
bank.add_builtin(
"mock_program",
&mock_program_id,
mock_transfer_process_instruction,
);
let recent_blockhash = bank.last_blockhash();
let check_account_is_rent_exempt = |pubkey: &Pubkey| -> bool {
let account = bank.get_account(pubkey).unwrap();
Rent::default().is_exempt(account.lamports(), account.data().len())
};
// Try to create RentPaying account
let rent_paying_account = Keypair::new();
let tx = system_transaction::create_account(
&mint_keypair,
&rent_paying_account,
recent_blockhash,
rent_exempt_minimum - 1,
account_data_size as u64,
&mock_program_id,
);
let result = bank.process_transaction(&tx);
assert!(result.is_err());
assert!(bank.get_account(&rent_paying_account.pubkey()).is_none());
// Try to create RentExempt account
let rent_exempt_account = Keypair::new();
let tx = system_transaction::create_account(
&mint_keypair,
&rent_exempt_account,
recent_blockhash,
rent_exempt_minimum,
account_data_size as u64,
&mock_program_id,
);
let result = bank.process_transaction(&tx);
assert!(result.is_ok());
assert!(check_account_is_rent_exempt(&rent_exempt_account.pubkey()));
}
#[test]
fn test_rent_state_changes_sysvars() {
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(sol_to_lamports(100.), &Pubkey::new_unique(), 42);
genesis_config.rent = Rent::default();
// Activate features, including require_rent_exempt_accounts
activate_all_features(&mut genesis_config);
let validator_pubkey = solana_sdk::pubkey::new_rand();
let validator_stake_lamports = sol_to_lamports(1.);
let validator_staking_keypair = Keypair::new();
let validator_voting_keypair = Keypair::new();
let validator_vote_account = vote_state::create_account(
&validator_voting_keypair.pubkey(),
&validator_pubkey,
0,
validator_stake_lamports,
);
let validator_stake_account = stake_state::create_account(
&validator_staking_keypair.pubkey(),
&validator_voting_keypair.pubkey(),
&validator_vote_account,
&genesis_config.rent,
validator_stake_lamports,
);
genesis_config.accounts.insert(
validator_pubkey,
Account::new(
genesis_config.rent.minimum_balance(0),
0,
&system_program::id(),
),
);
genesis_config.accounts.insert(
validator_staking_keypair.pubkey(),
Account::from(validator_stake_account),
);
genesis_config.accounts.insert(
validator_voting_keypair.pubkey(),
Account::from(validator_vote_account),
);
let bank = Bank::new_for_tests(&genesis_config);
// Ensure transactions with sysvars succeed, even though sysvars appear RentPaying by balance
let tx = Transaction::new_signed_with_payer(
&[stake_instruction::deactivate_stake(
&validator_staking_keypair.pubkey(),
&validator_staking_keypair.pubkey(),
)],
Some(&mint_keypair.pubkey()),
&[&mint_keypair, &validator_staking_keypair],
bank.last_blockhash(),
);
let result = bank.process_transaction(&tx);
assert!(result.is_ok());
}
#[test]
fn test_rent_state_list_len() {
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config_with_leader(sol_to_lamports(100.), &Pubkey::new_unique(), 42);
genesis_config.rent = Rent::default();
// Activate features, including require_rent_exempt_accounts
activate_all_features(&mut genesis_config);
let bank = Bank::new_for_tests(&genesis_config);
let recipient = Pubkey::new_unique();
let tx = system_transaction::transfer(
&mint_keypair,
&recipient,
sol_to_lamports(1.),
bank.last_blockhash(),
);
let number_of_instructions_at_transaction_level = tx.message().instructions.len();
let num_accounts = tx.message().account_keys.len();
let sanitized_tx = SanitizedTransaction::try_from_legacy_transaction(tx).unwrap();
let mut error_counters = ErrorCounters::default();
let loaded_txs = bank.rc.accounts.load_accounts(
&bank.ancestors,
&[sanitized_tx.clone()],
vec![(Ok(()), None)],
&bank.blockhash_queue.read().unwrap(),
&mut error_counters,
&bank.rent_collector,
&bank.feature_set,
&FeeStructure::default(),
);
let compute_budget = bank
.compute_budget
.unwrap_or_else(|| ComputeBudget::new(false));
let transaction_context = TransactionContext::new(
loaded_txs[0].0.as_ref().unwrap().accounts.clone(),
compute_budget.max_invoke_depth.saturating_add(1),
number_of_instructions_at_transaction_level,
);
assert_eq!(
bank.get_transaction_account_state_info(&transaction_context, sanitized_tx.message())
.len(),
num_accounts,
);
}
#[test]
fn test_update_accounts_data_len() {
let (genesis_config, _mint_keypair) = create_genesis_config(100);
let bank = Bank::new_for_tests(&genesis_config);
// Test: Subtraction saturates at 0
{
let data_len = 567_i64;
bank.store_accounts_data_len(data_len as u64);
bank.update_accounts_data_len(-(data_len + 1));
assert_eq!(bank.load_accounts_data_len(), 0);
}
// Test: Addition saturates at u64::MAX
{
let data_len_remaining = 567;
bank.store_accounts_data_len(u64::MAX - data_len_remaining);
bank.update_accounts_data_len((data_len_remaining + 1) as i64);
assert_eq!(bank.load_accounts_data_len(), u64::MAX);
}
// Test: Updates work as expected
{
// Set the accounts data len to be in the middle, then perform a bunch of small
// updates, checking the results after each one.
bank.store_accounts_data_len(u32::MAX as u64);
let mut rng = rand::thread_rng();
for _ in 0..100 {
let initial = bank.load_accounts_data_len() as i64;
let delta = rng.gen_range(-500, 500);
bank.update_accounts_data_len(delta);
assert_eq!(bank.load_accounts_data_len() as i64, initial + delta);
}
}
}
#[test]
fn test_inner_instructions_list_from_instruction_trace() {
let instruction_trace = vec![
vec![
InstructionContext::new(0, &[], &[], &[1]),
InstructionContext::new(1, &[], &[], &[2]),
],
vec![],
vec![
InstructionContext::new(0, &[], &[], &[3]),
InstructionContext::new(1, &[], &[], &[4]),
InstructionContext::new(2, &[], &[], &[5]),
InstructionContext::new(1, &[], &[], &[6]),
],
];
let inner_instructions = inner_instructions_list_from_instruction_trace(&instruction_trace);
assert_eq!(
inner_instructions,
vec![
vec![CompiledInstruction::new_from_raw_parts(0, vec![2], vec![])],
vec![],
vec![
CompiledInstruction::new_from_raw_parts(0, vec![4], vec![]),
CompiledInstruction::new_from_raw_parts(0, vec![5], vec![]),
CompiledInstruction::new_from_raw_parts(0, vec![6], vec![])
]
]
);
}
}