solana/programs/bpf_loader/src/syscalls/cpi.rs

1883 lines
64 KiB
Rust

use {
super::*,
crate::declare_syscall,
solana_sdk::{
feature_set::enable_bpf_loader_set_authority_checked_ix,
stable_layout::stable_instruction::StableInstruction,
syscalls::{
MAX_CPI_ACCOUNT_INFOS, MAX_CPI_INSTRUCTION_ACCOUNTS, MAX_CPI_INSTRUCTION_DATA_LEN,
},
transaction_context::BorrowedAccount,
},
std::mem,
};
/// Host side representation of AccountInfo or SolAccountInfo passed to the CPI syscall.
///
/// At the start of a CPI, this can be different from the data stored in the
/// corresponding BorrowedAccount, and needs to be synched.
struct CallerAccount<'a> {
lamports: &'a mut u64,
owner: &'a mut Pubkey,
original_data_len: usize,
data: &'a mut [u8],
// Given the corresponding input AccountInfo::data, vm_data_addr points to
// the pointer field and ref_to_len_in_vm points to the length field.
vm_data_addr: u64,
ref_to_len_in_vm: &'a mut u64,
// To be removed once `feature_set::move_serialized_len_ptr_in_cpi` is active everywhere
serialized_len_ptr: *mut u64,
executable: bool,
rent_epoch: u64,
}
impl<'a> CallerAccount<'a> {
// Create a CallerAccount given an AccountInfo.
fn from_account_info(
invoke_context: &InvokeContext,
memory_mapping: &MemoryMapping,
_vm_addr: u64,
account_info: &AccountInfo,
original_data_len: usize,
) -> Result<CallerAccount<'a>, EbpfError> {
// account_info points to host memory. The addresses used internally are
// in vm space so they need to be translated.
let lamports = {
// Double translate lamports out of RefCell
let ptr = translate_type::<u64>(
memory_mapping,
account_info.lamports.as_ptr() as u64,
invoke_context.get_check_aligned(),
)?;
translate_type_mut::<u64>(memory_mapping, *ptr, invoke_context.get_check_aligned())?
};
let owner = translate_type_mut::<Pubkey>(
memory_mapping,
account_info.owner as *const _ as u64,
invoke_context.get_check_aligned(),
)?;
let (data, vm_data_addr, ref_to_len_in_vm, serialized_len_ptr) = {
// Double translate data out of RefCell
let data = *translate_type::<&[u8]>(
memory_mapping,
account_info.data.as_ptr() as *const _ as u64,
invoke_context.get_check_aligned(),
)?;
consume_compute_meter(
invoke_context,
(data.len() as u64)
.saturating_div(invoke_context.get_compute_budget().cpi_bytes_per_unit),
)?;
let translated = translate(
memory_mapping,
AccessType::Store,
(account_info.data.as_ptr() as *const u64 as u64)
.saturating_add(size_of::<u64>() as u64),
8,
)? as *mut u64;
let ref_to_len_in_vm = unsafe { &mut *translated };
let serialized_len_ptr = if invoke_context
.feature_set
.is_active(&feature_set::move_serialized_len_ptr_in_cpi::id())
{
std::ptr::null_mut()
} else {
let ref_of_len_in_input_buffer =
(data.as_ptr() as *const _ as u64).saturating_sub(8);
translate_type_mut::<u64>(
memory_mapping,
ref_of_len_in_input_buffer,
invoke_context.get_check_aligned(),
)?
};
let vm_data_addr = data.as_ptr() as u64;
(
translate_slice_mut::<u8>(
memory_mapping,
vm_data_addr,
data.len() as u64,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?,
vm_data_addr,
ref_to_len_in_vm,
serialized_len_ptr,
)
};
Ok(CallerAccount {
lamports,
owner,
original_data_len,
data,
vm_data_addr,
ref_to_len_in_vm,
serialized_len_ptr,
executable: account_info.executable,
rent_epoch: account_info.rent_epoch,
})
}
// Create a CallerAccount given a SolAccountInfo.
fn from_sol_account_info(
invoke_context: &InvokeContext,
memory_mapping: &MemoryMapping,
vm_addr: u64,
account_info: &SolAccountInfo,
original_data_len: usize,
) -> Result<CallerAccount<'a>, EbpfError> {
// account_info points to host memory. The addresses used internally are
// in vm space so they need to be translated.
let lamports = translate_type_mut::<u64>(
memory_mapping,
account_info.lamports_addr,
invoke_context.get_check_aligned(),
)?;
let owner = translate_type_mut::<Pubkey>(
memory_mapping,
account_info.owner_addr,
invoke_context.get_check_aligned(),
)?;
let vm_data_addr = account_info.data_addr;
consume_compute_meter(
invoke_context,
account_info
.data_len
.saturating_div(invoke_context.get_compute_budget().cpi_bytes_per_unit),
)?;
let data = translate_slice_mut::<u8>(
memory_mapping,
vm_data_addr,
account_info.data_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
// we already have the host addr we want: &mut account_info.data_len.
// The account info might be read only in the vm though, so we translate
// to ensure we can write. This is tested by programs/sbf/rust/ro_modify
// which puts SolAccountInfo in rodata.
let data_len_vm_addr = vm_addr
.saturating_add(&account_info.data_len as *const u64 as u64)
.saturating_sub(account_info as *const _ as *const u64 as u64);
let data_len_addr = translate(
memory_mapping,
AccessType::Store,
data_len_vm_addr,
size_of::<u64>() as u64,
)?;
let ref_to_len_in_vm = unsafe { &mut *(data_len_addr as *mut u64) };
let ref_of_len_in_input_buffer =
(account_info.data_addr as *mut u8 as u64).saturating_sub(8);
let serialized_len_ptr = if invoke_context
.feature_set
.is_active(&feature_set::move_serialized_len_ptr_in_cpi::id())
{
std::ptr::null_mut()
} else {
translate_type_mut::<u64>(
memory_mapping,
ref_of_len_in_input_buffer,
invoke_context.get_check_aligned(),
)?
};
Ok(CallerAccount {
lamports,
owner,
original_data_len,
data,
vm_data_addr,
ref_to_len_in_vm,
serialized_len_ptr,
executable: account_info.executable,
rent_epoch: account_info.rent_epoch,
})
}
}
type TranslatedAccounts<'a> = Vec<(IndexOfAccount, Option<CallerAccount<'a>>)>;
/// Implemented by language specific data structure translators
trait SyscallInvokeSigned {
fn translate_instruction(
addr: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<StableInstruction, EbpfError>;
fn translate_accounts<'a>(
instruction_accounts: &[InstructionAccount],
program_indices: &[IndexOfAccount],
account_infos_addr: u64,
account_infos_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<TranslatedAccounts<'a>, EbpfError>;
fn translate_signers(
program_id: &Pubkey,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &InvokeContext,
) -> Result<Vec<Pubkey>, EbpfError>;
}
declare_syscall!(
/// Cross-program invocation called from Rust
SyscallInvokeSignedRust,
fn inner_call(
invoke_context: &mut InvokeContext,
instruction_addr: u64,
account_infos_addr: u64,
account_infos_len: u64,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
) -> Result<u64, EbpfError> {
cpi_common::<Self>(
invoke_context,
instruction_addr,
account_infos_addr,
account_infos_len,
signers_seeds_addr,
signers_seeds_len,
memory_mapping,
)
}
);
impl SyscallInvokeSigned for SyscallInvokeSignedRust {
fn translate_instruction(
addr: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<StableInstruction, EbpfError> {
let ix = translate_type::<StableInstruction>(
memory_mapping,
addr,
invoke_context.get_check_aligned(),
)?;
check_instruction_size(ix.accounts.len(), ix.data.len(), invoke_context)?;
let accounts = translate_slice::<AccountMeta>(
memory_mapping,
ix.accounts.as_ptr() as u64,
ix.accounts.len() as u64,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?
.to_vec();
let ix_data_len = ix.data.len() as u64;
if invoke_context
.feature_set
.is_active(&feature_set::loosen_cpi_size_restriction::id())
{
consume_compute_meter(
invoke_context,
(ix_data_len)
.saturating_div(invoke_context.get_compute_budget().cpi_bytes_per_unit),
)?;
}
let data = translate_slice::<u8>(
memory_mapping,
ix.data.as_ptr() as u64,
ix_data_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?
.to_vec();
Ok(StableInstruction {
accounts: accounts.into(),
data: data.into(),
program_id: ix.program_id,
})
}
fn translate_accounts<'a>(
instruction_accounts: &[InstructionAccount],
program_indices: &[IndexOfAccount],
account_infos_addr: u64,
account_infos_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<TranslatedAccounts<'a>, EbpfError> {
let (account_infos, account_info_keys) = translate_account_infos(
account_infos_addr,
account_infos_len,
|account_info: &AccountInfo| account_info.key as *const _ as u64,
memory_mapping,
invoke_context,
)?;
translate_and_update_accounts(
instruction_accounts,
program_indices,
&account_info_keys,
account_infos,
account_infos_addr,
invoke_context,
memory_mapping,
CallerAccount::from_account_info,
)
}
fn translate_signers(
program_id: &Pubkey,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &InvokeContext,
) -> Result<Vec<Pubkey>, EbpfError> {
let mut signers = Vec::new();
if signers_seeds_len > 0 {
let signers_seeds = translate_slice::<&[&[u8]]>(
memory_mapping,
signers_seeds_addr,
signers_seeds_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
if signers_seeds.len() > MAX_SIGNERS {
return Err(SyscallError::TooManySigners.into());
}
for signer_seeds in signers_seeds.iter() {
let untranslated_seeds = translate_slice::<&[u8]>(
memory_mapping,
signer_seeds.as_ptr() as *const _ as u64,
signer_seeds.len() as u64,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
if untranslated_seeds.len() > MAX_SEEDS {
return Err(SyscallError::InstructionError(
InstructionError::MaxSeedLengthExceeded,
)
.into());
}
let seeds = untranslated_seeds
.iter()
.map(|untranslated_seed| {
translate_slice::<u8>(
memory_mapping,
untranslated_seed.as_ptr() as *const _ as u64,
untranslated_seed.len() as u64,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)
})
.collect::<Result<Vec<_>, EbpfError>>()?;
let signer = Pubkey::create_program_address(&seeds, program_id)
.map_err(SyscallError::BadSeeds)?;
signers.push(signer);
}
Ok(signers)
} else {
Ok(vec![])
}
}
}
/// Rust representation of C's SolInstruction
#[derive(Debug)]
#[repr(C)]
struct SolInstruction {
program_id_addr: u64,
accounts_addr: u64,
accounts_len: u64,
data_addr: u64,
data_len: u64,
}
/// Rust representation of C's SolAccountMeta
#[derive(Debug)]
#[repr(C)]
struct SolAccountMeta {
pubkey_addr: u64,
is_writable: bool,
is_signer: bool,
}
/// Rust representation of C's SolAccountInfo
#[derive(Debug)]
#[repr(C)]
struct SolAccountInfo {
key_addr: u64,
lamports_addr: u64,
data_len: u64,
data_addr: u64,
owner_addr: u64,
rent_epoch: u64,
#[allow(dead_code)]
is_signer: bool,
#[allow(dead_code)]
is_writable: bool,
executable: bool,
}
/// Rust representation of C's SolSignerSeed
#[derive(Debug)]
#[repr(C)]
struct SolSignerSeedC {
addr: u64,
len: u64,
}
/// Rust representation of C's SolSignerSeeds
#[derive(Debug)]
#[repr(C)]
struct SolSignerSeedsC {
addr: u64,
len: u64,
}
declare_syscall!(
/// Cross-program invocation called from C
SyscallInvokeSignedC,
fn inner_call(
invoke_context: &mut InvokeContext,
instruction_addr: u64,
account_infos_addr: u64,
account_infos_len: u64,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
) -> Result<u64, EbpfError> {
cpi_common::<Self>(
invoke_context,
instruction_addr,
account_infos_addr,
account_infos_len,
signers_seeds_addr,
signers_seeds_len,
memory_mapping,
)
}
);
impl SyscallInvokeSigned for SyscallInvokeSignedC {
fn translate_instruction(
addr: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<StableInstruction, EbpfError> {
let ix_c = translate_type::<SolInstruction>(
memory_mapping,
addr,
invoke_context.get_check_aligned(),
)?;
check_instruction_size(
ix_c.accounts_len as usize,
ix_c.data_len as usize,
invoke_context,
)?;
let program_id = translate_type::<Pubkey>(
memory_mapping,
ix_c.program_id_addr,
invoke_context.get_check_aligned(),
)?;
let meta_cs = translate_slice::<SolAccountMeta>(
memory_mapping,
ix_c.accounts_addr,
ix_c.accounts_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
let ix_data_len = ix_c.data_len;
if invoke_context
.feature_set
.is_active(&feature_set::loosen_cpi_size_restriction::id())
{
consume_compute_meter(
invoke_context,
(ix_data_len)
.saturating_div(invoke_context.get_compute_budget().cpi_bytes_per_unit),
)?;
}
let data = translate_slice::<u8>(
memory_mapping,
ix_c.data_addr,
ix_data_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?
.to_vec();
let accounts = meta_cs
.iter()
.map(|meta_c| {
let pubkey = translate_type::<Pubkey>(
memory_mapping,
meta_c.pubkey_addr,
invoke_context.get_check_aligned(),
)?;
Ok(AccountMeta {
pubkey: *pubkey,
is_signer: meta_c.is_signer,
is_writable: meta_c.is_writable,
})
})
.collect::<Result<Vec<AccountMeta>, EbpfError>>()?;
Ok(StableInstruction {
accounts: accounts.into(),
data: data.into(),
program_id: *program_id,
})
}
fn translate_accounts<'a>(
instruction_accounts: &[InstructionAccount],
program_indices: &[IndexOfAccount],
account_infos_addr: u64,
account_infos_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<TranslatedAccounts<'a>, EbpfError> {
let (account_infos, account_info_keys) = translate_account_infos(
account_infos_addr,
account_infos_len,
|account_info: &SolAccountInfo| account_info.key_addr,
memory_mapping,
invoke_context,
)?;
translate_and_update_accounts(
instruction_accounts,
program_indices,
&account_info_keys,
account_infos,
account_infos_addr,
invoke_context,
memory_mapping,
CallerAccount::from_sol_account_info,
)
}
fn translate_signers(
program_id: &Pubkey,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
invoke_context: &InvokeContext,
) -> Result<Vec<Pubkey>, EbpfError> {
if signers_seeds_len > 0 {
let signers_seeds = translate_slice::<SolSignerSeedsC>(
memory_mapping,
signers_seeds_addr,
signers_seeds_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
if signers_seeds.len() > MAX_SIGNERS {
return Err(SyscallError::TooManySigners.into());
}
Ok(signers_seeds
.iter()
.map(|signer_seeds| {
let seeds = translate_slice::<SolSignerSeedC>(
memory_mapping,
signer_seeds.addr,
signer_seeds.len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
if seeds.len() > MAX_SEEDS {
return Err(SyscallError::InstructionError(
InstructionError::MaxSeedLengthExceeded,
)
.into());
}
let seeds_bytes = seeds
.iter()
.map(|seed| {
translate_slice::<u8>(
memory_mapping,
seed.addr,
seed.len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)
})
.collect::<Result<Vec<_>, EbpfError>>()?;
Pubkey::create_program_address(&seeds_bytes, program_id)
.map_err(|err| SyscallError::BadSeeds(err).into())
})
.collect::<Result<Vec<_>, EbpfError>>()?)
} else {
Ok(vec![])
}
}
}
fn translate_account_infos<'a, T, F>(
account_infos_addr: u64,
account_infos_len: u64,
key_addr: F,
memory_mapping: &mut MemoryMapping,
invoke_context: &mut InvokeContext,
) -> Result<(&'a [T], Vec<&'a Pubkey>), EbpfError>
where
F: Fn(&T) -> u64,
{
let account_infos = translate_slice::<T>(
memory_mapping,
account_infos_addr,
account_infos_len,
invoke_context.get_check_aligned(),
invoke_context.get_check_size(),
)?;
check_account_infos(account_infos.len(), invoke_context)?;
let account_info_keys = account_infos
.iter()
.map(|account_info| {
translate_type::<Pubkey>(
memory_mapping,
key_addr(account_info),
invoke_context.get_check_aligned(),
)
})
.collect::<Result<Vec<_>, EbpfError>>()?;
Ok((account_infos, account_info_keys))
}
// Finish translating accounts, build CallerAccount values and update callee
// accounts in preparation of executing the callee.
fn translate_and_update_accounts<'a, T, F>(
instruction_accounts: &[InstructionAccount],
program_indices: &[IndexOfAccount],
account_info_keys: &[&Pubkey],
account_infos: &[T],
account_infos_addr: u64,
invoke_context: &mut InvokeContext,
memory_mapping: &MemoryMapping,
do_translate: F,
) -> Result<TranslatedAccounts<'a>, EbpfError>
where
F: Fn(&InvokeContext, &MemoryMapping, u64, &T, usize) -> Result<CallerAccount<'a>, EbpfError>,
{
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context
.get_current_instruction_context()
.map_err(SyscallError::InstructionError)?;
let mut accounts = Vec::with_capacity(instruction_accounts.len().saturating_add(1));
let program_account_index = program_indices
.last()
.ok_or(SyscallError::InstructionError(
InstructionError::MissingAccount,
))?;
accounts.push((*program_account_index, None));
// unwrapping here is fine: we're in a syscall and the method below fails
// only outside syscalls
let orig_data_lens = invoke_context.get_orig_account_lengths().unwrap();
for (instruction_account_index, instruction_account) in instruction_accounts.iter().enumerate()
{
if instruction_account_index as IndexOfAccount != instruction_account.index_in_callee {
continue; // Skip duplicate account
}
let callee_account = instruction_context
.try_borrow_instruction_account(
transaction_context,
instruction_account.index_in_caller,
)
.map_err(SyscallError::InstructionError)?;
let account_key = invoke_context
.transaction_context
.get_key_of_account_at_index(instruction_account.index_in_transaction)
.map_err(SyscallError::InstructionError)?;
if callee_account.is_executable() {
// Use the known account
consume_compute_meter(
invoke_context,
(callee_account.get_data().len() as u64)
.saturating_div(invoke_context.get_compute_budget().cpi_bytes_per_unit),
)?;
accounts.push((instruction_account.index_in_caller, None));
} else if let Some(caller_account_index) =
account_info_keys.iter().position(|key| *key == account_key)
{
let original_data_len = *orig_data_lens
.get(instruction_account.index_in_caller as usize)
.ok_or_else(|| {
ic_msg!(
invoke_context,
"Internal error: index mismatch for account {}",
account_key
);
SyscallError::InstructionError(InstructionError::MissingAccount)
})?;
// build the CallerAccount corresponding to this account.
let caller_account =
do_translate(
invoke_context,
memory_mapping,
account_infos_addr.saturating_add(
caller_account_index.saturating_mul(mem::size_of::<T>()) as u64,
),
account_infos
.get(caller_account_index)
.ok_or(SyscallError::InvalidLength)?,
original_data_len,
)?;
// before initiating CPI, the caller may have modified the
// account (caller_account). We need to update the corresponding
// BorrowedAccount (callee_account) so the callee can see the
// changes.
update_callee_account(invoke_context, &caller_account, callee_account)?;
let caller_account = if instruction_account.is_writable {
Some(caller_account)
} else {
None
};
accounts.push((instruction_account.index_in_caller, caller_account));
} else {
ic_msg!(
invoke_context,
"Instruction references an unknown account {}",
account_key
);
return Err(SyscallError::InstructionError(InstructionError::MissingAccount).into());
}
}
Ok(accounts)
}
fn check_instruction_size(
num_accounts: usize,
data_len: usize,
invoke_context: &mut InvokeContext,
) -> Result<(), EbpfError> {
if invoke_context
.feature_set
.is_active(&feature_set::loosen_cpi_size_restriction::id())
{
let data_len = data_len as u64;
let max_data_len = MAX_CPI_INSTRUCTION_DATA_LEN;
if data_len > max_data_len {
return Err(SyscallError::MaxInstructionDataLenExceeded {
data_len,
max_data_len,
}
.into());
}
let num_accounts = num_accounts as u64;
let max_accounts = MAX_CPI_INSTRUCTION_ACCOUNTS as u64;
if num_accounts > max_accounts {
return Err(SyscallError::MaxInstructionAccountsExceeded {
num_accounts,
max_accounts,
}
.into());
}
} else {
let max_size = invoke_context.get_compute_budget().max_cpi_instruction_size;
let size = num_accounts
.saturating_mul(size_of::<AccountMeta>())
.saturating_add(data_len);
if size > max_size {
return Err(SyscallError::InstructionTooLarge(size, max_size).into());
}
}
Ok(())
}
fn check_account_infos(
num_account_infos: usize,
invoke_context: &mut InvokeContext,
) -> Result<(), EbpfError> {
if invoke_context
.feature_set
.is_active(&feature_set::loosen_cpi_size_restriction::id())
{
let max_cpi_account_infos = if invoke_context
.feature_set
.is_active(&feature_set::increase_tx_account_lock_limit::id())
{
MAX_CPI_ACCOUNT_INFOS
} else {
64
};
let num_account_infos = num_account_infos as u64;
let max_account_infos = max_cpi_account_infos as u64;
if num_account_infos > max_account_infos {
return Err(SyscallError::MaxInstructionAccountInfosExceeded {
num_account_infos,
max_account_infos,
}
.into());
}
} else {
let adjusted_len = num_account_infos.saturating_mul(size_of::<Pubkey>());
if adjusted_len > invoke_context.get_compute_budget().max_cpi_instruction_size {
// Cap the number of account_infos a caller can pass to approximate
// maximum that accounts that could be passed in an instruction
return Err(SyscallError::TooManyAccounts.into());
};
}
Ok(())
}
fn check_authorized_program(
program_id: &Pubkey,
instruction_data: &[u8],
invoke_context: &InvokeContext,
) -> Result<(), EbpfError> {
if native_loader::check_id(program_id)
|| bpf_loader::check_id(program_id)
|| bpf_loader_deprecated::check_id(program_id)
|| (bpf_loader_upgradeable::check_id(program_id)
&& !(bpf_loader_upgradeable::is_upgrade_instruction(instruction_data)
|| bpf_loader_upgradeable::is_set_authority_instruction(instruction_data)
|| (invoke_context
.feature_set
.is_active(&enable_bpf_loader_set_authority_checked_ix::id())
&& bpf_loader_upgradeable::is_set_authority_checked_instruction(
instruction_data,
))
|| bpf_loader_upgradeable::is_close_instruction(instruction_data)))
|| is_precompile(program_id, |feature_id: &Pubkey| {
invoke_context.feature_set.is_active(feature_id)
})
{
return Err(SyscallError::ProgramNotSupported(*program_id).into());
}
Ok(())
}
/// Call process instruction, common to both Rust and C
fn cpi_common<S: SyscallInvokeSigned>(
invoke_context: &mut InvokeContext,
instruction_addr: u64,
account_infos_addr: u64,
account_infos_len: u64,
signers_seeds_addr: u64,
signers_seeds_len: u64,
memory_mapping: &mut MemoryMapping,
) -> Result<u64, EbpfError> {
// CPI entry.
//
// Translate the inputs to the syscall and synchronize the caller's account
// changes so the callee can see them.
consume_compute_meter(
invoke_context,
invoke_context.get_compute_budget().invoke_units,
)?;
let instruction = S::translate_instruction(instruction_addr, memory_mapping, invoke_context)?;
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context
.get_current_instruction_context()
.map_err(SyscallError::InstructionError)?;
let caller_program_id = instruction_context
.get_last_program_key(transaction_context)
.map_err(SyscallError::InstructionError)?;
let signers = S::translate_signers(
caller_program_id,
signers_seeds_addr,
signers_seeds_len,
memory_mapping,
invoke_context,
)?;
let (instruction_accounts, program_indices) = invoke_context
.prepare_instruction(&instruction, &signers)
.map_err(SyscallError::InstructionError)?;
check_authorized_program(&instruction.program_id, &instruction.data, invoke_context)?;
let mut accounts = S::translate_accounts(
&instruction_accounts,
&program_indices,
account_infos_addr,
account_infos_len,
memory_mapping,
invoke_context,
)?;
// Process the callee instruction
let mut compute_units_consumed = 0;
invoke_context
.process_instruction(
&instruction.data,
&instruction_accounts,
&program_indices,
&mut compute_units_consumed,
&mut ExecuteTimings::default(),
)
.map_err(SyscallError::InstructionError)?;
// re-bind to please the borrow checker
let transaction_context = &invoke_context.transaction_context;
let instruction_context = transaction_context
.get_current_instruction_context()
.map_err(SyscallError::InstructionError)?;
// CPI exit.
//
// Synchronize the callee's account changes so the caller can see them.
for (index_in_caller, caller_account) in accounts.iter_mut() {
if let Some(caller_account) = caller_account {
let callee_account = instruction_context
.try_borrow_instruction_account(transaction_context, *index_in_caller)
.map_err(SyscallError::InstructionError)?;
update_caller_account(
invoke_context,
memory_mapping,
caller_account,
&callee_account,
)?;
}
}
Ok(SUCCESS)
}
// Update the given account before executing CPI.
//
// caller_account and callee_account describe the same account. At CPI entry
// caller_account might include changes the caller has made to the account
// before executing CPI.
//
// This method updates callee_account so the CPI callee can see the caller's
// changes.
fn update_callee_account(
invoke_context: &InvokeContext,
caller_account: &CallerAccount,
mut callee_account: BorrowedAccount<'_>,
) -> Result<(), EbpfError> {
let is_disable_cpi_setting_executable_and_rent_epoch_active = invoke_context
.feature_set
.is_active(&disable_cpi_setting_executable_and_rent_epoch::id());
if callee_account.get_lamports() != *caller_account.lamports {
callee_account
.set_lamports(*caller_account.lamports)
.map_err(SyscallError::InstructionError)?;
}
// The redundant check helps to avoid the expensive data comparison if we can
match callee_account
.can_data_be_resized(caller_account.data.len())
.and_then(|_| callee_account.can_data_be_changed())
{
Ok(()) => callee_account
.set_data_from_slice(caller_account.data)
.map_err(SyscallError::InstructionError)?,
Err(err) if callee_account.get_data() != caller_account.data => {
return Err(EbpfError::UserError(Box::new(BpfError::SyscallError(
SyscallError::InstructionError(err),
))));
}
_ => {}
}
if !is_disable_cpi_setting_executable_and_rent_epoch_active
&& callee_account.is_executable() != caller_account.executable
{
callee_account
.set_executable(caller_account.executable)
.map_err(SyscallError::InstructionError)?;
}
// Change the owner at the end so that we are allowed to change the lamports and data before
if callee_account.get_owner() != caller_account.owner {
callee_account
.set_owner(caller_account.owner.as_ref())
.map_err(SyscallError::InstructionError)?;
}
// BorrowedAccount doesn't allow changing the rent epoch. Drop it and use
// AccountSharedData directly.
let index_in_transaction = callee_account.get_index_in_transaction();
drop(callee_account);
let callee_account = invoke_context
.transaction_context
.get_account_at_index(index_in_transaction)
.map_err(SyscallError::InstructionError)?;
if !is_disable_cpi_setting_executable_and_rent_epoch_active
&& callee_account.borrow().rent_epoch() != caller_account.rent_epoch
{
if invoke_context
.feature_set
.is_active(&enable_early_verification_of_account_modifications::id())
{
return Err(SyscallError::InstructionError(InstructionError::RentEpochModified).into());
} else {
callee_account
.borrow_mut()
.set_rent_epoch(caller_account.rent_epoch);
}
}
Ok(())
}
// Update the given account after executing CPI.
//
// caller_account and callee_account describe to the same account. At CPI exit
// callee_account might include changes the callee has made to the account
// after executing.
//
// This method updates caller_account so the CPI caller can see the callee's
// changes.
fn update_caller_account(
invoke_context: &InvokeContext,
memory_mapping: &MemoryMapping,
caller_account: &mut CallerAccount,
callee_account: &BorrowedAccount<'_>,
) -> Result<(), EbpfError> {
*caller_account.lamports = callee_account.get_lamports();
*caller_account.owner = *callee_account.get_owner();
let new_len = callee_account.get_data().len();
if caller_account.data.len() != new_len {
let data_overflow = new_len
> caller_account
.original_data_len
.saturating_add(MAX_PERMITTED_DATA_INCREASE);
if data_overflow {
ic_msg!(
invoke_context,
"Account data size realloc limited to {} in inner instructions",
MAX_PERMITTED_DATA_INCREASE
);
return Err(SyscallError::InstructionError(InstructionError::InvalidRealloc).into());
}
if new_len < caller_account.data.len() {
caller_account
.data
.get_mut(new_len..)
.ok_or(SyscallError::InstructionError(
InstructionError::AccountDataTooSmall,
))?
.fill(0);
}
caller_account.data = translate_slice_mut::<u8>(
memory_mapping,
caller_account.vm_data_addr,
new_len as u64,
false, // Don't care since it is byte aligned
invoke_context.get_check_size(),
)?;
// this is the len field in the AccountInfo::data slice
*caller_account.ref_to_len_in_vm = new_len as u64;
// this is the len field in the serialized parameters
if invoke_context
.feature_set
.is_active(&feature_set::move_serialized_len_ptr_in_cpi::id())
{
let serialized_len_ptr = translate_type_mut::<u64>(
memory_mapping,
caller_account
.vm_data_addr
.saturating_sub(std::mem::size_of::<u64>() as u64),
invoke_context.get_check_aligned(),
)?;
*serialized_len_ptr = new_len as u64;
} else {
unsafe {
*caller_account.serialized_len_ptr = new_len as u64;
}
}
}
let to_slice = &mut caller_account.data;
let from_slice = callee_account
.get_data()
.get(0..new_len)
.ok_or(SyscallError::InvalidLength)?;
if to_slice.len() != from_slice.len() {
return Err(SyscallError::InstructionError(InstructionError::AccountDataTooSmall).into());
}
to_slice.copy_from_slice(from_slice);
Ok(())
}
#[allow(clippy::indexing_slicing)]
#[allow(clippy::integer_arithmetic)]
#[cfg(test)]
mod tests {
use {
super::*,
crate::allocator_bump::BpfAllocator,
solana_program_runtime::with_mock_invoke_context,
solana_rbpf::{
aligned_memory::AlignedMemory, ebpf::MM_INPUT_START, memory_region::MemoryRegion,
vm::Config,
},
solana_sdk::{
account::{Account, AccountSharedData},
clock::Epoch,
instruction::Instruction,
transaction_context::TransactionAccount,
},
std::{
cell::{Cell, RefCell},
mem, ptr,
rc::Rc,
slice,
},
};
macro_rules! mock_invoke_context {
($invoke_context:ident,
$transaction_context:ident,
$instruction_data:expr,
$transaction_accounts:expr,
$program_accounts:expr,
$instruction_accounts:expr) => {
let program_accounts = $program_accounts;
let instruction_data = $instruction_data;
let instruction_accounts = $instruction_accounts
.iter()
.enumerate()
.map(
|(index_in_callee, index_in_transaction)| InstructionAccount {
index_in_transaction: *index_in_transaction as IndexOfAccount,
index_in_caller: *index_in_transaction as IndexOfAccount,
index_in_callee: index_in_callee as IndexOfAccount,
is_signer: false,
is_writable: $transaction_accounts[*index_in_transaction as usize].2,
},
)
.collect::<Vec<_>>();
let transaction_accounts = $transaction_accounts
.into_iter()
.map(|a| (a.0, a.1))
.collect::<Vec<TransactionAccount>>();
with_mock_invoke_context!($invoke_context, transaction_context, transaction_accounts);
$invoke_context
.transaction_context
.get_next_instruction_context()
.unwrap()
.configure(program_accounts, &instruction_accounts, instruction_data);
$invoke_context.push().unwrap();
};
}
#[test]
fn test_translate_instruction() {
let transaction_accounts = transaction_with_one_instruction_account(b"foo".to_vec());
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let program_id = Pubkey::new_unique();
let accounts = vec![AccountMeta {
pubkey: Pubkey::new_unique(),
is_signer: true,
is_writable: false,
}];
let data = b"ins data".to_vec();
let vm_addr = MM_INPUT_START;
let (_mem, region) = MockInstruction {
program_id,
accounts: accounts.clone(),
data: data.clone(),
}
.into_region(vm_addr);
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let mut memory_mapping = MemoryMapping::new(vec![region], &config).unwrap();
let ins = SyscallInvokeSignedRust::translate_instruction(
vm_addr,
&mut memory_mapping,
&mut invoke_context,
)
.unwrap();
assert_eq!(ins.program_id, program_id);
assert_eq!(ins.accounts, accounts);
assert_eq!(ins.data, data);
}
#[test]
fn test_translate_signers() {
let transaction_accounts = transaction_with_one_instruction_account(b"foo".to_vec());
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let program_id = Pubkey::new_unique();
let (derived_key, bump_seed) = Pubkey::find_program_address(&[b"foo"], &program_id);
let vm_addr = MM_INPUT_START;
let (_mem, region) = mock_signers(&[b"foo", &[bump_seed]], vm_addr);
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let mut memory_mapping = MemoryMapping::new(vec![region], &config).unwrap();
let signers = SyscallInvokeSignedRust::translate_signers(
&program_id,
vm_addr,
1,
&mut memory_mapping,
&invoke_context,
)
.unwrap();
assert_eq!(signers[0], derived_key);
}
#[test]
fn test_caller_account_from_account_info() {
let transaction_accounts = transaction_with_one_instruction_account(b"foo".to_vec());
let account = transaction_accounts[1].1.clone();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let key = Pubkey::new_unique();
let vm_addr = MM_INPUT_START;
let (_mem, region) = MockAccountInfo::new(key, &account).into_region(vm_addr);
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let memory_mapping = MemoryMapping::new(vec![region], &config).unwrap();
let account_info = translate_type::<AccountInfo>(&memory_mapping, vm_addr, false).unwrap();
let caller_account = CallerAccount::from_account_info(
&invoke_context,
&memory_mapping,
vm_addr,
account_info,
account.data().len(),
)
.unwrap();
assert_eq!(*caller_account.lamports, account.lamports());
assert_eq!(caller_account.owner, account.owner());
assert_eq!(caller_account.original_data_len, account.data().len());
assert_eq!(
*caller_account.ref_to_len_in_vm as usize,
account.data().len()
);
assert_eq!(caller_account.data, account.data());
assert_eq!(caller_account.executable, account.executable());
assert_eq!(caller_account.rent_epoch, account.rent_epoch());
}
#[test]
fn test_update_caller_account_lamports_owner() {
let transaction_accounts = transaction_with_one_instruction_account(vec![]);
let account = transaction_accounts[1].1.clone();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let instruction_context = invoke_context
.transaction_context
.get_current_instruction_context()
.unwrap();
let mut mock_caller_account =
MockCallerAccount::new(1234, *account.owner(), 0xFFFFFFFF00000000, account.data());
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let memory_mapping =
MemoryMapping::new(mock_caller_account.regions.split_off(0), &config).unwrap();
let mut caller_account = mock_caller_account.caller_account();
let mut callee_account = instruction_context
.try_borrow_instruction_account(invoke_context.transaction_context, 0)
.unwrap();
callee_account.set_lamports(42).unwrap();
callee_account
.set_owner(Pubkey::new_unique().as_ref())
.unwrap();
update_caller_account(
&invoke_context,
&memory_mapping,
&mut caller_account,
&callee_account,
)
.unwrap();
assert_eq!(*caller_account.lamports, 42);
assert_eq!(caller_account.owner, callee_account.get_owner());
}
#[test]
fn test_update_caller_account_data() {
let transaction_accounts = transaction_with_one_instruction_account(b"foobar".to_vec());
let account = transaction_accounts[1].1.clone();
let original_data_len = account.data().len();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let instruction_context = invoke_context
.transaction_context
.get_current_instruction_context()
.unwrap();
let mut mock_caller_account = MockCallerAccount::new(
account.lamports(),
*account.owner(),
0xFFFFFFFF00000000,
account.data(),
);
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let memory_mapping =
MemoryMapping::new(mock_caller_account.regions.split_off(0), &config).unwrap();
let data_slice = mock_caller_account.data_slice();
let len_ptr = unsafe {
data_slice
.as_ptr()
.offset(-(mem::size_of::<u64>() as isize))
};
let serialized_len = || unsafe { *len_ptr.cast::<u64>() as usize };
let mut caller_account = mock_caller_account.caller_account();
let mut callee_account = instruction_context
.try_borrow_instruction_account(invoke_context.transaction_context, 0)
.unwrap();
for (new_value, expected_realloc_size) in [
(b"foo".to_vec(), MAX_PERMITTED_DATA_INCREASE + 3),
(b"foobaz".to_vec(), MAX_PERMITTED_DATA_INCREASE),
(b"foobazbad".to_vec(), MAX_PERMITTED_DATA_INCREASE - 3),
] {
assert_eq!(caller_account.data, callee_account.get_data());
callee_account.set_data_from_slice(&new_value).unwrap();
update_caller_account(
&invoke_context,
&memory_mapping,
&mut caller_account,
&callee_account,
)
.unwrap();
let data_len = callee_account.get_data().len();
assert_eq!(data_len, *caller_account.ref_to_len_in_vm as usize);
assert_eq!(data_len, serialized_len());
assert_eq!(data_len, caller_account.data.len());
assert_eq!(callee_account.get_data(), &caller_account.data[..data_len]);
assert_eq!(data_slice[data_len..].len(), expected_realloc_size);
assert!(is_zeroed(&data_slice[data_len..]));
}
callee_account
.set_data_length(original_data_len + MAX_PERMITTED_DATA_INCREASE)
.unwrap();
update_caller_account(
&invoke_context,
&memory_mapping,
&mut caller_account,
&callee_account,
)
.unwrap();
let data_len = callee_account.get_data().len();
assert_eq!(data_slice[data_len..].len(), 0);
assert!(is_zeroed(&data_slice[data_len..]));
callee_account
.set_data_length(original_data_len + MAX_PERMITTED_DATA_INCREASE + 1)
.unwrap();
assert!(matches!(
update_caller_account(
&invoke_context,
&memory_mapping,
&mut caller_account,
&callee_account,
),
Err(EbpfError::UserError(error)) if error.downcast_ref::<BpfError>().unwrap() == &BpfError::SyscallError(
SyscallError::InstructionError(InstructionError::InvalidRealloc)
)
));
}
macro_rules! borrow_instruction_account {
($invoke_context:expr, $index:expr) => {{
let instruction_context = $invoke_context
.transaction_context
.get_current_instruction_context()
.unwrap();
instruction_context
.try_borrow_instruction_account($invoke_context.transaction_context, $index)
.unwrap()
}};
}
#[test]
fn test_update_callee_account_lamports_owner() {
let transaction_accounts = transaction_with_one_instruction_account(vec![]);
let account = transaction_accounts[1].1.clone();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let mut mock_caller_account =
MockCallerAccount::new(1234, *account.owner(), 0xFFFFFFFF00000000, account.data());
let caller_account = mock_caller_account.caller_account();
let callee_account = borrow_instruction_account!(invoke_context, 0);
*caller_account.lamports = 42;
*caller_account.owner = Pubkey::new_unique();
update_callee_account(&invoke_context, &caller_account, callee_account).unwrap();
let callee_account = borrow_instruction_account!(invoke_context, 0);
assert_eq!(callee_account.get_lamports(), 42);
assert_eq!(caller_account.owner, callee_account.get_owner());
}
#[test]
fn test_update_callee_account_data() {
let transaction_accounts = transaction_with_one_instruction_account(b"foobar".to_vec());
let account = transaction_accounts[1].1.clone();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1]
);
let mut mock_caller_account =
MockCallerAccount::new(1234, *account.owner(), 0xFFFFFFFF00000000, account.data());
let mut caller_account = mock_caller_account.caller_account();
let callee_account = borrow_instruction_account!(invoke_context, 0);
let mut data = b"foo".to_vec();
caller_account.data = &mut data;
update_callee_account(&invoke_context, &caller_account, callee_account).unwrap();
let callee_account = borrow_instruction_account!(invoke_context, 0);
assert_eq!(callee_account.get_data(), caller_account.data);
}
#[test]
fn test_translate_accounts_rust() {
let transaction_accounts = transaction_with_one_instruction_account(b"foobar".to_vec());
let account = transaction_accounts[1].1.clone();
let key = transaction_accounts[1].0;
let original_data_len = account.data().len();
mock_invoke_context!(
invoke_context,
transaction_context,
b"instruction data",
transaction_accounts,
&[0],
&[1, 1]
);
invoke_context
.set_syscall_context(
true,
true,
vec![original_data_len],
Rc::new(RefCell::new(BpfAllocator::new(
AlignedMemory::with_capacity(0),
0,
))),
)
.unwrap();
let vm_addr = MM_INPUT_START;
let (_mem, region) = MockAccountInfo::new(key, &account).into_region(vm_addr);
let config = Config {
aligned_memory_mapping: false,
..Config::default()
};
let mut memory_mapping = MemoryMapping::new(vec![region], &config).unwrap();
let accounts = SyscallInvokeSignedRust::translate_accounts(
&[
InstructionAccount {
index_in_transaction: 1,
index_in_caller: 0,
index_in_callee: 0,
is_signer: false,
is_writable: true,
},
InstructionAccount {
index_in_transaction: 1,
index_in_caller: 0,
index_in_callee: 0,
is_signer: false,
is_writable: true,
},
],
&[0],
vm_addr,
1,
&mut memory_mapping,
&mut invoke_context,
)
.unwrap();
assert_eq!(accounts.len(), 2);
assert!(accounts[0].1.is_none());
let caller_account = accounts[1].1.as_ref().unwrap();
assert_eq!(caller_account.data, account.data());
assert_eq!(caller_account.original_data_len, original_data_len);
}
pub type TestTransactionAccount = (Pubkey, AccountSharedData, bool);
struct MockCallerAccount {
lamports: u64,
owner: Pubkey,
vm_addr: u64,
data: Vec<u8>,
len: u64,
regions: Vec<MemoryRegion>,
}
impl MockCallerAccount {
fn new(lamports: u64, owner: Pubkey, vm_addr: u64, data: &[u8]) -> MockCallerAccount {
// write [len][data] into a vec so we can check that they get
// properly updated by update_caller_account()
let mut d = vec![0; mem::size_of::<u64>() + data.len() + MAX_PERMITTED_DATA_INCREASE];
unsafe { ptr::write_unaligned::<u64>(d.as_mut_ptr().cast(), data.len() as u64) };
d[mem::size_of::<u64>()..][..data.len()].copy_from_slice(data);
// the memory region must include the realloc data
let regions = vec![MemoryRegion::new_writable(d.as_mut_slice(), vm_addr)];
// caller_account.data must have the actual data length
d.truncate(mem::size_of::<u64>() + data.len());
MockCallerAccount {
lamports,
owner,
vm_addr,
data: d,
len: data.len() as u64,
regions,
}
}
fn data_slice<'a>(&self) -> &'a [u8] {
// lifetime crimes
unsafe {
slice::from_raw_parts(
self.data[mem::size_of::<u64>()..].as_ptr(),
self.data.capacity() - mem::size_of::<u64>(),
)
}
}
fn caller_account(&mut self) -> CallerAccount<'_> {
let data = &mut self.data[mem::size_of::<u64>()..];
CallerAccount {
lamports: &mut self.lamports,
owner: &mut self.owner,
original_data_len: data.len(),
data,
vm_data_addr: self.vm_addr + mem::size_of::<u64>() as u64,
ref_to_len_in_vm: &mut self.len,
serialized_len_ptr: std::ptr::null_mut(),
executable: false,
rent_epoch: 0,
}
}
}
fn transaction_with_one_instruction_account(data: Vec<u8>) -> Vec<TestTransactionAccount> {
let program_id = Pubkey::new_unique();
let account = AccountSharedData::from(Account {
lamports: 1,
data,
owner: program_id,
executable: false,
rent_epoch: 100,
});
vec![
(
program_id,
AccountSharedData::from(Account {
lamports: 0,
data: vec![],
owner: bpf_loader::id(),
executable: true,
rent_epoch: 0,
}),
false,
),
(Pubkey::new_unique(), account, true),
]
}
struct MockInstruction {
program_id: Pubkey,
accounts: Vec<AccountMeta>,
data: Vec<u8>,
}
impl MockInstruction {
fn into_region(self, vm_addr: u64) -> (Vec<u8>, MemoryRegion) {
let accounts_len = mem::size_of::<AccountMeta>() * self.accounts.len();
let size = mem::size_of::<StableInstruction>() + accounts_len + self.data.len();
let mut data = vec![0; size];
let vm_addr = vm_addr as usize;
let accounts_addr = vm_addr + mem::size_of::<StableInstruction>();
let data_addr = accounts_addr + accounts_len;
let ins = Instruction {
program_id: self.program_id,
accounts: unsafe {
Vec::from_raw_parts(
accounts_addr as *mut _,
self.accounts.len(),
self.accounts.len(),
)
},
data: unsafe {
Vec::from_raw_parts(data_addr as *mut _, self.data.len(), self.data.len())
},
};
let ins = StableInstruction::from(ins);
unsafe {
ptr::write_unaligned(data.as_mut_ptr().cast(), ins);
data[accounts_addr - vm_addr..][..accounts_len].copy_from_slice(
slice::from_raw_parts(self.accounts.as_ptr().cast(), accounts_len),
);
data[data_addr - vm_addr..].copy_from_slice(&self.data);
}
let region = MemoryRegion::new_writable(data.as_mut_slice(), vm_addr as u64);
(data, region)
}
}
fn mock_signers(signers: &[&[u8]], vm_addr: u64) -> (Vec<u8>, MemoryRegion) {
let slice_size = mem::size_of::<&[()]>();
let size = signers
.iter()
.fold(slice_size, |size, signer| size + slice_size + signer.len());
let vm_addr = vm_addr as usize;
let mut slices_addr = vm_addr + slice_size;
let mut data = vec![0; size];
unsafe {
ptr::write_unaligned(
data.as_mut_ptr().cast(),
slice::from_raw_parts::<&[&[u8]]>(slices_addr as *const _, signers.len()),
);
}
let mut signers_addr = slices_addr + signers.len() * slice_size;
for signer in signers {
unsafe {
ptr::write_unaligned(
(data.as_mut_ptr() as usize + slices_addr - vm_addr) as *mut _,
slice::from_raw_parts::<&[u8]>(signers_addr as *const _, signer.len()),
);
}
slices_addr += slice_size;
signers_addr += signer.len();
}
let slices_addr = vm_addr + slice_size;
let mut signers_addr = slices_addr + signers.len() * slice_size;
for signer in signers {
data[signers_addr - vm_addr..][..signer.len()].copy_from_slice(signer);
signers_addr += signer.len();
}
let region = MemoryRegion::new_writable(data.as_mut_slice(), vm_addr as u64);
(data, region)
}
struct MockAccountInfo<'a> {
key: Pubkey,
is_signer: bool,
is_writable: bool,
lamports: u64,
data: &'a [u8],
owner: Pubkey,
executable: bool,
rent_epoch: Epoch,
}
impl<'a> MockAccountInfo<'a> {
fn new(key: Pubkey, account: &AccountSharedData) -> MockAccountInfo {
MockAccountInfo {
key,
is_signer: false,
is_writable: false,
lamports: account.lamports(),
data: account.data(),
owner: *account.owner(),
executable: account.executable(),
rent_epoch: account.rent_epoch(),
}
}
fn into_region(self, vm_addr: u64) -> (Vec<u8>, MemoryRegion) {
let size = mem::size_of::<AccountInfo>()
+ mem::size_of::<Pubkey>() * 2
+ mem::size_of::<RcBox<RefCell<&mut u64>>>()
+ mem::size_of::<u64>()
+ mem::size_of::<RcBox<RefCell<&mut [u8]>>>()
+ self.data.len();
let mut data = vec![0; size];
let vm_addr = vm_addr as usize;
let key_addr = vm_addr + mem::size_of::<AccountInfo>();
let lamports_cell_addr = key_addr + mem::size_of::<Pubkey>();
let lamports_addr = lamports_cell_addr + mem::size_of::<RcBox<RefCell<&mut u64>>>();
let owner_addr = lamports_addr + mem::size_of::<u64>();
let data_cell_addr = owner_addr + mem::size_of::<Pubkey>();
let data_addr = data_cell_addr + mem::size_of::<RcBox<RefCell<&mut [u8]>>>();
let info = AccountInfo {
key: unsafe { (key_addr as *const Pubkey).as_ref() }.unwrap(),
is_signer: self.is_signer,
is_writable: self.is_writable,
lamports: unsafe {
Rc::from_raw((lamports_cell_addr + RcBox::<&mut u64>::VALUE_OFFSET) as *const _)
},
data: unsafe {
Rc::from_raw((data_cell_addr + RcBox::<&mut [u8]>::VALUE_OFFSET) as *const _)
},
owner: unsafe { (owner_addr as *const Pubkey).as_ref() }.unwrap(),
executable: self.executable,
rent_epoch: self.rent_epoch,
};
unsafe {
ptr::write_unaligned(data.as_mut_ptr().cast(), info);
ptr::write_unaligned(
(data.as_mut_ptr() as usize + key_addr - vm_addr) as *mut _,
self.key,
);
ptr::write_unaligned(
(data.as_mut_ptr() as usize + lamports_cell_addr - vm_addr) as *mut _,
RcBox::new(RefCell::new((lamports_addr as *mut u64).as_mut().unwrap())),
);
ptr::write_unaligned(
(data.as_mut_ptr() as usize + lamports_addr - vm_addr) as *mut _,
self.lamports,
);
ptr::write_unaligned(
(data.as_mut_ptr() as usize + owner_addr - vm_addr) as *mut _,
self.owner,
);
ptr::write_unaligned(
(data.as_mut_ptr() as usize + data_cell_addr - vm_addr) as *mut _,
RcBox::new(RefCell::new(slice::from_raw_parts_mut(
data_addr as *mut u8,
self.data.len(),
))),
);
data[data_addr - vm_addr..].copy_from_slice(self.data);
}
let region = MemoryRegion::new_writable(data.as_mut_slice(), vm_addr as u64);
(data, region)
}
}
#[repr(C)]
struct RcBox<T> {
strong: Cell<usize>,
weak: Cell<usize>,
value: T,
}
impl<T> RcBox<T> {
const VALUE_OFFSET: usize = mem::size_of::<Cell<usize>>() * 2;
fn new(value: T) -> RcBox<T> {
RcBox {
strong: Cell::new(0),
weak: Cell::new(0),
value,
}
}
}
fn is_zeroed(data: &[u8]) -> bool {
data.iter().all(|b| *b == 0)
}
}